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Abstract. We study representations of the loop braid group LBn from the
perspective of extending representations of the braid group Bn. We also pursue
a generalization of the braid/Hecke/Temperlely–Lieb paradigm – uniform finite
dimensional quotient algebras of the loop braid group algebras.
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1. Introduction. Non-abelian statistics of anyons in two spatial dimensions has
attracted considerable attention largely due to topological quantum computation
[27, 32]. Recently, non-abelian statistics is extended to statistics of point-like topological
defects projectively [6]. But an extension of non-abelian statistics of point-like
excitations to three spatial dimensions is not possible. However, loop or closed string
excitations occur naturally in condensed matter physics and string theory. Therefore,
it is important to study statistics of extended objects in three spatial dimensions.

A systematical way to produce interesting and powerful representations of the
braid group is via (2 + 1)-topological quantum field theories (TQFTs) [32]. Since the
loop braid group is a motion group of sub-manifolds†, we expect that interesting
representations of the loop braid group could result from extended (3 + 1)-TQFTs.

†Roughly speaking, a motion of a submanifold N of a smooth manifold M is a path ft in the diffeomorphism
group Diff(M) such that the start and end points are in the subgroup Diff(M, N) of elements that restrict to
elements of Diff(N) [12, 16, 22]. When N is n points in �2 the group of motions up to suitable equivalence
is a braid group; and when N is the trivial link with n components in �3 we get a loop braid group. See also
later.
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But (3 + 1)-TQFTs are much harder to construct, and the largest known explicit class
is the Crane-Yetter TQFTs based on pre-modular categories [11, 34]. The difficulty of
constructing interesting representations of the loop braid group reflects the difficulty
of constructing non-trivial (3 + 1)-TQFTs. Potentially, given a pre-modular category
C, there are representations of all motion groups of sub-manifolds including the loop
braid group associated to C, but no explicit computation has been carried out for any
non-trivial theory. Hence, we will take a closely related, but different first step in the
study of representations of the loop braid group.

The tower of group algebras of Artin’s braid group Bn, for n ≥ 1 have topologically
interesting quotients, such as the Temperley–Lieb algebras [17], Hecke algebras [18]
and BMW-algebras [9, 26]. Each of these algebras support a Markov trace which
then produces polynomial knot and link invariants. Moreover, at roots of unity many
such quotient algebras can be realized as endomorphism algebras in unitary modular
categories–the algebraic structure underlying certain (2 + 1)-TQFTs [30]. These, in
turn, describe the quantum symmetries of topological phases of matter in two spatial
dimensions [33]. The braid group representations associated with unitary modular
categories would be physically realized as the motion of point-like particles in the
disk D2. Our goal is to generalize this picture to topological systems in three spatial
dimensions with loop-like excitations.

The loop braid group LBn is the motion group of the n-component oriented unlink
inside the 3-dimensional ball D3 [12, 16, 22]. It has appeared in other contexts as well:
it is isomorphic to the braid-permutation group (see [3]), the welded-braid group (see
[14]) and the group of conjugating automorphisms of a certain free group (see [23]),
the group of ribbon tubes [2], the group of flying rings [7] and the fundamental group
of the configuration space of Euclidian circles [10]. For an exploration of the structure
as a semidirect product, see [4]. Very little is known about the linear representations
of LBn. We investigate when a given representation of Bn may be extended to LBn.
Some results in this direction are found in [5] and [31]. For example, it is known that
the faithful Lawrence–Krammer–Bigelow (LKB) representation of Bn does not extend
to LBn for n ≥ 4 except at degenerate values of the parameters ([5]), but the Burau
representation of Bn does extend.

It seems to be a rather hard problem to discover interesting finite-dimensional
quotients of the tower of loop braid group algebras of LBn. Considering that
the LKB representation appears in the BMW-algebra, we should not expect to
simply extend known Bn quotients. Our approach is to consider extensions of
Bn representations associated with solutions to the parameter-free Yang–Baxter
equation. This ensures that the quotient algebras are finite dimensional. The main
problem we study is when such representations extend. One particular family of
extendible representations are studied in some detail: the so-called affine group-type
solutions.

The contents of the paper are as follows. In Section 2, we recall a presentation of
the loop braid group. In Section 3, we study representations of the loop braid group
from braided vector spaces, and hence make the connection to Drinfeld doubles. In
Section 4, we initiate a general program to generalize the braid/Hecke/Temperlely–
Lieb paradigm – uniform finite dimensional quotient algebras of the loop braid
quotient algebras, and report some preliminary analysis. In particular, we answer
a question that has been open for some time, raised in [24, Section 12.1], about
the structure of certain ‘cubic’ braid group representations that lift to loop braid
representations.
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2. The loop braid group and its relatives. Let us start with a group presentation.

THEOREM. [14] The loop braid group LBn is isomorphic to the abstract group generated
by 2(n − 1) generators σi and si for 1 ≤ i ≤ (n − 1), satisfying the following three sets of
relations:

The braid relations:
(B1) σiσi+1σi = σi+1σiσi+1

(B2) σiσj = σjσi for |i − j| > 1,
the symmetric group relations:

(S1) sisi+1si = si+1sisi+1

(S2) sisj = sjsi for |i − j| > 1,
(S3) s2

i = 1,

and the mixed relations:
(L0) σisj = sjσi for |i − j| > 1
(L1) sisi+1σi = σi+1sisi+1

(L2) σiσi+1si = si+1σiσi+1.

�

The images of the generators σi, si in the motion group per se are given for example
in [10, 7, 3]. The subgroup generated by the {σi} is Artin’s braid group Bn. (There is an
isomorphism of LBn to the automorphism group of the free group with n generators
[8] which takes this subgroup to Bn [19].) The second set {si} generate the symmetric
group Sn. The loop braid group is a quotient of the virtual braid group VBn [31] which
satisfies all relations above except (L2).

The relations (L1) also hold if read backwards, i.e. si+1siσi+1 = σisi+1si, but (L2) is
not equivalent to its reverse:

(L3) siσi+1σi = σi+1σisi+1.
However, in the transposed group OLBn (i.e. the group that coincides with LBn as

a set, but with the opposite multiplication a ∗ b = ba) one has all relations as in LBn

except (L2) is replaced by (L3). Every group is isomorphic to its transposed group (via
inversion) so we may freely work with either LBn or OLBn.

We define the symmetric loop braid group SLBn to be LBn modulo the relations
(L3). In particular, we have surjections VBn � LBn � SLBn. Note, that this group
was called unrestricted virtual braid group in [21].

3. LBn representations from braided vector spaces. Several authors (see e.g. [31])
have considered the question of extending representations of Bn to LBn. In this section,
we consider extending certain local representations of Bn (see [29]).

