PARTS FORMULAS INVOLVING CONDITIONAL FEYNMAN INTEGRALS

Seung Jun Chang and David Skoug

Abstract

In this paper we first obtain a basic formula for the conditional analytic Feynman integral of the first variation of a functional on Wiener space. We then apply this basic result to obtain several integration by parts formulas for conditional analytic Feynman integrals and conditional Fourier-Feynman transforms.

1. Introduction

Let $C_{0}[0, T]$ denote the one-parameter Wiener space, that is the space of \mathbb{R}-valued continuous functions $x(t)$ on $[0, T]$ with $x(0)=0$. Let \mathcal{M} denote the class of all Wiener measurable subsets of $C_{0}[0, T]$ and let m denote Wiener measure. $\left(C_{0}[0, T], \mathcal{M}, m\right)$ is a complete measure space and we denote the Wiener integral of a Wiener integrable functional F by

$$
\int_{C_{0}[0, T]} F(x) m(d x)
$$

A subset E of $C_{0}[0, T]$ is said to be scale-invariant measurable ($[\mathbf{7}, \mathbf{1 3}]$) provided $\rho E \in \mathcal{M}$ for all $\rho>0$, and a scale-invariant measurable set N is said to be scaleinvariant null provided $m(\rho N)=0$ for each $\rho>0$. A property that holds except on a scale-invariant null set is said to hold scale-invariant almost everywhere. If two functionals F and G are equal scale-invariant almost everywhere, we write $F \approx G$. For a rather detailed discussion of scale-invariant measurable and its relation with other topics see [13]. It was also pointed out in [13] that the concept of scale-invariant measurable, rather than Borel measurability or Wiener measurability, is precisely correct for the analytic Fourier-Feynman transform theory and the analytic Feynman integration theory. Thus throughout this paper we shall assume that each functional F (or G or $H)$ we consider satisfies the conditions:

$$
\begin{equation*}
F: C_{0}[0, T] \rightarrow \mathbb{C}, \tag{1.1}
\end{equation*}
$$

[^0]is defined scale-invariant almost everywhere and is scale-invariant measurable.
\[

$$
\begin{equation*}
\int_{C_{0}[0, T]}|F(\rho x)| m(d x)<\infty \text { for each } \rho>0 \tag{1.2}
\end{equation*}
$$

\]

Let \mathbb{C}_{+}and $\widetilde{\mathbb{C}}_{+}$denote the complex numbers with positive real part and the nonzero complex numbers with nonnegative real part respectively. Let F satisfy conditions (1.1) and (1.2) above, and for $\lambda>0$, let

$$
J(\lambda)=\int_{C_{0}[0, T]} F\left(\lambda^{-(1 / 2)} x\right) m(d x)
$$

If there exists a function $J^{*}(\lambda)$ analytic in \mathbb{C}_{+}such that $J^{*}(\lambda)=J(\lambda)$ for all $\lambda>0$, then $J^{*}(\lambda)$ is defined to be the analytic Wiener integral of F over $C_{0}[0, T]$ with parameter λ, and for λ in \mathbb{C}_{+}we write

$$
\begin{equation*}
\int_{C_{0}[0, T]}^{\mathrm{anw}_{\lambda}} F(x) m(d x)=J^{*}(\lambda) \tag{1.3}
\end{equation*}
$$

Let $q \neq 0$ be a real parameter and let F be a functional whose analytic Wiener integral exists for all $\lambda \in \mathbb{C}_{+}$. If the following limit exists, we call it the analytic Feynman integral of F with parameter q and we write

$$
\begin{equation*}
\int_{C_{0}[0, T]}^{\mathrm{anf}_{q}} F(x) m(d x)=\lim _{\lambda \rightarrow-i q} \int_{C_{0}[0, T]}^{\mathrm{anw}_{\lambda}} F(x) m(d x) \tag{1.4}
\end{equation*}
$$

where $\lambda \rightarrow-i q$ through values in \mathbb{C}_{+}.
The concept of an L_{1} analytic Fourier-Feynman transform was introduced by Brue in [1], while in [4], Cameron and Storvick introduced an L_{2} analytic Fourier-Feynman transform. In [12], Johnson and Skoug developed an L_{p} analytic Fourier-Feynman transform which extended the results in $[\mathbf{1}, \mathbf{4}]$ and gave various relationships between the L_{1} and L_{2} theories.

Next we state the definition of the L_{p} analytic Fourier-Feynman transform ([12]) using (1.3) and (1.4) above. First for $\lambda \in \mathbb{C}_{+}$and $y \in C_{0}[0, T]$, let

$$
\begin{equation*}
T_{\lambda}(F)(y)=\int_{C_{0}[0, T]}^{\operatorname{anw}_{\lambda}} F(x+y) m(d x) \tag{1.5}
\end{equation*}
$$

In the standard Fourier theory the integrals involved are often interpreted in the mean; a similar concept is useful in the Fourier-Feynman transform theory ([12, p. 104]). Let $p \in(1,2]$ and let p and p^{\prime} be related by $1 / p+1 / p^{\prime}=1$. Let $\left\{H_{n}\right\}$ and H be scale-invariant measurable functionals such that for each $\rho>0$,

$$
\lim _{n \rightarrow \infty} \int_{C_{0}[0, T]}\left|H_{n}(\rho y)-H(\rho y)\right|^{p^{\prime}} m(d y)=0
$$

Then we write

$$
H \approx \underset{n \rightarrow \infty}{1 . \mathrm{i}, \mathrm{~m}} . H_{n}
$$

and we call H the scale-invariant limit in the mean of order p^{\prime}. A similar definition is understood when n is replaced by the continuously varying parameter λ. Let real $q \neq 0$ be given. For $1<p \leqslant 2$ we define the L_{p} analytic Fourier-Feynman transform, $T_{q}^{(p)}(F)$ of F, by the formula $\left(\lambda \in \mathbb{C}_{+}\right)$,

$$
\begin{equation*}
T_{q}^{(p)}(F)(y)=\operatorname{li.i.m.~}_{\lambda \rightarrow-i q} T_{\lambda}(F)(y) \tag{1.6}
\end{equation*}
$$

if it exists. We define the L_{1} analytic Fourier-Feynman transform, $T_{q}^{(1)}$ of F, by the formula $\left(\lambda \in \mathbb{C}_{+}\right)$,

$$
\begin{equation*}
T_{q}^{(1)}(F)(y)=\lim _{\lambda \rightarrow-i q} T_{\lambda}(F)(y) \tag{1.7}
\end{equation*}
$$

if it exists. We note that for $1 \leqslant p \leqslant 2, T_{q}^{(p)}(F)$ is defined only scale-invariant almost everywhere. We also note that if $T_{q}^{(p)}\left(F_{1}\right)$ exists and if $F_{1} \approx F_{2}$, then $T_{q}^{(p)}\left(F_{2}\right)$ exists and $T_{q}^{(p)}\left(F_{1}\right) \approx T_{q}^{(p)}\left(F_{2}\right)$.

Next we give the definition of the first variation δF of a functional $F[\mathbf{2}, \mathbf{6}]$.
Definition: Let F be a Wiener measurable functional on $C_{0}[0, T]$, and let $w \in$ $C_{0}[0, T]$. Then

$$
\begin{equation*}
\delta F(x \mid w)=\left.\frac{\partial}{\partial k} F(x+k w)\right|_{k=0} \tag{1.8}
\end{equation*}
$$

(if it exists) is called the first variation of $F(x)$. However throughout this paper we shall always choose w to be an element of A where
(1.9) $A=\left\{w \in C_{0}[0, T]: w\right.$ is absolutely continuous on $[0, T]$ with $\left.w^{\prime} \in L_{2}[0, T]\right\}$.

See $[10,14,19]$ for some relationships which exist between the Fourier-Feynman transform and the first variation for various classes of functionals.

Throughout this paper, for u and v in $L_{2}[0, T]$ and $x \in C_{0}[0, T]$, we let $\langle u, x\rangle$ denote the Paley-Wiener-Zygmund integral $\int_{0}^{T} u(s) d x(s)$ and $(u, v)=\int_{0}^{T} u(s) v(s) d s$.

We finish this section by stating the following well-known translation theorem using the above notation ([3]).

