LOCAL REPRESENTATIONS OF THE LOOP BRAID GROUP

ZOLTÁN KÁDÁR ${ }^{1}$, PAUL MARTIN
Department of Pure Mathematics
University of Leeds
Leeds, LS2 9JT
United Kingdom
e-mail: zokadar@gmail.com, P.P.Martin@leeds.ac.uk

ERIC ROWELL

Department of Mathematics
Texas A\&M University
College Station, TX 77843-3368
USA
e-mail: rowell@math.tamu.edu
and ZHENGHAN WANG
Microsoft Research, Station Q and Department of Mathematics
University of California
Santa Barbara, CA 93106
USA
e-mail: zhenghwa@micros.oft.com,zhenghwa@math.ucsb.edu
(Received 27 January 2015; accepted 17 September 2015; first published online 10 June 2016)

Abstract

We study representations of the loop braid group $L B_{n}$ from the perspective of extending representations of the braid group \mathcal{B}_{n}. We also pursue a generalization of the braid/Hecke/Temperlely-Lieb paradigm - uniform finite dimensional quotient algebras of the loop braid group algebras.

2010 Mathematics Subject Classification, 20F36 (57M25,81R05)

1. Introduction. Non-abelian statistics of anyons in two spatial dimensions has attracted considerable attention largely due to topological quantum computation [27, 32]. Recently, non-abelian statistics is extended to statistics of point-like topological defects projectively [6]. But an extension of non-abelian statistics of point-like excitations to three spatial dimensions is not possible. However, loop or closed string excitations occur naturally in condensed matter physics and string theory. Therefore, it is important to study statistics of extended objects in three spatial dimensions.

A systematical way to produce interesting and powerful representations of the braid group is via $(2+1)$-topological quantum field theories (TQFTs) [32]. Since the loop braid group is a motion group of sub-manifolds ${ }^{\dagger}$, we expect that interesting representations of the loop braid group could result from extended $(3+1)$-TQFTs.

[^0]But $(3+1)$-TQFTs are much harder to construct, and the largest known explicit class is the Crane-Yetter TQFTs based on pre-modular categories [11, 34]. The difficulty of constructing interesting representations of the loop braid group reflects the difficulty of constructing non-trivial $(3+1)$-TQFTs. Potentially, given a pre-modular category \mathcal{C}, there are representations of all motion groups of sub-manifolds including the loop braid group associated to \mathcal{C}, but no explicit computation has been carried out for any non-trivial theory. Hence, we will take a closely related, but different first step in the study of representations of the loop braid group.

The tower of group algebras of Artin's braid group \mathcal{B}_{n}, for $n \geq 1$ have topologically interesting quotients, such as the Temperley-Lieb algebras [17], Hecke algebras [18] and BMW-algebras [9, 26]. Each of these algebras support a Markov trace which then produces polynomial knot and link invariants. Moreover, at roots of unity many such quotient algebras can be realized as endomorphism algebras in unitary modular categories-the algebraic structure underlying certain $(2+1)$-TQFTs [30]. These, in turn, describe the quantum symmetries of topological phases of matter in two spatial dimensions [33]. The braid group representations associated with unitary modular categories would be physically realized as the motion of point-like particles in the disk D^{2}. Our goal is to generalize this picture to topological systems in three spatial dimensions with loop-like excitations.

The loop braid group $L B_{n}$ is the motion group of the n-component oriented unlink inside the 3-dimensional ball $D^{3}[\mathbf{1 2}, \mathbf{1 6}, \mathbf{2 2}]$. It has appeared in other contexts as well: it is isomorphic to the braid-permutation group (see [3]), the welded-braid group (see [14]) and the group of conjugating automorphisms of a certain free group (see [23]), the group of ribbon tubes [2], the group of flying rings [7] and the fundamental group of the configuration space of Euclidian circles [10]. For an exploration of the structure as a semidirect product, see [4]. Very little is known about the linear representations of $L B_{n}$. We investigate when a given representation of \mathcal{B}_{n} may be extended to $L B_{n}$. Some results in this direction are found in [5] and [31]. For example, it is known that the faithful Lawrence-Krammer-Bigelow (LKB) representation of \mathcal{B}_{n} does not extend to $L B_{n}$ for $n \geq 4$ except at degenerate values of the parameters ([5]), but the Burau representation of \mathcal{B}_{n} does extend.