A braided vector space (BVS) (V, c) is a solution c ∈ GL(V⊗2) to the Yang–Baxter
equation:

(c ⊗ IdV )(IdV ⊗ c)(c ⊗ IdV ) = (IdV ⊗ c)(c ⊗ IdV )(IdV ⊗ c).

Any BVS gives rise to a local representation ρc of Bn via σi → Id⊗i−1
V ⊗ c ⊗

Id⊗n−i−1
V . If an extension of ρc to LBn or OLBn is given via si → Id⊗i−1

V ⊗ S ⊗ Id⊗n−i−1
V

where S ∈ GL(V⊗2), then it will be also called local. The corresponding triple (V, c, S)
will be called a loop braided vector space.

A special case of localBn representations through group-type BVSs were introduced
by Andruskiewitsch and Schneider [1]. These play an important role in their
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classification program for pointed finite-dimensional Hopf algebras. We extend their
definition slightly and say that a BVS (V, c) is of left group-type (resp. right group-
type) if there is an ordered basis X := [x1, . . . , xn] of V and gi ∈ GL(V ) such that
c(xi ⊗ z) = gi(z) ⊗ xi (resp. c(z ⊗ xj) = xj ⊗ gj(z)) for all i, j and z ∈ V . There is a one-
to-one correspondence between left and right group-type BVSs, since the Yang–Baxter
equation is invariant under c ↔ c−1. Indeed, the inverse of c(xi ⊗ xj) = gi(xj) ⊗ xi is
c−1(xi ⊗ xj) = xj ⊗ g−1

j (xi), so that (V, c) is a BVS of left group-type if and only if c−1

is a BVS of right group-type.

LEMMA 3.1. Suppose that (V, c) is a BVS of left group-type with respect to X :=
[x1, . . . , xn] and corresponding gi defined on X by gi(xj) := ∑n

k=1 gj,k
i xk. If gj,k

i 
= 0 then
gigj = gkgi.

Proof. we compute

(c ⊗ I)(I ⊗ c)(c ⊗ I)(xi ⊗ xj ⊗ z),

and

(I ⊗ c)(c ⊗ I)(I ⊗ c)(xi ⊗ xj ⊗ z),

and compare the two sides. This yields the equality:

n∑
k=1

gj,k
i gigj(z) ⊗ xk ⊗ xi =

n∑
k=1

gj,k
i gkgi(z) ⊗ xk ⊗ xi.

Thus, we see that if gj,k
i 
= 0 then gigj(z) = gkgi(z) for all z, and the result follows. �

The proof of Lemma 3.1 shows that the Yang-Baxter equation for (V, c) of left
group type is equivalent to the matrix equation:

gj,k
i gigj = gj,k

i gkgi for all i, j, k. (3.1)

A similar result may be derived for right group type BVSs.
If gi acts diagonally with respect to the basis X so that c(xi ⊗ xj) = qij(xj ⊗ xi)

for some scalars qij then we say (V, c) is of diagonal type. More generally, we will say
that (V, c) is diagonalizable if there exists a basis of V with respect to which (V, c) is a
BVS of diagonal type. We do not need to specify a handedness for diagonal type BVS,
indeed we have:

LEMMA 3.2. A BVS (V, c) is of both left and right group type if and only if (V, c) is
diagonalizable.

Proof. If c is of left group type with respect to X and gi ∈ GL(V ) and right group
type with respect to Y := [y1, . . . , yn] and hj ∈ GL(V ) then xi ⊗ yj is a basis for V ,
and c(xi ⊗ yj) = gi(yj) ⊗ xi = yj ⊗ hj(xi). This implies that the gi are simultaneously
diagonalized in the basis Y so that the gi pairwise commute. Denote by G the (abelian)
group generated by the gi and let g(j,k)

i be the coefficient of xk in gi(xj). Since the gi

pairwise commute, Lemma 3.1 shows that g(j,k)
i 
= 0 implies gj = gk. Now note that

the spaces Wk := �{xj : gj = gk} are G-invariant, and denote by Ik := {j : xj ∈ Wk}, so
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that the distinct Ik partition [n]. So choose a basis for each Wk with respect to which
each gi is diagonal, and denote the union of these bases by Z. It is clear that gi are
diagonal with respect to the basis Z, but we must check that (V, c) is of group type
with respect to this basis. Let zk = ∑

j∈Ik
zk

j xj ∈ Wk ∩ Z. Then,

c(zk ⊗ zs) =
∑
j∈Ik

zk
j c(xj ⊗ zs) =

∑
j∈Ik

gj(zs) ⊗ zk
j xj = qk,szs ⊗ zk,

since all the gj with j ∈ Ik are identical and so act by a common scalar qk,s on zs.
The other direction is clear, diagonal type BVSs are of both left and right group

type. �

BVSs of group type always extend to loop BVSs, with left group-type BVSs giving
representations of OLBn and right group-type BVSs giving representations of LBn:

PROPOSITION 3.3. Define S(xi ⊗ xj) := xj ⊗ xi. If (V, c) is a BVS of left (resp. right)
group-type then (V, c, S) is a loop braided vector space.

Proof. Define ρc(si) = Id⊗i−1
V ⊗ S ⊗ Id⊗n−i−1

V . Relations (B1), (B2), (S1), (S2),
(S3) and (L0) are immediate. Since inversion gives an isomorphism from LBn to OLBn

and produces a left group-type BVS from a right group-type BVS it suffices to check
the relations (L1) and (L3) for i = 1. First,

ρc(s1s2σ1)(xi ⊗ xj ⊗ xk) = (xk ⊗ gi(xj) ⊗ xi) = ρc(σ2s1s2)(xi ⊗ xj ⊗ xk),

verifying (L1). Similarly,

ρc(σ2σ1s2)(xi ⊗ xj ⊗ xk) = gi(xk) ⊗ gi(xj) ⊗ xi = ρc(s1σ2σ1)(xi ⊗ xj ⊗ xk).

so we have (L3). �

Suppose that (V, c) is of left group-type, and we define ρc(si) via S as in the proof
of Proposition 3.3. Then, (L2) is satisfied if and only if the gi pairwise commute:

ρc(σ1σ2s1)(xi ⊗ xj ⊗ xk) = gjgi(xk) ⊗ j ⊗ i = gigj(xk) ⊗ xj ⊗ xi = ρc(s2σ1σ2).

In particular, if (V, c) is both of left and right group-type then ρc extends to a
representation of SLBn. More generally, we have:

PROPOSITION 3.4. Suppose that (V, c) and (V, S) are of diagonal type with respect
to the (same) basis X and S2 = IdV⊗2 . Then, ρc extends to a representation of SLBn via
ρc(si) = Id⊗i−1

V ⊗ S ⊗ Id⊗n−i−1
V .