Translation Theorem. For $\lambda>0$ and $w \in A$,

$$
\begin{equation*}
\int_{C_{0}[0, T]}^{\mathrm{anw} w_{\lambda}} F(x+w) m(d x) \doteq \exp \left\{-\frac{\lambda}{2}\left\|w^{\prime}\right\|^{2}\right\} \int_{C_{0}[0, T]}^{\mathrm{anw}_{\lambda}} F(x) \exp \left\{\lambda\left\langle w^{\prime}, x\right\rangle\right\} m(d x) \tag{1.10}
\end{equation*}
$$

where \doteq means that if either side of equation (1.10) exists, both side exist and equality holds.

2. Conditional Feynman integrals and transforms

For the definitions and related work involving conditional Feynman integrals and transforms see $[8,9,11,15,16,17,20]$. Throughout this paper we shall always condition by

$$
\begin{equation*}
X(x)=x(T) \tag{2.1}
\end{equation*}
$$

For $\lambda>0$ and $\eta \in \mathbb{R}$ let

$$
\begin{equation*}
J_{\lambda}(\eta)=E\left(F\left(\lambda^{-(1 / 2)} x\right) \| \lambda^{-(1 / 2)} x(T)=\eta\right) \tag{2.2}
\end{equation*}
$$

denote the conditional Wiener integral of $F\left(\lambda^{-(1 / 2)} x\right)$ given $\lambda^{-(1 / 2)} x(T)$. If for almost all $\eta \in \mathbb{R}$, there exists a function $J_{\lambda}^{*}(\eta)$, analytic in λ on \mathbb{C}_{+}such that $J_{\lambda}^{*}(\eta)=J_{\lambda}(\eta)$ for $\lambda>0$, then $J_{\lambda}^{*}(\eta)$ is defined to be the conditional analytic Wiener integral of $F(x)$ given $x(T)$ with parameter λ and for $\lambda \in \mathbb{C}+$ we write

$$
\begin{equation*}
J_{\lambda}^{*}(\eta)=E^{\mathrm{anw}_{\lambda}}(F(x) \| x(T)=\eta) \tag{2.3}
\end{equation*}
$$

If for fixed real $q \neq 0, \lim _{\lambda \rightarrow-i q} J_{\lambda}^{*}(\eta)$ exists for almost all $\eta \in \mathbb{R}$, we denote the value of this limit by

$$
\begin{equation*}
E^{\operatorname{anf}_{q}}(F(x) \| x(T)=\eta) \tag{2.4}
\end{equation*}
$$

and we call it the conditional analytic Feynman integral of F given X with parameter q.

Remark 1. In [16], Park and Skoug give a formula for expressing conditional Wiener integrals in terms of ordinary Wiener integrals; namely that for $\lambda>0$,

$$
\begin{align*}
& E\left(F\left(\lambda^{-(1 / 2)} x\right) \| \lambda^{-(1 / 2)} x(T)=\eta\right) \tag{2.5}\\
&=\int_{C_{0}[0, T]} F\left(\lambda^{-(1 / 2)} x(\cdot)-\frac{\dot{C}^{\prime}}{T} \lambda^{-(1 / 2)} x(T)+\frac{\dot{T}}{T} \eta\right) m(d x)
\end{align*}
$$

Thus we have that

$$
\begin{equation*}
E^{\mathrm{anw}_{\lambda}}(F(x) \| x(T)=\eta)=\int_{C_{0}[0, T]}^{\mathrm{anw}_{\lambda}} F\left(x(\cdot)-\frac{\dot{T}}{T} x(T)+\frac{\cdot}{T} \eta\right) m(d x) \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
E^{\mathrm{anf}_{q}}(F(x) \| x(T)=\eta)=\int_{C_{0}[0, T]}^{\operatorname{anf}_{q}} F\left(x(\cdot)-\frac{\dot{T}}{T} x(T)+\frac{\cdot}{T} \eta\right) m(d x) \tag{2.7}
\end{equation*}
$$

where in (2.6) and (2.7) the existence of either side implies the existence of the other side and their equality.

Next we state the definition of the conditional Fourier-Feynman transform using (1.6), (1.7), (2.6) and (2.7) above. For $\lambda \in \mathbb{C}_{+}, \eta \in \mathbb{R}$ and $y \in C_{0}[0, T]$, let $T_{\lambda}(F \| X)(y, \eta)$ denote the conditional analytic Wiener integral of $F(x+y)$ given $X(x)=x(T)$; that is to say

$$
\begin{align*}
T_{\lambda}(F \| X)(y, \eta) & =E^{\mathrm{anw}_{\lambda}}(F(y+x) \| x(T)=\eta) \\
& =\int_{C_{0}[0, T]}^{\mathrm{anw}} F\left(y(\cdot)+x(\cdot)-\frac{\dot{T}}{T} x(T)+\frac{\dot{T}}{T} \eta\right) m(d x) \tag{2.8}
\end{align*}
$$

Then for $p \in[1,2]$ we define the conditional Fourier-Feynman transform, $T_{q}^{(p)}(F \| X)$ of F, by the formula $\left(\lambda \in \mathbb{C}_{+}\right)$,

$$
T_{q}^{(p)}(F \| X)(y, \eta)= \begin{cases}\substack{\operatorname{l.i.m.miq}} & T_{\lambda}(F \| X)(y, \eta), \tag{2.9}\\ \lim _{\lambda \rightarrow-i q} T_{\lambda}(F \| X)(y, \eta), & p=1\end{cases}
$$

if it exists. Note that for $p=1$,

$$
T_{q}^{(1)}(F \| X)(y, \eta)=\int_{C_{0}[0, T]}^{\mathrm{anf}_{q}} F\left(y(\cdot)+x(\cdot)-\frac{\cdot}{T} x(T)+\frac{\cdot}{T} \eta\right) m(d x)
$$

3. Main results

Our first result is a fundamental theorem in which we express the conditional analytic Feynman integral of the first variation of a functional in terms of an ordinary (that is, non-conditional) analytic Feynman integral. In [2], Cameron (see [6, Theorem A, p. 145]) expressed the Wiener integral of the first variation of a functional F in terms of the Wiener integral of the product of F by a linear functional, and in [6, Theorem 1], Cameron and Storvick obtained a similar result for analytic Feynman integrals.

REMARK 2. Throughout this paper the main conditions we impose upon the functionals F, G and H, in addition to conditions (1.1) and (1.2) above, are the conditions (3.1), (3.8), (3.9), et cetera, below. These conditions ensure the existence of various integrals (or conditional integrals), and they justify the various interchanges of differentiation and integration used in the proofs.

ThEOREM 1. Let $w_{1} \in A$ and $\eta \in \mathbb{R}$ be given. For each $\rho>0$, assume that $F(\rho x)$ has a first variation $\delta F\left(\rho x \mid \rho w_{1}\right)$ for all $x \in C_{0}[0, T]$ such that for some positive function $\gamma(\rho)$,

$$
\begin{equation*}
\sup _{|k| \leqslant \gamma(\rho)}\left|\delta F\left(\left.\rho x(\cdot)-\frac{\dot{ד}}{T} \rho x(T)+\frac{\dot{T}}{T} \rho \eta+\rho k w_{1} \right\rvert\, \rho w_{1}\right)\right| \tag{3.1}
\end{equation*}
$$

is a Wiener integrable function of x over $C_{0}[0, T]$. Then for all $q \in \mathbb{R}, q \neq 0$,

$$
\begin{align*}
E^{\operatorname{anf}_{q}}\left(\delta F\left(x \mid w_{1}\right) \| x(T)\right. & =\eta) \tag{3.2}\\
& \doteq-i q \int_{C_{0}[0, T]}^{\mathrm{anf}_{q}} F\left(x(\cdot)-\frac{\dot{T}}{T} x(T)+\frac{\dot{T}}{T} \eta\right)\left\langle w_{1}^{\prime}, x\right\rangle m(d x)
\end{align*}
$$

where \doteq means that if either side exists, both sides exist and equality holds. Furthermore, if (3.1) also holds with $w_{1}(t)$ replaced with $w_{0}(t)=t / T$ on $[0, T]$, and if either side of (3.2) exists, then

$$
\begin{align*}
E^{\operatorname{anf}_{q}}\left(\delta F\left(x \mid w_{1}\right) \| x(T)=\eta\right)=- & i q E^{\operatorname{anf}_{q}}\left(F(x)\left\langle w_{1}^{\prime}, x\right\rangle \| x(T)=\eta\right) \\
& +T\left(w_{0}^{\prime}, w_{1}^{\prime}\right) E^{\operatorname{anf}_{q}}\left(\delta F\left(x \mid w_{0}\right) \| x(T)=\eta\right) \tag{3.3}\\
& +i q \eta\left(w_{0}^{\prime}, w_{1}^{\prime}\right) E^{\operatorname{anf}_{q}}(F(x) \| x(T)=\eta)
\end{align*}
$$