It seems to be a rather hard problem to discover interesting finite-dimensional quotients of the tower of loop braid group algebras of $L B_{n}$. Considering that the LKB representation appears in the BMW-algebra, we should not expect to simply extend known \mathcal{B}_{n} quotients. Our approach is to consider extensions of \mathcal{B}_{n} representations associated with solutions to the parameter-free Yang-Baxter equation. This ensures that the quotient algebras are finite dimensional. The main problem we study is when such representations extend. One particular family of extendible representations are studied in some detail: the so-called affine group-type solutions.

The contents of the paper are as follows. In Section 2, we recall a presentation of the loop braid group. In Section 3, we study representations of the loop braid group from braided vector spaces, and hence make the connection to Drinfeld doubles. In Section 4, we initiate a general program to generalize the braid/Hecke/TemperlelyLieb paradigm - uniform finite dimensional quotient algebras of the loop braid quotient algebras, and report some preliminary analysis. In particular, we answer a question that has been open for some time, raised in [24, Section 12.1], about the structure of certain 'cubic' braid group representations that lift to loop braid representations.
2. The loop braid group and its relatives. Let us start with a group presentation.

Theorem. [14] The loop braid group $L B_{n}$ is isomorphic to the abstract group generated by $2(n-1)$ generators σ_{i} and s_{i} for $1 \leq i \leq(n-1)$, satisfying the following three sets of relations:

The braid relations:
(B1) $\sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1}$
(B2) $\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i}$ for $|i-j|>1$,
the symmetric group relations:
(S1) $s_{i} s_{i+1} s_{i}=s_{i+1} s_{i} s_{i+1}$
(S2) $s_{i} s_{j}=s_{j} s_{i}$ for $|i-j|>1$,
(S3) $s_{i}^{2}=1$,
and the mixed relations:
(L0) $\sigma_{i} s_{j}=s_{j} \sigma_{i}$ for $|i-j|>1$
(L1) $s_{i} s_{i+1} \sigma_{i}=\sigma_{i+1} s_{i} s_{i+1}$
(L2) $\sigma_{i} \sigma_{i+1} s_{i}=s_{i+1} \sigma_{i} \sigma_{i+1}$.

The images of the generators σ_{i}, s_{i} in the motion group per se are given for example in $[\mathbf{1 0}, \mathbf{7}, \mathbf{3}]$. The subgroup generated by the $\left\{\sigma_{i}\right\}$ is Artin's braid group \mathcal{B}_{n}. (There is an isomorphism of $L B_{n}$ to the automorphism group of the free group with n generators [8] which takes this subgroup to \mathcal{B}_{n} [19].) The second set $\left\{s_{i}\right\}$ generate the symmetric group \mathfrak{S}_{n}. The loop braid group is a quotient of the virtual braid group $V B_{n}[\mathbf{3 1}]$ which satisfies all relations above except ($L 2$).

The relations ($L 1$) also hold if read backwards, i.e. $s_{i+1} s_{i} \sigma_{i+1}=\sigma_{i} s_{i+1} s_{i}$, but ($L 2$) is not equivalent to its reverse:
(L3) $s_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} s_{i+1}$.
However, in the transposed group $O L B_{n}$ (i.e. the group that coincides with $L B_{n}$ as a set, but with the opposite multiplication $a * b=b a$) one has all relations as in $L B_{n}$ except ($L 2$) is replaced by ($L 3$). Every group is isomorphic to its transposed group (via inversion) so we may freely work with either $L B_{n}$ or $O L B_{n}$.

We define the symmetric loop braid group $S L B_{n}$ to be $L B_{n}$ modulo the relations (L3). In particular, we have surjections $V B_{n} \rightarrow L B_{n} \rightarrow S L B_{n}$. Note, that this group was called unrestricted virtual braid group in [21].
3. $L B_{n}$ representations from braided vector spaces. Several authors (see e.g. [31]) have considered the question of extending representations of \mathcal{B}_{n} to $L B_{n}$. In this section, we consider extending certain local representations of \mathcal{B}_{n} (see [29]).