Proof. It suffices to check (L1), (L2) and (L3), which are straightforward
calculations. �

Note, that in case (V, c) is of group type (either right or left), c takes a canonical
form in terms of the basis X = [x1, . . . , xn] and in terms of that basis S(xi ⊗ xj) =
±xj ⊗ xi then (V, c) is of diagonal type if cS = Sc. In this case, the index of the
subgroup ρc(Bn) in ρc(LBn) is finite. The representations τN in section 4.4 belong to
this class.
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3.1. Affine group-type BVSs. We are interested in local representations of LBn

that detect symmetry, i.e. that do not factor over SLBn. Fix m ∈ � and let V be
an m-dimensional vector space with basis [x1, . . . , xm]. For each 1 ≤ j ≤ m define
hj(xi) = xαi+βj for some α, β ∈ �, where indices are taken modulo m. We will determine
sufficient conditions on α and β so that c(xi ⊗ xj) := xj ⊗ hj(xi) gives (V, c) the
structure of a right BVS. We will call these affine group-type BVSs. For notational
convenience we will identify xi with i (mod m) and define hj(i) = αi + βj where now
α, β are integers modulo m, and denote xi ⊗ xj by (i, j).

The operator hj is invertible if and only if gcd(α, m) = 1. Since we are interested
in finding BVSs that do not factor over SLBn, we should look for non-diagonalizable
affine BVSs. By the proof of Lemma 3.2 we see that a BVS corresponding to {hj : 1 ≤ j ≤
m} is diagonalizable if and only the hj pairwise commute. Computing hihj(k) = hjhi(k)
we see that this happens precisely when (α − 1)β ≡ 0 (mod m). In particular, we must
assume that α 
≡ 1 (mod m) and β 
≡ 0 (mod m).

By Proposition 3.3 as soon as we have determined values α, β so that (V, c) is a
(right) BVS we may extend ρc to LBn by taking S(xi ⊗ xj) = xj ⊗ xi. Computing, we
have:

σ1σ2σ1(i, j, k) = (k, hk(j), (hk ◦ hj)(i)) = σ2σ1σ2(i, j, k) = (k, hk(j), (hhk(j) ◦ hk)(i)).

Therefore, we must have

(hk ◦ hj)(i) = α2i + αβj + βk = (hhk(j) ◦ hk)(i) = α2i + αβ(k + j) + β2k,

that is, β(α + β) = β. One family of solutions corresponds to α + β = 1 so we set t = α

and β = (1 − t). In this case (α − 1)β = −(t − 1)2, so we have proved:

THEOREM 3.5. Let m, t ∈ � with gcd(m, t) = 1 and (t − 1)2 
≡ 0 (mod m). Then
defining hj(xi) = xti+(1−t)j and S(xi ⊗ xj) = xj ⊗ xi (indices modulo m) on the basis
X := [x1, . . . , xm] gives rise to a loop braided vector space (V, c, S) of LBn such that the
corresponding LBn representation, ϕ, does not factor over SLBn.

REMARK 3.6. For m prime, the family of loop braided vector spaces in Theorem
3.5 are all possible non-diagonalizable affine BVSs, but for m composite there are other
solutions. We will only focus on these solutions in the present work.

It is clear from the construction that the representations ϕ act by permutation
on the standard basis vectors of V⊗n. By passing to the action on indices, we may
identify the �-representation ϕ in Theorem 3.5 with the following homomorphism
ρm,t : LBn → GLn(�m) via

ρm,t(σi) =
⎛
⎝Ii−1 0 0

0 M 0
0 0 In−i−1

⎞
⎠ , ρm,t(si) =

⎛
⎝Ii−1 0 0

0 P 0
0 0 In−i−1

⎞
⎠ ,

where M =
(

0 1
t 1 − t

)
and P =

(
0 1
1 0

)
with entries in �m. For later use, we point

out that evaluating ρm,t(σi) at t = 1 gives ρm,t(si).
We now investigate the images of these representations.
The restriction of ρm,t to Bn may look familiar: it is nothing more than the (inverse

of) the (unreduced) Burau representation, specialized at an integer t with entries
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modulo m. In light of [31] it is not surprising that the Burau representation should admit
an extension to LBn (although we caution the reader that [31] may have a different
composition convention than ours). Note, that the extended Burau representation at
integer t, reduced mod m is also found in [5]. The form of the representation here
differs from that of loc. cit. because there the (isomorphic) group OLBn is considered.
The precise relationship is that the image of σi is replaced by its inverse, followed by a
parameter change t− > t−1.

Observe that the row-sums of ρm,t(σi) and ρm,t(si) are 1; therefore, they are n ×
n (row)-stochastic matrices (modulo m). In particular, since the affine linear group
AGLn−1(�m) is isomorphic to the group of n × n stochastic matrices modulo m (see
[28], where m prime is considered, but the proof is valid for any m), we see that the
image of ρm,t is a subgroup of AGLn−1(�m). The question we wish to address is: When
is ρm,t : LBn → AGLn−1(�m) surjective?

The group AGLn−1(�m) is the semidirect product of (�m)n−1 with GLn−1(�m)
(with the obvious action). The standard way to view AGLn−1(�m) is as the subgroup

of GLn(�m) consisting of matrices of the form
(

A v

0 1

)
where A ∈ GLn−1(�m) and

v ∈ �n−1
m (a column vector). For economy of notation, we will denote these elements

by g(A, v). In this notation the multiplication rule is

(A1, v1)(A2, v2) = (A1A2, A1v2 + v1).

To determine the conditions on m, t so that ρm,t is surjective, we need some
additional notation and technical results.
� For i 
= j, define �i,j ∈ Mat(n) to be the matrix with (i, j)-entry equal to 1 and all

other entries zero.
� For i 
= j, define Ei,j(α) = I + α�i,j, i.e. the elementary matrix corresponding to the

row operation which adds α times the jth row to the ith row.
� Let D(α, i) := I + (α − 1)�i,i be the diagonal matrix with the (i, i)-entry equal to α

and the remaining (diagonal) entries equal to 1.

LEMMA 3.7. Let B = g(I, ei) ∈ AGLn−1(�m), with ei ∈ (�m)n−1 a standard basis
vector. Then AGLn−1(�m) ⊂ GLn(�m) is generated by B and the following matrices:

(a) Ei,j(1), all 1 ≤ i 
= j ≤ n − 1 and
(b) D(α, 1) all α ∈ �×

m.

Proof. Let ej ∈ (�m)n−1 be an arbitrary standard basis vector and choose A so that
Aei = ej. Then

g(A, 0)g(I, ei)g(A−1, 0) = g(I, ej).