Proof: First proceeding formally with $\lambda>0$, and then using equation (1.10), we see that

$$
\begin{align*}
& E^{\mathrm{anw}_{\lambda}}\left(\delta F\left(x \mid w_{1}\right) \| x(T)=\eta\right) \\
& =E^{\operatorname{anw} \dot{\lambda}}\left(\left.\frac{\partial}{\partial k} F\left(x+k w_{1}\right)\right|_{k=0} \| x(T)=\eta\right) \\
& =\left.\int_{C_{0}[0, T]}^{\mathrm{anw}_{\lambda}} \frac{\partial}{\partial k}\left[F\left(x(\cdot)-\frac{\dot{T}}{T} x(T)+\frac{\cdot}{T} \eta+k w_{1}(\cdot)\right)\right]\right|_{k=0} m(\dot{d} x) \\
& =\left.\frac{\partial}{\partial k}\left[\int_{C_{0}[0, T]}^{\mathrm{anw}_{\lambda}} F\left(x(\cdot)-\frac{\dot{T}}{T} x(T)+\frac{\dot{C}}{T} \eta+k w_{1}(\cdot)\right) m(d x)\right]\right|_{k=0} \tag{3.4}\\
& =\frac{\partial}{\partial k}\left[\exp \left\{-\frac{\lambda k^{2}}{2}\left\|w_{1}^{\prime}\right\|^{2}\right\} \int_{C_{0}[0, T]}^{\mathrm{anw}_{\lambda}} F\left(x(\cdot)-\frac{\dot{T}}{T} x(T)+\frac{\cdot}{T} \eta\right)\right. \\
& \left.\cdot \exp \left\{\lambda k\left\langle w_{1}^{\prime}, x\right\rangle\right\} m(d x)\right]\left.\right|_{k=0} \\
& =\lambda \int_{C_{0}[0, T]}^{\mathrm{anw}_{\lambda}} F\left(x(\cdot)-\frac{\cdot}{T} x(T)+\frac{\dot{T}}{T} \eta\right)\left\langle w_{1}^{\prime}, x\right\rangle m(d x) .
\end{align*}
$$

But condition (3.1) justifies the above interchanges of differentiation and integration, and so the existence of either side of equation (3.2) implies the existence of all the expressions in equation (3.4) and their equality. Hence for all $\lambda>0$,

$$
\begin{align*}
E^{\mathrm{an} w_{\lambda}}\left(\delta F\left(x \mid w_{1}\right) \| x(T)\right. & =\eta) \tag{3.5}\\
& \doteq \lambda \int_{C_{0}[0, T]}^{\mathrm{anw}_{\lambda}} F\left(x(\cdot)-\frac{\dot{T}}{T} x(T)+\frac{\dot{T}}{T} \eta\right)\left\langle w_{1}^{\prime}, x\right\rangle m(d x)
\end{align*}
$$

Next we note that if either side of (3.2) exists for all real $q \neq 0$, then equation (3.5) holds for all $\lambda \in \mathbb{C}_{+}$. Finally, letting $\lambda \rightarrow-i q$ through values in \mathbb{C}_{+}, we obtain equation (3.2).

To establish equation (3.3), note that for all $\lambda>0$,

$$
\begin{align*}
& \lambda \int_{C_{0}[0, T]}^{\mathrm{anw}_{\lambda}} F\left(x(\cdot)-\frac{\dot{T}}{T} x(T)+\frac{\dot{T}}{T} \eta\right)\left\langle w_{1}^{\prime}, x\right\rangle m(d x) \\
& =\lambda \int_{C_{0}[0, T]}^{\mathrm{anw}_{\lambda}} F\left(x(\cdot)-\frac{\dot{T}}{T} x(T)+\frac{\cdot}{T} \eta\right)\left\langle w_{1}^{\prime}, x(\cdot)-\frac{\dot{T}}{T} x(T)+\frac{\cdot}{T} \eta\right\rangle m(d x) \\
& +\lambda \int_{C_{0}[0, T]}^{\mathrm{anw}_{\lambda}} F\left(x(\cdot)-\frac{\dot{T}}{T} x(T)+\frac{\cdot}{T} \eta\right)\left\langle w_{1}^{\prime}, \frac{\dot{T}}{T} x(T)\right\rangle m(d x) \\
& -\lambda \int_{C_{0}[0, T]}^{\mathrm{anw}_{\lambda}} F\left(x(\cdot)-\frac{\dot{T}}{T} x(T)+\frac{\cdot}{T} \eta\right)\left\langle w_{1}^{\prime}, \frac{\cdot}{T} \eta\right\rangle m(d x) \tag{3.6}\\
& =\lambda E^{\mathrm{anw}_{\lambda}}\left(F(x)\left\langle w_{1}^{\prime}, x\right\rangle \| x(T)=\eta\right) \\
& +T\left(w_{0}^{\prime}, w_{1}^{\prime}\right) E^{\mathrm{anw}_{\lambda}}\left(\delta F\left(x \mid w_{0}\right) \| x(T)=\eta\right) \\
& -\lambda \eta\left(w_{0}^{\prime}, w_{1}^{\prime}\right) E^{\text {anw }_{\lambda}}(F(x) \| x(T)=\eta) .
\end{align*}
$$

Then, if the right hand of (3.2) holds for all real $q \neq 0$, equation (3.6) holds for all $\lambda \in \mathbb{C}_{+}$. Finally letting $\lambda \rightarrow-i q$ through values in \mathbb{C}_{+}, we obtain equation (3.3) as desired.

Our first corollary of Theorem 1 follows from a careful examination of equation (3.3) and yields a formula for the conditional analytic Feynman integral of F multiplied by the linear factor $\left\langle w_{1}^{\prime}, x\right\rangle$.

Corollary 1. Let w_{1}, w_{0}, η, and F be as in Theorem 1 above and assume that $E^{\operatorname{anf}_{q}}\left(\delta F\left(x \mid w_{1}\right) \| x(T)=\eta\right)$ exists. Then

$$
\begin{align*}
& E^{\operatorname{anf}_{q}\left(F(x)\left\langle w_{1}^{\prime}, x\right\rangle \| x(T)=\eta\right)=\frac{i}{q} E^{\operatorname{anf}_{q}}}\left(\begin{array}{rl}
& \left.\delta F\left(x \mid w_{1}\right) \| x(T)=\eta\right) \\
& -\frac{i T}{q}\left(w_{0}^{\prime}, w_{1}^{\prime}\right) E^{\operatorname{anf}_{q}}\left(\delta F\left(x \mid w_{0}\right) \| x(T)=\eta\right) \\
& +\eta\left(w_{0}^{\prime}, w_{1}^{\prime}\right) E^{\operatorname{anf}_{q}}(F(x) \| x(T)=\eta) .
\end{array}\right.
\end{align*}
$$

In our next theorem we obtain an integration by parts formula for conditional analytic Feynman integrals.