A braided vector space $(\mathrm{BVS})(V, c)$ is a solution $c \in G L\left(V^{\otimes 2}\right)$ to the Yang-Baxter equation:

$$
\left(c \otimes I d_{V}\right)\left(I d_{V} \otimes c\right)\left(c \otimes I d_{V}\right)=\left(I d_{V} \otimes c\right)\left(c \otimes I d_{V}\right)\left(I d_{V} \otimes c\right)
$$

Any BVS gives rise to a local representation ρ^{c} of \mathcal{B}_{n} via $\sigma_{i} \rightarrow I d_{V}^{\otimes i-1} \otimes c \otimes$ $I d_{V}^{\otimes n-i-1}$. If an extension of ρ^{c} to $L B_{n}$ or $O L B_{n}$ is given via $s_{i} \rightarrow I d_{V}^{\otimes i-1} \otimes S \otimes I d_{V}^{\otimes n-i-1}$ where $S \in \mathrm{GL}\left(V^{\otimes 2}\right)$, then it will be also called local. The corresponding triple (V, c, S) will be called a loop braided vector space.

A special case of local \mathcal{B}_{n} representations through group-type BVSs were introduced by Andruskiewitsch and Schneider [1]. These play an important role in their
classification program for pointed finite-dimensional Hopf algebras. We extend their definition slightly and say that a $\mathrm{BVS}(V, c)$ is of left group-type (resp. right grouptype) if there is an ordered basis $X:=\left[x_{1}, \ldots, x_{n}\right]$ of V and $g_{i} \in G L(V)$ such that $c\left(x_{i} \otimes z\right)=g_{i}(z) \otimes x_{i}\left(\right.$ resp. $\left.c\left(z \otimes x_{j}\right)=x_{j} \otimes g_{j}(z)\right)$ for all i, j and $z \in V$. There is a one-to-one correspondence between left and right group-type BVSs, since the Yang-Baxter equation is invariant under $c \leftrightarrow c^{-1}$. Indeed, the inverse of $c\left(x_{i} \otimes x_{j}\right)=g_{i}\left(x_{j}\right) \otimes x_{i}$ is $c^{-1}\left(x_{i} \otimes x_{j}\right)=x_{j} \otimes g_{j}^{-1}\left(x_{i}\right)$, so that (V, c) is a BVS of left group-type if and only if c^{-1} is a BVS of right group-type.

Lemma 3.1. Suppose that (V, c) is a BVS of left group-type with respect to X := $\left[x_{1}, \ldots, x_{n}\right]$ and corresponding g_{i} defined on X by $g_{i}\left(x_{j}\right):=\sum_{k=1}^{n} g_{i}^{j, k} x_{k}$. If $g_{i}^{j, k} \neq 0$ then $g_{i} g_{j}=g_{k} g_{i}$.

Proof. we compute

$$
(c \otimes I)(I \otimes c)(c \otimes I)\left(x_{i} \otimes x_{j} \otimes z\right)
$$

and

$$
(I \otimes c)(c \otimes I)(I \otimes c)\left(x_{i} \otimes x_{j} \otimes z\right)
$$

and compare the two sides. This yields the equality:

$$
\sum_{k=1}^{n} g_{i}^{j, k} g_{i} g_{j}(z) \otimes x_{k} \otimes x_{i}=\sum_{k=1}^{n} g_{i}^{j, k} g_{k} g_{i}(z) \otimes x_{k} \otimes x_{i}
$$

Thus, we see that if $g_{i}^{j, k} \neq 0$ then $g_{i} g_{j}(z)=g_{k} g_{i}(z)$ for all z, and the result follows.
The proof of Lemma 3.1 shows that the Yang-Baxter equation for (V, c) of left group type is equivalent to the matrix equation:

$$
\begin{equation*}
g_{i}^{j, k} g_{i} g_{j}=g_{i}^{j, k} g_{k} g_{i} \quad \text { for all } i, j, k \tag{3.1}
\end{equation*}
$$

A similar result may be derived for right group type BVSs.
If g_{i} acts diagonally with respect to the basis X so that $c\left(x_{i} \otimes x_{j}\right)=q_{i j}\left(x_{j} \otimes x_{i}\right)$ for some scalars $q_{i j}$ then we say (V, c) is of diagonal type. More generally, we will say that (V, c) is diagonalizable if there exists a basis of V with respect to which (V, c) is a BVS of diagonal type. We do not need to specify a handedness for diagonal type BVS, indeed we have:

Lemma 3.2. A BVS (V, c) is of both left and right group type if and only if (V, c) is diagonalizable.