Since the matrices g(I, ej) generate all elements of the form g(I, b), b ∈ (�m)n−1, it is
enough to show that matrices in (a) and (b) generate all matrices of the form g(A, 0)
with A ∈ GLn−1(�m).

Since [Ei,j(1)]k = I + k�i,j = Ei,j(k) we see that we can obtain all elementary
matrices corresponding to replacing row/column i with a multiple of row/column
j plus row i. Moreover, we may obtain all matrices that permute rows and all matrices
of the form D(α, j) inductively from D(−1, 1) via:(

1 1
0 1

) (−1 0
0 1

) (
1 −1
0 1

) (
1 1
0 1

)
=

(
0 1
1 0

)
.
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Thus we obtain all elementary matrices in GLn−1(�m) as products of matrices as in (a)
and (b).

Finally, observe that the gcd of the entries in any row/column of A ∈
GLn−1(�m) must be a unit in �m. Using elementary row/column operations (left/right
multiplication by elementary matrices) we may transform A into a matrix with the (1, 1)
entry equal to 1 and the remaining entries equal to zero. It then follows by induction
that every A ∈ GLn−1(�m) is a product of matrices as in (a) and (b), as required. �

PROPOSITION 3.8. Suppose that t ∈ � is chosen so that t and (1 − t) are units in �m

and �×
m = 〈t,−1〉. Then, ρm,t(LBn) ∼= AGLn−1(�m).

Proof. We proceed by induction on n. For the case, n = 2 we must show that M
and P as above generate AGL1(�m). By taking the transpose of M and P followed
by a change of basis we can transform these into our standard AGL1(�m) form as:

σ = g(−t, t) =
(−t t

0 1

)
, s = g(−1, 1) =

(−1 1
0 1

)
.

Now g(−t, t)g(−1, 1) = g(t, 0), and g(−1, 1)g(t, 0)g(−1, 1)g(1/t, 0) = g(1, 1 − t).
Since (1 − t) is invertible and g(1, a)g(1, b) = g(1, a + b), we obtain all g(1, a). Since
one of t or 1 − t is even, 2 is a unit in �m, with multiplicative inverse, say i2. Now, we
compute g(1,−i2)g(−1, 1)g(1, i2) = g(−1, 0). Since �×

m = 〈t,−1〉 we obtain all g(x, 0)
where x ∈ �×

m. Therefore, we have all g(1, a)g(x, 0) = g(x, a) ∈ AGL1(�m).
Now we again take the transpose of ρm,t(σi) and ρm,t(si) for 1 ≤ i ≤ n − 1 and

then change to the ordered basis: [(1, . . . , 1), (0, 1, . . . , 1), . . . , (0, . . . , 0, 1)], so that
the generators have the form g(A, a) with A ∈ GLn−1(�m) and a ∈ (�m)n−1. By the
induction hypothesis, the images of σi, si for 1 ≤ i ≤ n − 2 generate all matrices of
the form g(B, 0) where B ∈ AGLn−2(�m). That is, we have all g(g(C, c), 0) with C ∈
GLn−2(�m) and c ∈ (�m)n−2. With respect to this basis the image of the generator σn−1

has the form 	n−1(t) := g(J, ten−1) where J =

⎛
⎜⎝

1 0 · · · 0
...

. . . · · ·
...

0 · · · 1 0
0 · · · 1 −t

⎞
⎟⎠, and the image of the

generator si is obtained by evaluating 	n−1(t) at t = 1.
We have now reduced to showing that g(g(C, c), 0) together with 	n−1(t) and

	n−1(1) generate all of AGLn−1(�m). By Lemma 3.7 it suffices to obtain g(I, en−1)
as well as all g(Ei,j(1), 0) for 1 ≤ i, j ≤ n − 1 and g(D(α, 1), 0) for all α ∈ �×

m. Since
C ∈ GLn−2(�m) and c ∈ (�m)n−2 can be chosen arbitrarily, we immediately obtain all
g(D(α, 1), 0) as well as the g(Ei,j(1), 0) for i ≤ n − 2 and 1 ≤ j ≤ n − 1.

Let en−1 denote the standard basis vector in (�m)n−1 and set

T(t) := 	n−1(t)	n−1(1)	n−1(t)−1	n−1(1) = I + (1 − t)(�n−1,n−2 − �n−1,n).

We compute T(t)k = I + k(1 − t)(�n−1,n−2 − �n−1,n) and since (1 − t) is invertible
modulo m we may choose k = (1 − t)−1 to obtain T(0) = I + (�n−1,n−2 − �n−1,n).
Now we compute:

g(D(−1, n − 2), 0)T(0)g(D(−1, n − 2), 0)T(0) = g(I,−2en−1).

Since −2 is invertible modulo m, we may appeal to Lemma 3.7 to produce all elements
of the form g(I, b), once we obtain the remaining generators of GLn−1(�m).

Thus, it remains to produce g(En−1,j(1), 0) for all 1 ≤ j ≤ n − 2. For this, we
set X = g((I + ∑n−2

j=1 ai�n−3,i)D(an−2, n − 2), 0), that is, the n × n matrix with the
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(n − 2)th row equal to (a1, . . . , an−2, 0, 0) and Xi,j = δi,j for i 
= (n − 2). Notice that
X is of the form g(g(C, 0), 0) with C ∈ GLn−2(�m), assuming that an−2 is invertible.
Setting Z = X−1	n−1(1)X	n−1(1) we find that the (n − 1)th row of Z has entries
(a1, . . . , an−3, an−2 − 1, 1, 0) and Zi,j = δi,j for i 
= (n − 1). Specializing at appropriate
values of ai (e.g. an−2 ∈ {1, 2}, ai ∈ {0, 1} for i < n − 2) we obtain all g(En−1,j(1), 0) for
1 ≤ j ≤ n − 2. Thus, by Lemma 3.7 we have completed the induction and the result
follows. �

REMARK 3.9. We conjecture that Prop. 3.8 is sharp.
Clearly {det(T) : T ∈ AGLn−1(�m)} = �×

m. Since det(M) = −t and det(S) = −1,
the image of ρm,t(LBn) consists of matrices with determinant ±tk. This shows if
ρt,m(LBn) ∼= AGLn−1(�m) then 〈t,−1〉 = �×

m. In particular, if �×
m is not a cyclic group

or the direct product of �2 with a cyclic group �d then ρt,m(LBn) is a proper subgroup
of AGLn−1(�m). Clearly, t and (1 − t) can both be units only if m is odd. In this case,
the group �×

m
∼= �d × �2 if only if m = paqb is a product of at most 2 odd primes and

gcd(pa − pa−1, qb − qb−1) = 2.