Theorem 2. Let $w_{1} \in A$ and $\eta \in \mathbb{R}$ be given. For each $\rho>0$ assume that $G(\rho x)$ and $H(\rho x)$ have first variations $\delta G\left(\rho x \mid \rho w_{1}\right)$ and $\delta H\left(\rho x \mid \rho w_{1}\right)$ for all $x \in$
$C_{0}[0, T]$ such that for some positive function $\gamma(\rho)$,

$$
\begin{align*}
& \sup _{|k| \leqslant \gamma(\rho)} \left\lvert\, G\left(\rho x(\cdot)-\frac{\cdot}{T} \rho x(T)+\frac{\cdot}{T} \rho \eta+k \rho w_{1}\right)\right. \tag{3.8}\\
& \left.\cdot \delta H\left(\left.\rho x(\cdot)-\frac{\dot{1}}{T} \rho x(T)+\frac{\dot{4}}{T} \rho \eta+k \rho w_{1} \right\rvert\, \rho w_{1}\right) \right\rvert\,
\end{align*}
$$

and

$$
\begin{equation*}
\sup _{|k| \leqslant \gamma(\rho)} \left\lvert\, H\left(\rho x(\cdot)-\frac{\dot{T}}{T} \rho x(T)+\frac{\dot{T}}{T} \rho \eta+k \rho w_{1}\right)\right. \tag{3.9}
\end{equation*}
$$

$$
\left.\delta G\left(\left.\rho x(\cdot)-\frac{\dot{T}}{T} \rho x(T)+\frac{\dot{T}}{T} \rho \eta+k \rho w_{1} \right\rvert\, \rho w_{1}\right) \right\rvert\,
$$

are Wiener integrable functions of x over $C_{0}[0, T]$. Then for all $q \in \mathbb{R}, q \neq 0$,

$$
\begin{align*}
& E^{\operatorname{anf}_{q}}\left(G(x) \delta H\left(x \mid w_{1}\right)+\right.\left.\delta G\left(x \mid w_{1}\right) H(x) \| x(T)=\eta\right) \\
& \pm-i q \int_{C_{0}[0, T]}^{\operatorname{anf}_{q}} G\left(x(\cdot)-\frac{\dot{T}}{T} x(T)+\frac{\dot{T}}{T} \eta\right) \tag{3.10}\\
& \cdot H\left(x(\cdot)-\frac{\dot{T}}{T} x(T)+\frac{\dot{T}}{T} \eta\right)\left\langle w_{1}^{\prime}, x\right\rangle m(d x)
\end{align*}
$$

Furthermore, if either side of equation (3.10) exists, then

$$
\begin{align*}
& E^{\operatorname{anf}_{q}}\left(G(x) \delta H\left(x \mid w_{1}\right)+\delta G\left(x \mid w_{1}\right) H(x) \| x(T)=\eta\right) \tag{3.11}\\
&=-i q E^{\operatorname{anf}_{q}}\left(G(x) H(x)\left\langle w_{1}^{\prime}, x\right\rangle \| x(T)=\eta\right) \\
&+T\left(w_{0}^{\prime}, w_{1}^{\prime}\right) E^{\operatorname{anf}_{q}}\left(G(x) \delta H\left(x \mid w_{0}\right)+\delta G\left(x \mid w_{0}\right) H(x) \| x(T)=\eta\right) \\
&+i q \eta\left(w_{0}^{\prime}, w_{1}^{\prime}\right) E^{\operatorname{anf}_{q}}(G(x) H(x) \| x(T)=\eta)
\end{align*}
$$

where $w_{0}(t)=t / T$ on $[0, T]$.
Proof: Let $F(x)=G(x) H(x)$. Then, since

$$
\delta F\left(\rho x \mid \rho w_{1}\right)=G(\rho x) \delta H\left(\rho x \mid \rho w_{1}\right)+\delta G\left(\rho x \mid \rho w_{1}\right) H(\rho x)
$$

for all $\rho>0$, Theorem 2 follows immediately from Theorem 1.
We obtain our next corollary by letting $H(x)=G(x)$ in Theorem 2 above.

Corollary 2. Let $w_{1} \in A$ and $\eta \in \mathbb{R}$ be given. For each $\rho>0$ assume that $G(\rho x)$ has a first variation $\delta G\left(\rho x \mid \rho w_{1}\right)$ for all $x \in C_{0}[0, T]$ such that for some positive function $\gamma(\rho)$,
$\sup _{|k| \leqslant \gamma(\rho)}\left|G\left(\rho x(\cdot)-\frac{\dot{\bar{T}}}{} \rho x(T)+\frac{\dot{T}}{T} \rho \eta+k \rho w_{1}\right) \cdot \delta G\left(\left.\rho x(\cdot)-\frac{\dot{T}}{T} \rho x(T)+\frac{\dot{T}}{T} \rho \eta+k \rho w_{1} \right\rvert\, \rho w_{1}\right)\right|$
is a Wiener integrable function of x over $C_{0}[0, T]$. Then for all $q \in \mathbb{R}, q \neq 0$,

$$
\begin{align*}
E^{\operatorname{anf}_{q}}\left(G(x) \delta G\left(x \mid w_{1}\right)\right. & \| x(T)=\eta) \tag{3.12}\\
\doteq & -\frac{i q}{2} \int_{C_{0}[0, T]}^{\operatorname{anf} q_{q}}\left[G\left(x(\cdot)-\frac{\dot{T}}{T} x(T)+\dot{\bar{T}} \eta\right)\right]^{2}\left\langle w_{1}^{\prime}, x\right\rangle m(d x)
\end{align*}
$$

Furthermore, if either side of (3.12) exists, then

$$
\begin{align*}
& E^{\operatorname{anf}_{q}}\left(G(x) \delta G\left(x \mid w_{1}\right) \| x(T)=\eta\right) \\
&=- \frac{i q}{2} E^{\operatorname{anf}_{q}}\left([G(x)]^{2}\left\langle w_{1}^{\prime}, x\right\rangle \| x(T)=\eta\right) \\
&+T\left(w_{0}^{\prime}, w_{1}^{\prime}\right) E^{\operatorname{anf}_{q}}\left(G(x) \delta G\left(x \mid w_{0}\right) \| x(T)=\eta\right) \tag{3.13}\\
&+\frac{i q \eta}{2}\left(w_{0}^{\prime}, w_{1}^{\prime}\right) E^{\operatorname{anf}_{q}}\left([G(x)]^{2} \| x(T)=\eta\right)
\end{align*}
$$

where $w_{0}(t)=t / T$ on $[0, T]$.
In our next corollary we obtain a formula for the conditional analytic Feynman integral of a functional G multiplied by the two linear factors $\left\langle w_{1}^{\prime}, x\right\rangle$ and $\left\langle w_{2}^{\prime}, x\right\rangle$.

Corollary 3. Let w_{1} and w_{2} be elements of A, let $\eta \in \mathbb{R}$, and let $F(x)$ $=G(x)\left\langle w_{2}^{\prime}, x\right\rangle$. For each $\rho>0$, assume that $F(\rho x)$ has a first variation $\delta F\left(\rho x \mid \rho w_{1}\right)$ for all $x \in C_{0}[0, T]$ such that for some positive function $\gamma(\rho)$, the expression given by (3.1) is a Wiener integrable function of x over $C_{0}[0, T]$. Also assume that $E^{\operatorname{anf}_{q}}\left(\delta F\left(x \mid w_{1}\right) \| x(T)=\eta\right)$ exists. Then

$$
\begin{align*}
& E^{\operatorname{anf}_{q}}\left(G(x)\left\langle w_{2}^{\prime}, x\right\rangle\left\langle w_{1}^{\prime}, x\right\rangle \| x(T)=\eta\right) \tag{3.14}\\
&= \frac{i}{q} E^{\operatorname{anf}_{q}}\left(\left(w_{1}^{\prime}, w_{2}^{\prime}\right) G(x)+\left\langle w_{2}^{\prime}, x\right\rangle \delta G\left(x \mid w_{1}\right) \| x(T)=\eta\right) \\
& \quad-\frac{i T}{q}\left(w_{0}^{\prime}, w_{1}^{\prime}\right) E^{\operatorname{anf}_{q}}\left(\left(w_{0}^{\prime}, w_{2}^{\prime}\right) G(x)+\delta G\left(x \mid w_{0}\right)\left\langle w_{2}^{\prime}, x\right\rangle \| x(T)=\eta\right) \\
&+\eta\left(w_{0}^{\prime}, w_{1}^{\prime}\right) E^{\operatorname{anf}_{q}}\left(G(x)\left\langle w_{2}^{\prime}, x\right\rangle \| x(T)=\eta\right)
\end{align*}
$$

where $w_{0}(t)=t / T$ on $[0, T]$.
Proof: Let $H(x)=\left\langle w_{2}^{\prime}, x\right\rangle$. Then a direct calculation shows that $\delta H\left(x \mid w_{1}\right)$ $=\left(w_{1}^{\prime}, w_{2}^{\prime}\right)$. Now equation (3.14) follows directly from equation (3.7) with $F(x)$ $=G(x)\left\langle w_{2}^{\prime}, x\right\rangle$ or from equation (3.11) with $H(x)=\left\langle w_{2}^{\prime}, x\right\rangle$.

Our next corollary involves the Fourier-Feynman Transforms, $T_{q}^{(p)}(G)$ of G, for fixed $p \in[1,2]$ and $q \in \mathbb{R}, q \neq 0$.