3.2. Relationship with Drinfeld doubles. In [15] it is observed that a BVS (V, c)
with corresponding operators g1, . . . , gn may be realized as a Yetter–Drinfeld module
over the group G = 〈g1, . . . , gn〉. When G is finite, these can be identified with objects
in Rep(DG) (regarded as a braided fusion category) where DG is the Drinfeld double
of the group G.

As a vector space DG = G� ⊗ �[G] where G� is the Hopf algebra of functions on G
with basis δg(h) = δg,h and �[G] is the (Hopf) group algebra. The Hopf algebra structure
on DG is well-known. For an account of the associated braid group representations
(and further details) see [13].

The irreducible representations of DG are labeled by pairs (g, χ ) where g is a
conjugacy class in G and χ is the character of an irreducible representation of the
centralizer of g in G: CG(g). The representation ρm,t of Theorem 3.5 can be obtained
in this way. We now describe this explicitly.

Let m, t be positive integers with gcd(m, t) = 1 and t 
= 1 (mod m). Let � be the
order of t modulo m, and �m = 〈r〉 be the cyclic group modulo m with generator r. The
map τ (r) = rt defines an automorphism of �m, which generates a cyclic subgroup ��

of Aut(�m). Therefore, we may form the semidirect product G = �m � �� via

srs−1 = rt,

where 〈s〉 = ��. Let us further assume that gcd(m, t − 1) = 1. It follows from the
relations above that risr−i = ri(1−t)s for all i, and the conjugacy class of s is {ri(1−t)s :
0 ≤ i ≤ m − 1}. For notational convenience, let q = r1−t so that q has order m and
the conjugacy class of s is {qis : 0 ≤ i ≤ m − 1}. Then V = V(s,1) has basis {qi | 0 ≤ i ≤
m − 1}, a set of coset representatives of G/CG(s). The action of the R-matrix of DG Ř
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on V ⊗ V is (where P denotes the usual transposition):

Ř(qi ⊗ qj) = PR(qi ⊗ qj)

= P

⎛
⎝∑

g∈G

δg ⊗ g

⎞
⎠ (qi ⊗ qj)

= P(qi ⊗ qi(1−t)sqj)

= P(qi ⊗ qi(1−t)+jt)

= qi(1−t)+jt ⊗ qi.

Clearly, we may identify Ř with the �-linear operator on �m × �m given by

(i, j) �→ ((1 − t)i + tj, i).

This is the transpose of the braided vector space described in Theorem 3.5.

4. Finite dimensional quotient algebras. In order to study certain local and finite-
dimensional representations ρ of LBn, such as the BVS representations ρc described
in Section 3 above, we are interested in certain finite-dimensional quotient algebras of
the group algebra �[LBn], namely the algebras

Lρ
n := �[LBn]/ ker ρ.

In passing to the group algebra, we linearize. Thus, ker ρ = {x ∈ �[LBn] | ρ(x) = 0}.
This should be contrasted with the group representation version: kerG ρ = {g ∈
LBn | ρ(g) = 1}. It can easily happen that kerG ρ = {1} but ker ρ 
= {0}. * This raises
some questions. (1): What is a good presentation of Lρ

n for each n? Can the kernel be
described in closed form for all n? (2): What are the irreducible representations of Lρ

n ?
In this section, we first use an analogy to show why the answers to these questions

will be useful. This analogy shows that the study of the quotient algebras Lρ
n is of

intrinsic interest. Then, we analyse these representations, and answer (2) in certain
cases. All will be reasonably self-contained, but further background and references for
relevant concepts from the representation theory of Artin’s braid group can be found
e.g. in [20, 18, 24, 25, 30].

4.1. A braid group quotient analogy. Consider the ordinary braid group Bn. For
each N, V = �N and q ∈ �∗ there is a well-known BVS with c = cN , where in the case
N = 2:

c2 = q

⎛
⎜⎜⎝

1
1 − q−2 −q−1

−q−1 0
1

⎞
⎟⎟⎠ . =

⎛
⎜⎜⎝

q
(q − q−1) −1

−1 0
q

⎞
⎟⎟⎠ .

We write ρN for the representation ρcN .

*Note also that while group representations and group algebra representations are closed under tensor
products, the linear kernel is not preserved in general.
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For q = (q1, q2, . . .) a tuple in �∗ define χq = ∏
i(σ1 − qi) ∈ �[Bn]. The Hecke

algebra is Hn = �[Bn]/Iq, where Iq being the ideal generated by χ(q,−q−1) = (σ1 − q)(σ1 +
q−1) ∈ �[Bn] for some q ∈ �∗. In the following, we work with a fixed q and often omit
the q-dependence from the notation (as done for Hn ≡ Hn(q)). Evidently, ρN factors
through Hn, but it is not linearly faithful for all n. The quotients HN

n are defined by
HN

n = �[Bn]/ ker ρN .

So what is a good presentation for HN
n for given N? There is an element f of Hm

for m = N + 1 such that

ker ρN = HnfHn, (4.1)

for all n (with the kernel understood to be 0 for n < m). To construct f for a given N,
recall that for each m there is a nonzero element fm of Hm unique up to scalars such that
σifm = fmσi = (−q−1)fm for all i. For example, we can take f2 = U1 where Ui := σi − q
and f3 = U1U2U1 − U1. We may take f = fN+1 or any nonzero scalar multiple thereof.
That is, there is a single additional relation that characterises HN

n as a quotient of Hn

for all n and q, namely fN+1 = 0 [25]. Thus, H2
n is the Temperley–Lieb algebra and so

on.

4.2. On localization. Given an algebra A, let (A) be the set of irreducible
representations up to isomorphism. Another feature of the braid/Hecke/Temperley–
Lieb paradigm is localization.