Corollary 4. Let $w_{1} \in A$ and $\eta \in \mathbb{R}$ be given. For each $\rho>0$, assume that $T_{q}^{(p)}(G)(\rho x)$ has a first variation $\delta T_{q}^{(p)}(G)\left(\rho x \mid \rho w_{1}\right)$ for all $x \in C_{0}[0, T]$ such that for some positive function $\gamma(\rho)$,

$$
\begin{equation*}
\sup _{|k| \leqslant \gamma(\rho)}\left|\delta T_{q}^{(p)}(G)\left(\left.\rho x(\cdot)-\frac{\dot{\bar{T}}}{} \rho x(T)+\frac{\dot{T}}{T} \rho \eta+k \rho w_{1} \right\rvert\, \rho w_{1}\right)\right| \tag{3.15}
\end{equation*}
$$

is a Wiener integrable function of x over $C_{0}[0, T]$. Then

$$
\begin{align*}
& E^{\mathrm{anf}_{q}}\left(\delta T_{q}^{(p)}(G)\left(x \mid w_{1}\right) \| x(T)=\eta\right) \tag{3.16}\\
& \doteq-i q \int_{C_{0}[0, T]}^{\operatorname{anf}_{q}} T_{q}^{(p)}(G)\left(x(\cdot)-\frac{\dot{T}}{T} x(T)+\frac{\dot{T}}{T} \eta\right)\left\langle w_{1}^{\prime}, x\right\rangle m(d x)
\end{align*}
$$

Furthermore, if the expression in (3.15) is also a Wiener integrable function of x when $w_{1}(t)$ is replaced with $w_{0}(t)=t / T$, and if either side of equation (3.16) exists, then

$$
\begin{align*}
E^{\operatorname{anf}_{q}}\left(\delta T_{q}^{(p)}(G)(w \mid\right. & \left.\left.w_{1}\right) \| x(T)=\eta\right) \\
=- & i q E^{\operatorname{anf}_{q}}\left(T_{q}^{(p)}(G)(x)\left(w_{1}^{\prime}, x\right\rangle \| x(T)=\eta\right) \\
& +T\left(w_{0}^{\prime}, w_{1}^{\prime}\right) E^{\operatorname{anf}_{q}}\left(\delta T_{q}^{(p)}(G)\left(x \mid w_{0}\right) \| x(T)=\eta\right) \tag{3.17}\\
& +i q \eta\left(w_{0}^{\prime}, w_{1}^{\prime}\right) E^{\operatorname{anf}_{q}}\left(T_{q}^{(p)}(G)(x) \| x(T)=\eta\right)
\end{align*}
$$

Proof: Simply apply Theorem 1 with $F(x)=T_{q}^{(p)}(G)(x)$.
Our next integration by parts formula involves the Fourier-Feynman Transforms, $T_{q}^{(p)}(G)$ and $T_{q}^{(p)}(H)$.

Theorem 3. Let $w_{1} \in A$ and $\eta \in \mathbb{R}$ be given. For each $\rho>0$ assume that $T_{q}^{(p)}(G)(\rho x)$ and $T_{q}^{(p)}(H)(\rho x)$ have first variations $\delta T_{q}^{(p)}(G)\left(\rho x \mid \rho w_{1}\right)$ and $\delta T_{q}^{(p)}(H)$ ($\rho x \mid \rho w_{1}$) for all $x \in C_{0}[0, T]$ such that for some positive function $\gamma(\rho)$,

$$
\begin{align*}
\sup _{|k| \leqslant \gamma(\rho)} \left\lvert\, T_{q}^{(p)}(G)\left(\rho x(\cdot)-\frac{\dot{T}}{T}\right.\right. & \left.\rho x(T)+\frac{\dot{\bar{T}}}{} \rho \eta+k \rho w_{1}\right) \tag{3.18}\\
& \left.\cdot \delta T_{q}^{(p)}(H)\left(\left.\rho x(\cdot)-\frac{\dot{\bar{T}}}{T} \rho x(T)+\frac{\dot{\bar{T}}}{T} \rho \eta+k \rho w_{1} \right\rvert\, \rho w_{1}\right) \right\rvert\,
\end{align*}
$$

and

$$
\begin{align*}
& \sup _{|k| \leqslant \gamma(\rho)} \left\lvert\, T_{q}^{(p)}(H)\left(\rho x(\cdot)-\frac{\cdot}{T} \rho x(T)+\frac{\dot{T}}{T} \rho \eta+k \rho w_{1}\right)\right. \tag{3.19}\\
& \left.\cdot \delta T_{q}^{(p)}(G)\left(\left.\rho x(\cdot)-\frac{\dot{4}}{T} \rho x(T)+\frac{\dot{\square}}{T} \rho \eta+k \rho w_{1} \right\rvert\, \rho w_{1}\right) \right\rvert\,
\end{align*}
$$

are Wiener integrable functions of x over $C_{0}[0, T]$. Then,

$$
\begin{align*}
& E^{\operatorname{anf}_{q}\left(T_{q}^{(p)}(G)(x) \delta T_{q}^{(p)}(H)\left(x \mid w_{1}\right)+\delta T_{q}^{(p)}(G)\left(x \mid w_{1}\right) T_{q}^{(p)}(H)(x) \| x(T)=\eta\right)} \begin{array}{l}
\doteq-i q \int_{C_{0}(0, T]}^{\operatorname{anf}{ }_{q}} T_{q}^{(p)}(G)\left(x(\cdot)-\frac{\dot{T}}{T} x(T)+\dot{\bar{T}} \eta\right) \\
\cdot
\end{array} \quad T_{q}^{(p)}(H)\left(x(\cdot)-\frac{\dot{T}}{T} x(T)+\frac{\dot{T}}{T} \eta\right)\left\langle w_{1}^{\prime}, x\right\rangle m(d x)
\end{align*}
$$

Furthermore, if either side of (3.20) exists, then

$$
\begin{align*}
& E^{\mathrm{anf}_{q}}\left(T_{q}^{(p)}(G)(x) \delta T_{q}^{(p)}(H)\left(x \mid w_{1}\right)+\delta T_{q}^{(p)}(G)\left(x \mid w_{1}\right) T_{q}^{(p)}(H)(x) \| x(T)=\eta\right) \tag{3.21}\\
& =-i q E^{\operatorname{anf}_{q}}\left(T_{q}^{(p)}(G)(x) T_{q}^{(p)}(H)(x)\left\langle w_{1}^{\prime}, x\right\rangle \| x(T)=\eta\right) \\
& +T\left(w_{0}^{\prime}, w_{1}^{\prime}\right) E^{\mathrm{anf}_{q}}\left(T_{q}^{(p)}(G)(x) \delta T_{q}^{(p)}(H)\left(x \mid w_{0}\right)\right. \\
& \left.+\delta T_{q}^{(p)}(G)\left(x \mid w_{0}\right) T_{q}^{(p)}(H)(x) \| x(T)=\eta\right) \\
& +i q \eta\left(w_{0}^{\prime}, w_{1}^{\prime}\right) E^{\operatorname{anf}_{q}}\left(T_{q}^{(p)}(G)(x) T_{q}^{(p)}(H)(x) \| x(T)=\eta\right)
\end{align*}
$$

where $w_{0}(t)=t / T$ on $[0, T]$.
Proof: Simply apply Theorem 1 with $F(x)=T_{q}^{(p)}(G)(x) T_{q}^{(p)}(H)(x)$.
The following corollary follows by choosing $H(x)=G(x)$ in Theorem 3 above.
Corollary 5. Let $w_{1} \in A$ and $\eta \in \mathbb{R}$ be given. For each $\rho>0$, assume that $T_{q}^{(p)}(G)(\rho x)$ has a first variation $\delta T_{q}^{(p)}(G)\left(\rho x \mid \rho w_{1}\right)$ for all $x \in C_{0}[0, T]$ such that for some positive function $\gamma(\rho)$,

$$
\begin{align*}
& \sup _{|k| \leqslant \gamma(\rho)} \left\lvert\, T_{q}^{(p)}(G)\left(\rho x(\cdot)-\frac{\cdot}{T} \rho x(T)+\frac{\dot{T}}{T} \rho \eta+k \rho w_{1}\right)\right. \tag{3.22}\\
& \left.\cdot \delta T_{q}^{(p)}(G)\left(\left.\rho x(\cdot)-\frac{\dot{T}}{T} \rho x(T)+\frac{\dot{T}}{T} \rho \eta+k \rho w_{1} \right\rvert\, \rho w_{1}\right) \right\rvert\,
\end{align*}
$$

is a Wiener integrable function of x over $C_{0}[0, T]$. Then,

$$
\begin{align*}
E^{\operatorname{anf}_{q}}\left(T_{q}^{(p)}(G)\right. & \left.(x) \delta T_{q}^{(p)}(G)\left(x \mid w_{1}\right) \| x(T)=\eta\right) \tag{3.23}\\
& \doteq-\frac{i q}{2} \int_{C_{0}[0, T]}^{\operatorname{anf}}\left[T_{q}^{(p)}(G)\left(x(\cdot)-\frac{\dot{T}}{T} x(T)+\frac{\dot{T}}{T} \eta\right)\right]^{2}\left\langle w_{1}^{\prime}, x\right\rangle m(d x)
\end{align*}
$$

Furthermore, if either side of (3.23) exists, then (3.21) also holds with each H replaced with G.

Corollary 6. Let $w_{1} \in A$ and $\eta \in \mathbb{R}$ be given. For each $\rho>0$, assume that $G(\rho x)$ and $T_{q}^{(p)}(H)(\rho x)$ have first variations $\delta G\left(\rho x \mid \rho w_{1}\right)$ and $\delta T_{q}^{(p)}(H)\left(\rho x \mid \rho w_{1}\right)$ for all $x \in C_{0}[0, T]$ such that for some positive function $\gamma(\rho)$,

$$
\begin{align*}
& \sup _{|k| \leqslant \gamma(\rho)} \left\lvert\, G\left(\rho x(\cdot)-\frac{\dot{T}}{T} \rho x(T)+\frac{\cdot}{T} \rho \eta+k \rho w_{1}\right)\right. \tag{3.24}\\
& \left.\quad \cdot \delta T_{q}^{(p)}(H)\left(\left.\rho x(\cdot)-\frac{\dot{T}}{T} \rho x(T)+\frac{\dot{T}}{T} \rho \eta+k \rho w_{1} \right\rvert\, \rho w_{1}\right) \right\rvert\,
\end{align*}
$$

and

$$
\begin{align*}
& \sup _{|k| \leqslant \gamma(\rho)} \left\lvert\, \delta G\left(\left.\rho x(\cdot)-\frac{\dot{4}}{T} \rho x(T)+\frac{\dot{4}}{T} \rho \eta+k \rho w_{1} \right\rvert\, \rho w_{1}\right)\right. \tag{3.25}\\
& \left.\cdot T_{q}^{(p)}(H)\left(\rho x(\cdot)-\frac{\dot{T}}{T} \rho x(T)+\frac{\dot{T}}{T} \rho \eta+k \rho w_{1}\right) \right\rvert\,
\end{align*}
$$

are Wiener integrable functions of x over $C_{0}[0, T]$. Then,

$$
\begin{align*}
& E^{\operatorname{anf}_{q}}\left(G(x) \delta T_{q}^{(p)}(H)\left(x \mid w_{1}\right)+\delta G\left(x \mid w_{1}\right) T_{q}^{(p)}(H)(x) \| x(T)=\eta\right) \\
& \doteq-i q \int_{C_{0}[0, T]}^{\mathrm{anf}_{q}} G\left(x(\cdot)-\frac{\dot{T}}{T} x(T)+\frac{\dot{T}}{T} \eta\right) \tag{3.26}\\
& \cdot T_{q}^{(p)}(H)\left(x(\cdot)-\frac{\dot{\bar{T}}}{T} x(T)+\frac{\dot{T}}{T} \eta\right)\left(w_{1}^{\prime}, x\right\rangle m(d x) .
\end{align*}
$$

Furthermore, if either side of equation (3.26) exists, then

$$
\begin{align*}
& E^{\operatorname{anf}_{q}}\left(G(x) \delta T_{q}^{(p)}(H)\left(x \mid w_{1}\right)+\delta G\left(x \mid w_{1}\right) T_{q}^{(p)}(H)(x) \| x(T)=\eta\right) \tag{3.27}\\
&=-i q E^{\operatorname{anf}_{q}}\left(G(x) T_{q}^{(p)}(H)(x)\left\langle w_{1}^{\prime}, x\right\rangle \| x(T)=\eta\right) \\
&+T\left(w_{0}^{\prime}, w_{1}^{\prime}\right) E^{\operatorname{anf}_{q}}\left(G(x) \delta T_{q}^{(p)}(H)\left(x \mid w_{0}\right)+\delta G\left(x \mid w_{0}\right) T_{q}^{(p)}(H)(x) \| x(T)=\eta\right) \\
&+i q \eta\left(w_{0}^{\prime}, w_{1}^{\prime}\right) E^{\operatorname{anf}_{q}}\left(G(x) T_{q}^{(p)}(H)(x) \| x(T)=\eta\right)
\end{align*}
$$

Proof: Simply apply Theorem 1 with $F(x)=G(x) T_{q}^{(p)}(H)(x)$.

4. Additional results

In our first result below we obtain an interesting integration by parts formula involving the conditional Fourier-Feynman transform's, $T_{q}^{(p)}(G \| X)$ and $T_{q}^{(p)}(H \| X)$; see equation (2.9) above.

Theorem 4. Let $w_{1} \in A$ and $\eta_{1}, \eta_{2}, \eta_{3} \in \mathbb{R}$ be given. For each $\rho>0$ assume that $T_{q}^{(p)}(G \| X)\left(\rho x, \eta_{1}\right)$ and $T_{q}^{(p)}(H \| X)\left(\rho x, \eta_{2}\right)$ have first variations $\delta T_{q}^{(p)}(G \| X)$ $\left(\rho x \mid \rho w_{1}, \eta_{1}\right)$ and $\delta T_{q}^{(p)}(H \| X)\left(\rho x \mid \rho w_{1}, \eta_{2}\right)$ for all $x \in C_{0}[0, T]$ such that for some positive function $\gamma(\rho)$,

$$
\begin{align*}
& \sup _{|k| \leqslant \gamma(\rho)} \left\lvert\, \delta T_{q}^{(p)}(G \| X)\left(\left.\rho x(\cdot)-\frac{\dot{T}}{T} \rho x(T)+\frac{\dot{T}}{T} \rho \eta_{3}+k \rho w_{1} \right\rvert\, \rho w_{1}, \eta_{1}\right)\right. \tag{4.1}\\
& \cdot \left.T_{q}^{(p)}(H \| X)\left(\rho x(\cdot)-\frac{\dot{4}}{T} \rho x(T)+\frac{\dot{1}}{T} \rho \eta_{3}+k \rho w_{1}, \eta_{2}\right) \right\rvert\,
\end{align*}
$$

and

$$
\begin{align*}
& \sup _{|k| \leqslant \gamma(\rho)} \left\lvert\, T_{q}^{(p)}(G \| X)\left(\rho x(\cdot)-\frac{\dot{T}}{T} \rho x(T)+\frac{\dot{\bar{T}}}{T} \rho \eta_{3}+k \rho w_{1}, \eta_{1}\right)\right. \tag{4.2}\\
& \left.\cdot \delta T_{q}^{(p)}(H \| X)\left(\left.\rho x(\cdot)-\frac{\dot{T}}{T} \rho x(T)+\frac{\dot{T}}{T} \rho \eta_{3}+k \rho w_{1} \right\rvert\, \rho w_{1}, \eta_{2}\right) \right\rvert\,
\end{align*}
$$

are Wiener integrable functions of x over $C_{0}[0, T]$. Then

$$
\begin{aligned}
& E^{\operatorname{anf}_{q}(} T_{q}^{(p)}(G \| X)\left(x, \eta_{1}\right) \delta T_{q}^{(p)}(H \| X)\left(x \mid w_{1}, \eta_{2}\right) \\
& \left.\quad+\delta T_{q}^{(p)}(G \| X)\left(x \mid w_{1}, \eta_{1}\right) T_{q}^{(p)}(H \| X)\left(x, \eta_{2}\right) \| x(T)=\eta_{3}\right) \\
& \doteq-i q \int_{C_{0}[0, T]}^{\mathrm{anf}_{q}} T_{q}^{(p)}(G \| X)\left(x(\cdot)-\frac{\dot{T}}{T} x(T)+\frac{\dot{T}}{T} \eta_{3}, \eta_{1}\right) \\
& \\
& \quad \cdot T_{q}^{(p)}(H \| X)\left(x(\cdot)-\frac{\dot{T}}{T} x(T)+\frac{\dot{T}}{T} \eta_{3}, \eta_{2}\right)\left\langle w_{1}^{\prime}, x\right\rangle m(d x)
\end{aligned}
$$