Given an algebra A and idempotent e ∈ A, then eAe is also an algebra (not a
subalgebra) and the functors Ge, Fe:

A −mod, ←−−→
Ge

Fe

eAe −mod, (4.2)

(‘globalization’ and ‘localization’, respectively) given on modules by

GeN = Ae ⊗eAe N

FeM = eM,

are an adjoint pair. Useful corollaries to this include the following:
(LI) Let Li, Lj be distinct simple A-modules, with eLi and eLj nonzero. Then, eLi, eLj

are distinct simple eAe-modules.
(LII) If Li has composition multiplicity mi in A-module M, and eLi 
= 0, then eLi has
multiplicity mi in eAe-module eM:

[M : Li] = [eM : eLi], (4.3)

(LIII) The set (A) of irreducible representations of A (up to isomorphism) is in
bijection with the disjoint union of those of eAe and those of A/AeA:

(A) ∼= (eAe) � (A/AeA), (4.4)

The idea here is very general. Given an algebra A to study, we find an idempotent
in it, then study A by studying eAe and A/AeA. In general eAe and A/AeA are also
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unknown and this subdivision does not help much. But for HN
n we have an e such that

eHN
n e ∼= HN

n−N, (4.5)

so we can consider eAe to be known by an induction on n. The analysis goes as follows.
For HN

n , in addition to the property (4.1), there is also an element e of HN
n for

some n (in fact n = N and e = fN) such that the matrix ρN(e) is rank=1. It follows that

ρN(e) ρ(HN
N ) ρN(e) ⊆ kρN(e), (4.6)

Indeed, we have the following (‘localization property’): For all n,

ρN(e) ρN(HN
n ) ρN(e) = ρN(e)︸ ︷︷ ︸

on VN

⊗ ρN(HN
n−N)︸ ︷︷ ︸

on Vn−N

, (4.7)

(cf. (4.5)).
We have from (4.7) that eHN

n e ∼= HN
n−N and, since e = fN , that HN

n /HN
n eHN

n
∼=

HN−1
n . So, by (4.4) the irreducible representations of HN

n can be determined by an
iteration on n (and N).

It is sometimes possible to lift this to the loop-braid case. How might the braid
group paradigm generalize? Of course every finite-dimensional quotient of the group
algebra of the braid groupBn has a local relation – a polynomial relation χq = 0 obeyed
by each braid generator. Thus we can start, organisationally, by fixing such a relation.
If this relation is quadratic then the quotient algebra is finite dimensional for all n, in
particular it is the Hecke algebra. If the local relation is cubic or higher order then this
quotient alone is not enough to make the quotient algebra finite-dimensional for all n
[9] (and also not enough to realise the localisation property, as in Section 4.2).

Below, we study group-type representations of LBn in this context.

4.3. Some more preparations: the BMW algebra. We define the BMW algebra
over � as follows. For n ∈ � and r, q ∈ �∗ with q2 
= 1, �-algebra Cn(r, q) is generated
by b1, b2, . . . , bn−1 and inverses obeying the braid relations

bibi+1bi = bi+1bibi+1, bibj = bjbi (|i − j| > 1), (4.8)

and, defining

ui = 1 − bi − b−1
i

q − q−1
= b−1

i

q−1 − q
(bi − q)(bi + q−1), (4.9)

obeying the additional relations

uibi = r−1ui (4.10)

uib±1
i−1ui = r±1ui. (4.11)

Relation (4.10) is equivalent to a ‘cubic local relation’

(bi − r−1)(bi − q)(bi + q−1) = 0. (4.12)
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Relation (4.10) also implies

u2
i =

(
1 + r − r−1

q − q−1

)
ui.

Relation (4.11) implies

uiui±1ui = ui.

Of course we also have from (4.8):

uiuj = ujui (|i − j| > 1).

Indeed the ui’s generate a Temperley–Lieb subalgebra of Cn(r, q). This subalgebra
realizes a different quotient of the braid group algebra: the images of the braid
generators are ai = 1 − q′(q, r) ui, where q′ is defined by q′ + q′−1 = 1 + r−r−1

q−q−1 with a
quadratic local relation, and with the two eigenvalues depending on q and r.

For us the interesting case of C(r, q) is r = q, where the braid generators of the TL
subalgebra obey the symmetric group relations. In this case, then, we have images of
both the braid group and the symmetric group in Cn(q, q), as for LBn. Indeed, we have
the following.

LEMMA 4.1. There is a map ψ : LBn → Cn(q, q) given by σi �→ bi, si �→ ai = 1 − ui.

Proof. With r = q we have u2
i = 2ui and q′ = 1 so ai = 1 − ui and a2

i = 1 as already
noted. Relations (L1,L2) can be directly checked.

4.4. The representations τN of LBn. For each N, and x ∈ �, there is a well-known
local representation τ x

N of �[Bn]/Ix,1,−1, with Ix,1,−1 as defined in section 4.1 (trivially
rescalable, setting x = q2, to a representation τN of �[Bn]/Iq,q−1,−q−1 ; and that in case
N = 2 is also a representation of Cn(q, q)). One takes the diagonal BVS with

g1=

⎛
⎜⎜⎝

x 0
0 1

0 0
. . .

0 0 0 1

⎞
⎟⎟⎠ ., g2 =

⎛
⎜⎜⎝

1 0
0 x

0 0
. . .

0 0 0 1

⎞
⎟⎟⎠ ., . . . , gN =

⎛
⎜⎜⎝

1 0
0 1

0 0
. . .

0 0 0 x

⎞
⎟⎟⎠ .

We abbreviate the basis element ei1 ⊗ ei2 ⊗ . . . ⊗ ein of Vn as |i1i2 . . . in〉, so that e1 ⊗
e1 ⊗ e2 becomes |112〉 and so on. Then,

σj|i1i2 . . . in〉 =
{

x|i1i2 . . . in〉 ij = ij+1

|i1i2 . . . ij+1ij . . . in〉 otherwise.
(4.13)

Specifically for N = 2 (with basis elements of V2 ordered |11〉, |12〉, |21〉, |22〉):

σi
τ x

2�→ Id2 ⊗ Id2 ⊗ . . . ⊗

⎛
⎜⎜⎝

x 0 0 0
0 0 1 0
0 1 0 0
0 0 0 x

⎞
⎟⎟⎠ . ⊗ Id2 ⊗ . . . ⊗ Id2
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Strictly speaking we need to rescale: g1 =
(

q 0
0 1/q

)
.; g2 =

(
1/q 0
0 q

)
.. So

σi
τ2�→ Id2 ⊗ Id2 ⊗ . . . ⊗

⎛
⎜⎜⎝

q 0 0 0
0 0 1/q 0
0 1/q 0 0
0 0 0 q

⎞
⎟⎟⎠ . ⊗ Id2 ⊗ . . . ⊗ Id2

This gives, for example,

σi − σ−1
i

q − q−1

τ2�→ Id2 ⊗ Id2 ⊗ . . . ⊗

⎛
⎜⎜⎝

1 0 0 0
0 0 −1 0
0 −1 0 0
0 0 0 1

⎞
⎟⎟⎠ . ⊗ Id2 ⊗ . . . ⊗ Id2 (4.14)

Let us define quotient �-algebra

BτN
n = �[Bn]/ ker τN .

PROPOSITION 4.2. The algebra BτN
n is semisimple.

Proof. In case x is real the algebra is evidently generated by hermitian (indeed real
symmetric) matrices. In other cases, one can show that the same is true for a different
generating set. �

PROPOSITION 4.3. The map si �→ τN( σi−σ−1
i

q−q−1 ) extends τN to a representation of LBn.
That is to say, BτN

n is a quotient of �[LBn].

PROPOSITION 4.4. The case τ2 factors through Cn(q, q). That is bi �→ τ2(σi) gives a
representation of Cn(q, q).

Given any realization of Bn, and q ∈ �, we define ui as in (4.9). (The image τ2(ui)
obeys the BMW relation (4.11), but τN(ui) for N > 2 does not.) As noted in (4.3), si �→
τN(ai = 1 − ui) gives a representation of Sn for each N. Indeed, the τN representation
of Sn coincides with the classical case, q = 1, of the ρN Hecke algebra representation:

ρ
q=1
N (Ui) = τN(ui). (4.15)

Thus from Section 4.1, we have f1
N := ρ

q=1
N (fN) ∈ τN .

Given a loop BVS one obvious question is: Do we have an analogue of (4.7)
here together with corresponding strong representation theoretic consequences? We
are particularly interested in cases that do not factor over SLBn. But the question is
hard in general and it is instructive to start with a ‘toy’ such as the class of loop BVSs
above.

4.5. Fixed-charge submodules of τN . One aim is to decompose the representations
τN into irreducible representations. To this end, note that the subspaces of τN of
fixed N-colour-charge (the colour-charge is the composition of n giving for each i in
{1, 2, . . . , N} the number of i’s in a basis element |i1i2 . . . in〉) are invariant under the
�[LBn] action.
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LEMMA 4.5. The SN action permuting the standard ordered basis {e1, e2, . . . , eN}
of V = �N commutes with the LBn action on Vn. �

We write the action of SN on the right. So, if M is an LBn-submodule of Vn

then Mw is an isomorphic submodule for any w ∈ SN . This SN action acts on the
set of charges. Thus, we can index charge-submodules (up to isomorphism) by the set
N,n of integer partitions of n of maximum depth N. This is the same as the charge
decomposition of the Hecke algebra representation ρN (where the submodules are
called Young modules). But the further decomposition into irreducibles is not the same
as in the Hecke case.

For an explicit example, the basis Bλ for the λ subspace in case λ = (2, 1) is
B21 = {112, 121, 211}. We write Yλ for the charge λ submodule. Thus we have

τN,n ∼=
⊕

λ∈N,n

mλYλ, (4.16)

where mλ is the multiplicity.
If SN or a subgroup G fixes a submodule Yλ then this module is itself a right

G-module and an idempotent decomposition of 1 in �[G] induces a decomposition of
Yλ.

For each λ there is a G fixing Yλ, call it Gλ, a Young subgroup of SN (possibly
trivial). As usual an idempotent decomposition of 1 in �[G] may be characterised
by tuples of Young diagrams/integer partitions. For each such label there is also
a secondary index running over the dimension of the corresponding irreducible
representation of G; but idempotents with the same primary label are isomorphic.
If Yλ has a non-trivial such decomposition we will write Y

μ

λ for the submodule with
primary label μ. We call these modules Y

μ

λ harmonic modules. For given λ write λ for
the set of primary labels (the index set for irreducible representations �μ of Gλ). Thus,

Yλ =
⊕
μ∈λ

dim �μY
μ

λ . (4.17)

Note that the decomposition of Yλ into irreducible modules for the restriction
to the ‘classical’ subalgebra HN generated by the uis (the symmetric group action) is
well-known. This gives a lower bound on the size of summands of Yλ as a module for
the full algebra.

LEMMA 4.6. Actions of subgroup Sn and Bn on Y(1n) are identical up to sign. �

Comparing the ‘classical’ decomposition of Y(1n) above with the idempotent
decomposition with G = SN = Sn in this case we see that they are the same.

To apply localization later we will be interested, for each given N, in detecting
submodules M of Yλ on which e = f1

N acts like 0. We call these e-null, or f1
N-null,

submodules. Any such submodule M decomposes also as an Sn-submodule, and so f1
N

would have to act like 0 on each of the submodules in this decomposition. For example,
in case N = 2 only the irreducible Sn-module �(n) has this property at rank-n. So here
there can only be such a submodule M if �(n) is also an LBn-submodule of Yλ. A basis
element for Sn-submodule �(n) in Yλ is known. We take

b =
∑

w∈Sn

w 111 . . . 222,
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where 111 . . . 222 is the initial basis element of Yλ in the lex order. Then, for

example b
λ=(2,1)= 2(112 − 121 + 211). Note here that qσ1(112 − 121 + 211) = x112 −

211 + 121, so �(3) is not an LB3-submodule unless x = −1.

LEMMA 4.7. (I) In case N = 2, x 
= −1, no Yλ has e-null proper submodule except
in case λ = (1, 1), where Y (12)

(12) is f1
2 -null.

(II) In case N = 3 the module Y (12)
(n−2,12) is f1

3 -null for n > 3.

Proof. (I) The example above is indicative, except in case (1, 1) where there is no x
term.
(II) A basis of Y (12)

(2,12) is {1123 − 1132, 1213 − 1312, 1231 − 1321, 2113 − 3112, 2131 −
3121, 2311 − 3211}. One readily checks the f1

3 action on this. The other cases are
similar. �

There is an injective algebra map

BτN
n−N

∼→ f1
N ⊗ BτN

n−N ↪→ f1
NBτN

n f1
N .

Thus, any BτN
n -module gives rise to a BτN

n−N module by first localizing (we will write
simply F for the localisation functor Ff1

N
here), then restricting.

LEMMA 4.8. There is an isomorphism of BτN
n−N-modules

f1
NY(λ1,λ2,...,λN )

∼=
{

Y(λ1−1,λ2−1,...,λN−1) λN > 0
0 λN = 0.

Proof. For any given N we can write w ∈ Bλ as

w = w1w2 . . . wN︸ ︷︷ ︸
w−

wN+1wN+2 . . . wn︸ ︷︷ ︸
w+

= w−w+.

Then

f1
Nw = f1

Nw−w+ =
{

0 unless w− is a permutation of 12. . . N.
12 . . . Nw+ w− is a perm. of 12. . . N.

(4.18)

where 123 = 123 + 213 + 132 + 231 + 312 + 321 and so on. That is, f1
NVn ∼= Vn−N

and f1
NYλ

∼= Yλ−(1N ) as vector spaces, and hence modules. �

LEMMA 4.9. Let λ ∈  and l = lλ the number of distinct row-lengths in λ, so that
μ in Y

μ

λ has lλ distinct components (each μi a partition). Let μ′ denote μ with the l-th
component omitted. There is an isomorphism of BτN

n−N-modules

f1
NY

μ

(λ1,λ2,...,λN )
∼=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Y
μ

(λ1−1,λ2−1,...,λN−1) λN > 1

Y
μ′

(λ1−1,λ2−1,...,λN−1) λN = 1, (μl)2 = 0
0 λN = 1, (μl)2 > 0
0 λN = 0

.