Furthermore, if either side of (4.3) exists, then

$$
\begin{align*}
E^{\mathrm{anf}_{q}} & \left(T_{q}^{(p)}(G \| X)\left(x, \eta_{1}\right) \delta T_{q}^{(p)}(H \| X)\left(x \mid w_{1}, \eta_{2}\right)\right. \\
& \left.+\delta T_{q}^{(p)}(G \| X)\left(x \mid w_{1}, \eta_{1}\right) T_{q}^{(p)}(H \| X)\left(x, \eta_{2}\right) \| x(T)=\eta_{3}\right) \\
= & -i q E^{\operatorname{anf}_{q}}\left(T_{q}^{(p)}(G \| X)\left(x, \eta_{1}\right) T_{q}^{(p)}(H \| X)\left(x, \eta_{2}\right)\left\langle w_{1}^{\prime}, x\right\rangle \| x(T)=\eta_{3}\right) \\
& +T\left(w_{0}^{\prime}, w_{1}^{\prime}\right) E^{\operatorname{anf}_{q}}\left(T_{q}^{(p)}(G \| X)\left(x, \eta_{1}\right) \delta T_{q}^{(p)}(H \| X)\left(x \mid w_{0}, \eta_{2}\right)\right. \tag{4.4}\\
& \left.+\delta T_{q}^{(p)}(G \| X)\left(x \mid w_{0}, \eta_{1}\right) T_{q}^{(p)}(H \| X)\left(x, \eta_{2}\right) \| x(T)=\eta_{3}\right) \\
& +i q \eta_{3}\left(w_{0}^{\prime}, w_{1}^{\prime}\right) E^{\mathrm{anf}_{q}}\left(T_{q}^{(p)}(G \| X)\left(x, \eta_{1}\right) T_{q}^{(p)}(H \| X)\left(x, \eta_{2}\right) \| x(T)=\eta_{3}\right)
\end{align*}
$$

where, as usual, $w_{0}(t)=t / T$ on $[0, T]$.
PRoof: Simply apply Theorem 1 with $F(x)=T_{q}^{(p)}(G \| X)\left(x, \eta_{1}\right) T_{q}^{(p)}(H \| X)\left(x, \eta_{2}\right)$. \square
Choosing $H(x)$ to be identically equal to one on $C_{0}[0, T]$ yields our next corollary; to obtain Corollary 8 we simply choose $H(x)=G(x)$.

Corollary 7. Let $w_{1} \in A$ and $\eta_{1}, \eta_{3} \in \mathbb{R}$ be given. For each $\rho>0$ assume that $T_{q}^{(p)}(G \| X)\left(\rho x, \eta_{1}\right)$ has a first variation $\delta T_{q}^{(p)}(G \| X)\left(\rho x \mid \rho w_{1}, \eta_{1}\right)$ for all $x \in C_{0}[0, T]$ such that for some positive function $\gamma(\rho)$,

$$
\begin{equation*}
\sup _{|k| \leqslant \gamma(\rho)}\left|\delta T_{q}^{(p)}(G \| X)\left(\left.\rho x(\cdot)-\frac{\dot{T}}{T} \rho x(T)+\frac{\dot{T}}{T} \rho \eta_{3}+k \rho w_{1} \right\rvert\, \rho w_{1}, \eta_{1}\right)\right| \tag{4.5}
\end{equation*}
$$

is an Wiener integrable function of x over $C_{0}[0, T]$. Then

$$
\begin{align*}
&\left.E^{\operatorname{anf}_{q}\left(\delta T_{q}^{(p)}\right.}(G \| X)\left(x \mid w_{1}, \eta_{1}\right) \| x(T)=\eta_{3}\right) \tag{4.6}\\
& \doteq-i q \int_{C_{0}[0, T]}^{\mathrm{anf}_{q}} T_{q}^{(p)}(G \| X)\left(x(\cdot)-\frac{\dot{T}}{T} x(T)+\frac{\dot{T}}{T} \eta_{3}, \eta_{1}\right)\left\langle w_{1}^{\prime}, x\right\rangle m(d x)
\end{align*}
$$

Furthermore, if either side of equation (4.6) exists, then

$$
\begin{align*}
& E^{\operatorname{anf}_{q}\left(\delta T_{q}^{(p)}(G \| X)\left(x \mid w_{1}, \eta_{1}\right) \| x(T)=\eta_{3}\right)} \\
&=- i q E^{\operatorname{anf}_{q}}\left(T_{q}^{(p)}(G \| X)\left(x, \eta_{1}\right)\left(w_{1}^{\prime}, x\right\rangle \| x(T)=\eta_{3}\right) \\
&+T\left(w_{0}^{\prime}, w_{1}^{\prime}\right) E^{\operatorname{anf}_{q}}\left(\delta T_{q}^{(p)}(G \| X)\left(x \mid w_{0}, \eta_{1}\right) \| x(T)=\eta_{3}\right) \tag{4.7}\\
&+i q \eta_{3}\left(w_{0}^{\prime}, w_{1}^{\prime}\right) E^{\operatorname{anf}_{q}}\left(T_{q}^{(p)}(G \| X)\left(x, \eta_{1}\right) \| x(T)=\eta_{3}\right)
\end{align*}
$$

Corollary 8. Assume that condition (4.1) holds with $H(x)=G(x)$. Then

$$
\begin{align*}
E^{\mathrm{anf}_{q}}(& \left.T_{q}^{(p)}(G \| X)\left(x, \eta_{1}\right) \delta T_{q}^{(p)}(G \| X)\left(x \mid w_{1}, \eta_{1}\right) \| x(T)=\eta_{3}\right) \tag{4.8}\\
& \doteq-\frac{i q}{2} \int_{C_{0}[0, T]}^{\mathrm{anf}_{q}}\left[T_{q}^{(p)}(G \| X)\left(x(\cdot)-\frac{1}{T} x(T)+\frac{1}{T} \eta_{3}, \eta_{1}\right)\right]^{2}\left\langle w_{1}^{\prime}, x\right\rangle m(d x)
\end{align*}
$$

Furthermore, if either side of (4.8) exists, then

$$
\begin{align*}
& E^{\operatorname{anf}_{q}}\left(T_{q}^{(p)}(G \| X)\left(x, \eta_{1}\right) \delta T_{q}^{(p)}(G \| X)\left(x \mid w_{1}, \eta_{1}\right) \| x(T)=\eta_{3}\right) \tag{4.9}\\
&=-\frac{i q}{2} E^{\operatorname{anf}_{q}}\left(\left[T_{q}^{(p)}(G \| X)\left(x, \eta_{1}\right)\right]^{2}\left(w_{1}^{\prime}, x\right\rangle \| x(T)=\eta_{3}\right) \\
&+T\left(w_{0}^{\prime}, w_{1}^{\prime}\right) E^{\operatorname{anf}_{q}}\left(T_{q}^{(p)}(G \| X)\left(x, \eta_{1}\right) \delta T_{q}^{(p)}(G \| X)\left(x \mid w_{0}, \eta_{1}\right) \| x(T)=\eta_{3}\right) \\
&+\frac{i q}{2} \eta_{3}\left(w_{0}^{\prime}, w_{1}^{\prime}\right) E^{\operatorname{anf}_{q}}\left(\left[T_{q}^{(p)}(G \| X)\left(x, \eta_{1}\right)\right]^{2} \| x(T)=\eta_{3}\right)
\end{align*}
$$

We finish this paper by mentioning that the hypotheses (and hence the conclusions) of Theorems 1-4 and Corollaries 1-8 above are indeed satisfied by several large classes of functionals; we shall very briefly discuss two such classes.