Proof. The decomposition of Yλ by the right-action of the charge group, commutes
with the left-action of f1

N . So, noting Lemma 4.8, it only remains to verify the λN = 1
cases. In these cases, the first column of λ is uniquely the longest, of length N. Thus,
the colours involved in the last component of μ are symmetrised by f1

N . Any colour
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symmetry idempotent acting from the right corresponding to μl with (μl)2 > 0 involves
an antisymmetriser in its construction, and hence annihilates f1

NYλ. �

LEMMA 4.10. For x 
= −1 the harmonic modules of LBn, i.e. the modules {Yμ

λ | λ ∈
n, μ ∈ λ}, are pairwise non-isomorphic.

Proof. Work by induction on n. Compare Y = Y
μ

λ , Y ′ = Y
μ′

λ′ , say, with μ 
= μ′.
If either f1

NY or f1
NY ′ 
= 0 for some N ≥ ||λ|| := λt

1 then Y 
∼= Y ′ by Lemma 4.9 and
the inductive assumption. The remaining cases are when one or both of Y, Y ′ are of
type-III in Lemma 4.9. These are routine to check. �

How can we understand this proliferation of submodules? Analogous results to
the above hold for the Hecke quotients HN

n . There it is very useful to use a geometrical
principle to organise the indexing sets for canonical classes of modules (such as Young
modules; or simple modules – except that there it turns out that, roughly speaking,
the same index set can be used for these different classes). One way to understand this
geometry comes from the theory of weight spaces in algebraic Lie theory. Here, we do
not have any such dual picture, but we can naively bring over the same organisational
principle. This tells us to consider λ as a vector in �N , and then to draw the set of λs
in �N−1 by projecting down the (1, 1, . . . , 1) line. One merit of this is that it allows us
to draw the entire N = 3 ‘weight space’ of Young module indices in the plane.

4.6. Branching rules for harmonic modules. We consider here the natural
restriction from LBn to LBn−1, and claim Figure 1 gives the branching rules for N = 3.

PROPOSITION 4.11. The branching rules for Young modules corresponding to the
natural restriction from LBn to LBn−1 are

↓ Yλ =
⊕

i

Yλ−ei ,

where the sum is over removable boxes in the Young diagram λ.

Proof. The lBn−1 action ignores the last symbol in the colour-word basis for Yλ. �

PROPOSITION 4.12. The directed graph in Figure 1 gives the branching rules for
harmonic modules for N = 3, using the geometric realisation.

Proof. First note that well in the interior of the picture the Young and harmonic
modules coincide and we can use Prop.4.11. Specifically this gives all cases in the
forward cone of the point (4, 2).

The remaining cases in the forward cone of (2, 1) may be verified by using
Propositions (4.17) and (4.11).

For the remaining ‘boundary’ cases we split up into cases in the following subsets:
(i) the (1, 0)-ray of point (3, 1); (ii) the (1, 0)-ray of point (2, 0); (iii) the (1, 1)-ray of
point (3, 2); (iv) the (1, 1)-ray of point (2, 2); (v) the point (2, 1); (vi) the point (1, 0);
(vii) the point (1, 1); (viii) the point (0, 0).

We indicate the proof with two representative examples. Case (ii): In the fibre over
(2, 0) we have

↓ Y (2)
(6,4,4) = Y(6,4,3) ⊕ Y (2)

(5,4,4),
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(0,1)

(1,0)

Figure 1. Branching rules for harmonic modules for N = 3. All ‘parallel’ edges are
directed in the same direction.

by using 4.11 and commutativity of (left) restriction with the (right) idempotent
decomposition.
Case (vi): In the fibre over (1, 0) we have

↓ Y ((1),(2))
(2,1,1) = Y(2,1) ⊕ Y ((3))

(13) ⊕ Y ((2,1))
(13) .

Here, the basis is

1123 + 1132, 1213 + 1312, 1231 + 1321, 2113 + 3112, 2131 + 3121, 2311 + 3211.

Since the restriction is defined by disregarding the last symbol in the color-world
basis it is clear that on restriction the 1st, 2nd and 4th give a basis of Y(2,1), while the
remainder injects into Y(13), and indeed into Y(13)(1 + s2). �

THEOREM 4.13. In cases N = 2, 3, x 
= −1, the harmonic modules are irreducible.

Proof. We work by induction on n. Consider a harmonic module Y at level n. By
Propositions 4.12, 4.10 and the inductive assumption restriction to n − 1 is multiplicity-
free. So it is enough to show that there is a basis element b in a good basis with respect to
this restriction (a basis that decomposes into bases for the summands of the restriction)
such that Y = BτN

n b.
In case, Y is also a Young module it is easy to see that Y = BτN

n b for any standard
basis element; and that the standard basis is a good basis for the restriction to Young
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modules; and that at least one of these is a summand of the restriction to harmonic
modules.

In case Y is not a Young module (i.e. on the boundary) the modification is routine
and we content ourselves here with some representative examples:
(1) Recall the restriction Res Y (2)

(2,1,1) = Y (3)
(1,1,1) ⊕ Y (2,1)

(1,1,1) ⊕ Y(2,1). An element lying in
the last summand is 1213 + 1312. Acting with σ3 on this we get 1231 + 1321. It is easy
to see that this generates the whole module.
(2) Recall the restriction Res Y (2)

(2,2,1) = Y (2)
(2,1,1) ⊕ Y (12)

(2,1,1) ⊕ Y (2)
(2,2). An element lying in

the last summand is 11223 + 22113. Acting with σ4 on this we get 11232 + 22131. It is
easy to see that this generates the whole module.
(3) We have

Res Y (2)
(4,2,2) = Y(4,2,1) ⊕ Y (2)

(3,2,2).

A good basis is {11112233 + 11113322, 11112323 + 11113232, . . . , 11123213 +
11132312, . . . , 32211113 + 23311112, . . .}, where all the explicitly written elements
lie in the basis for Y(4,2,1) in the restriction (the first word ends in 3). Now, apply σ7:
σ7(11123213 + 11132312) = 11123231 + 11132321, which lies in Y (2)

(3,2,2). �

Categorical versions of the structure for N = 2 and N = 3 also can be worked out
explicitly. (But in light of Proposition 4.2 these are not as powerful a tool here as in the
corresponding Hecke cases.) We will leave them for future publication.

We make the obvious conjecture for the generalisation to higher N: that the
harmonic modules are again a complete set of irreducibles.
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