1. The Banach algebra \mathcal{S}, introduced by Cameron and Storvick in [5], consists of functionals expressible in the form

$$
\begin{equation*}
F(x)=\int_{L_{2}[0, T]} \exp \{i\langle u, x\rangle\} d f(u) \tag{4.10}
\end{equation*}
$$

for scale-invariant almost everywhere $x \in C_{0}[0, T]$, where the associated measure f is an element of $M\left(L_{2}[0, T]\right)$, the space of \mathbb{C}-valued countably additive Borel measures on $L_{2}[0, T]$. Now let

$$
\begin{equation*}
\mathcal{K}=\left\{F: \in \mathcal{S}: \int_{L_{2}[0, T]}\|u\|_{2}|d f(u)|<\infty\right\} \tag{4.11}
\end{equation*}
$$

Then, all of the above theorems and corollaries are valid provided that all of the functionals F, G and H involved are elements of \mathcal{K}. For example for $G \in \mathcal{K}$, a direct calculation shows that

$$
T_{q}^{(p)}(G \| X)\left(x, \eta_{1}\right)=\int_{L_{2}[0, T]} \exp \left\{i\langle u, x\rangle+i \eta_{1} b-\frac{i}{2 q} \int_{0}^{T}[u(s)-b]^{2} d s\right\} d g(u)
$$

and hence,

$$
\begin{aligned}
\delta T_{q}^{(p)}(G \| X)(x \mid & \left.w_{1}, \eta_{1}\right) \\
& =\int_{L_{2}[0, T]} i\left(u, w_{1}^{\prime}\right) \exp \left\{i\langle u, x\rangle+i \eta_{1} b-\frac{i}{2 q} \int_{0}^{T}[u(s)-b]^{2} d s\right\} d g(u)
\end{aligned}
$$

for scale-invariant almost everywhere $\dot{x} \in C_{0}[0, T]$ where $b=1 / T \int_{0}^{T} u(s) d s$.
Thus for scale-invariant almost everywhere $x \in C_{0}[0, T]$, we easily obtain that

$$
\left|T_{q}^{(p)}(G \| X)\left(x, \eta_{1}\right)\right| \leqslant \int_{L_{2}[0, T]}|d g(u)|<\infty
$$

and

$$
\left|\delta T_{q}^{(p)}(G \| X)\left(x \mid w_{1}, \eta_{1}\right)\right| \leqslant\left\|w_{1}^{\prime}\right\|_{2} \int_{L_{2}[0, T]}\|u\|_{2}|d f(u)|<\infty
$$

Hence, by carrying out the same calculations for $H \in \mathcal{K}$, we see that the expressions in (4.1) and (4.2) are certainly integrable functions of x over $C_{0}[0, T]$ since $m\left(C_{0}[0, T]\right)$ $=1$. Thus Theorem 4 and Corollaries 7 and 8 hold for all G and H in \mathcal{K}. The results in Section 3 for F, G and H in \mathcal{K} follow by similar calculations.
2. In [18], Park and Skoug obtained various integration by parts formulas involving analytic Feynman integrals for functionals of the form

$$
\begin{equation*}
F(x)=f\left(\left\langle\alpha_{1}, x\right\rangle, \ldots,\left\langle\alpha_{n}, x\right\rangle\right) \tag{4.12}
\end{equation*}
$$

for scale-invariant almost everywhere $x \in C_{0}[0, T]$ where $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ is an orthonormal set of functions in $L_{2}[0, T]$. Proceeding formally we see that

$$
\delta F\left(x \mid w_{1}\right)=\sum_{j=1}^{n}\left(\alpha_{j}, w_{1}^{\prime}\right) f_{j}\left(\left\langle\alpha_{1}, x\right\rangle_{2} \ldots,\left\langle\alpha_{n}, x\right\rangle\right)
$$

and that

$$
\begin{aligned}
\delta T_{q}^{(p)}(F)\left(x \mid w_{1}\right)= & \left(-\frac{i q}{2 \pi}\right)^{n / 2} \int_{\mathbb{R}^{n}}\left(\sum_{j=1}^{n}\left(\alpha_{j}, w_{1}^{\prime}\right) f_{j}\left(v_{1}, \ldots, v_{n}\right)\right. \\
& \left.\cdot \exp \left\{\frac{i q}{2}\left[\left(v_{1}-\left\langle\alpha_{1}, x\right\rangle\right)^{2}+\cdots+\left(v_{n}-\left\langle\alpha_{n}, x\right\rangle\right)^{2}\right]\right\}\right) d v_{1} \ldots d v_{n}
\end{aligned}
$$

Thus, putting appropriate continuity and integrability conditions on $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and its partial derivatives $f_{1}: \mathbb{R}^{n} \rightarrow \mathbb{R}, \ldots, f_{n}: \mathbb{R}^{n} \rightarrow \mathbb{R}$, one can show that the four theorems and eight corollaries established above hold for various functionals of the form (4.12).

References

[1] M.D. Brue, A functional transform for Feynman integrals similar to the Fourier transform, Ph.D. Thesis (University of Minnesota, Minneapolis, 1972).
[2] R.H.Cameron, 'The first variation of an indefinite Wiener integral', Proc. Amer. Math. Soc. 2 (1951), 914-924.
[3] R.H.Cameron and D.A. Storvick, 'A translation theorem for analytic Feynman integrals', Trans. Amer. Math. Soc. 125 (1966), 1-6.
[4] R.H. Cameron and D.A. Storvick, 'An L_{2} analytic Fourier-Feynman transform', Michigan Math. J. 23 (1976), 1-30.
[5] R.H. Cameron and D.A. Storvick, 'Some Banach algebras of analytic Feynman integrable functionals,', in Analytic functions (Kozubnik,1979), Lecture Note in Math. 798 (Springer-Verlag, Berlin, New York, 1980), pp. 18-67.
[6] R.H. Cameron and D.A. Storvick, 'Feynman integral of variations of functions, in Gaussian random fields', Ser. Probab. Statist 1 (1991), 144-157.
[7] K.S. Chang, 'Scale-invariant measurability in Yeh-Wiener space', J. Korean Math. Soc. 19 (1982), 61-67.
[8] S.J. Chang and D.M. Chung, 'A class of conditional Wiener integrals', J. Korean Math. Soc. 30 (1993), 161-172.
[9] S.J. Chang, C. Park and D. Skoug, 'Translation theorems for Fourier-Feynman transforms and conditional Fourier-Feynman transforms', Rocky Mountain J. Math. 30 (2000), 477 - 496.
[10] S.J. Chang and D. Skoug, 'The effect of drift on the Fourier-Feynman transform, the convolution product and the first variation', Int. J. Appl. Math. 2 (2000), 505-527.
[11] D.M. Chung and D.L. Skoug, 'Conditional analytic Feynman integrals and a related Schrödinger integral equation', SIAM J. Math. Anal. 20 (1989), 950-965.
[12] G.W. Johnson and D.L. Skoug, 'An L_{p} analytic Fourier-Feynman transform', Michigan Math. J. 26 (1979), 103-127.
[13] G.W. Johnson and D.L. Skoug, 'Scale-invariant measurability in Wiener space', Pacific J. Math. 83 (1979), 157-176.
[14] J. Kim, J. Ko, C. Park and D. Skoug, 'Relationships among transforms, convolutions and first variations', Internat. J. Math. Math. Sci. 22 (1999), 191-204.
[15] C. Park and D. Skoug, 'A simple formula for conditional Wiener integrals with applications', Pacific J. Math. 135 (1988), 381-394.
[16] C. Park and D. Skoug, 'A Kac-Feynman integral equation for conditional Wiener integrals', J. Integral Equations Appl. 3 (1991), 411-427.
[17] C. Park and D. Skoug, 'Conditional Fourier-Feynman transforms and conditional convolution products', J. Korean Math. Soc. 38 (2001), 61-76.
[18] C. Park and D. Skoug, 'Integration by parts formulas involving analytic Feynman integrals', Panamer. Math. J. 8 (1998), 1-11.
[19] C. Park, D. Skoug and D. Storvick, 'Relationships among the first variation, the convolution product, and the Fourier-Feynman transforms', Rocky Mountain J. Math. 28 (1998), 1447-1468.
[20] J. Yeh, 'Inversion of conditional Wiener integrals', Pacific J. Math. 59 (1975), 623-638.

Department of Mathematics
Dankook University
Cheonan 330-714
Korea
e-mail: sejchang@dankook.ac.kr

Department of Mathematics and Statistics
University of Nebraska-Lincoln
Lincoln, NE 68588-0323
United States of America
e-mail: dskoug@math.unl.edu

[^0]: Received 29th May, 2001.
 The first author was supported by KOSEF in Korea in 2000 and would like to express his gratitude to the University of Nebraska-Lincoln for its hospitality during his recent visit.