Proof. If c is of left group type with respect to X and $g_{i} \in G L(V)$ and right group type with respect to $Y:=\left[y_{1}, \ldots, y_{n}\right]$ and $h_{j} \in G L(V)$ then $x_{i} \otimes y_{j}$ is a basis for V, and $c\left(x_{i} \otimes y_{j}\right)=g_{i}\left(y_{j}\right) \otimes x_{i}=y_{j} \otimes h_{j}\left(x_{i}\right)$. This implies that the g_{i} are simultaneously diagonalized in the basis Y so that the g_{i} pairwise commute. Denote by G the (abelian) group generated by the g_{i} and let $g_{i}^{(j, k)}$ be the coefficient of x_{k} in $g_{i}\left(x_{j}\right)$. Since the g_{i} pairwise commute, Lemma 3.1 shows that $g_{i}^{(j, k)} \neq 0$ implies $g_{j}=g_{k}$. Now note that the spaces $W_{k}:=\mathbb{C}\left\{x_{j}: g_{j}=g_{k}\right\}$ are G-invariant, and denote by $I_{k}:=\left\{j: x_{j} \in W_{k}\right\}$, so
that the distinct I_{k} partition [n]. So choose a basis for each W_{k} with respect to which each g_{i} is diagonal, and denote the union of these bases by Z. It is clear that g_{i} are diagonal with respect to the basis Z, but we must check that (V, c) is of group type with respect to this basis. Let $z_{k}=\sum_{j \in I_{k}} z_{j}^{k} x_{j} \in W_{k} \cap Z$. Then,

$$
c\left(z_{k} \otimes z_{s}\right)=\sum_{j \in I_{k}} z_{j}^{k} c\left(x_{j} \otimes z_{s}\right)=\sum_{j \in I_{k}} g_{j}\left(z_{s}\right) \otimes z_{j}^{k} x_{j}=q_{k, s} z_{s} \otimes z_{k}
$$

since all the g_{j} with $j \in I_{k}$ are identical and so act by a common scalar $q_{k, s}$ on z_{s}.
The other direction is clear, diagonal type BVSs are of both left and right group type.

BVSs of group type always extend to loop BVSs, with left group-type BVSs giving representations of $O L B_{n}$ and right group-type BVSs giving representations of $L B_{n}$:

Proposition 3.3. Define $S\left(x_{i} \otimes x_{j}\right):=x_{j} \otimes x_{i}$. If (V, c) is a BVS of left (resp. right) group-type then (V, c, S) is a loop braided vector space.

Proof. Define $\rho^{c}\left(s_{i}\right)=I d_{V}^{\otimes i-1} \otimes S \otimes I d_{V}^{\otimes n-i-1}$. Relations (B1), (B2), (S1), (S2), $(S 3)$ and (L0) are immediate. Since inversion gives an isomorphism from $L B_{n}$ to $O L B_{n}$ and produces a left group-type BVS from a right group-type BVS it suffices to check the relations ($L 1$) and ($L 3$) for $i=1$. First,

$$
\rho^{c}\left(s_{1} s_{2} \sigma_{1}\right)\left(x_{i} \otimes x_{j} \otimes x_{k}\right)=\left(x_{k} \otimes g_{i}\left(x_{j}\right) \otimes x_{i}\right)=\rho^{c}\left(\sigma_{2} s_{1} s_{2}\right)\left(x_{i} \otimes x_{j} \otimes x_{k}\right)
$$

verifying (L1). Similarly,

$$
\rho^{c}\left(\sigma_{2} \sigma_{1} s_{2}\right)\left(x_{i} \otimes x_{j} \otimes x_{k}\right)=g_{i}\left(x_{k}\right) \otimes g_{i}\left(x_{j}\right) \otimes x_{i}=\rho^{c}\left(s_{1} \sigma_{2} \sigma_{1}\right)\left(x_{i} \otimes x_{j} \otimes x_{k}\right)
$$

so we have ($L 3$).
Suppose that (V, c) is of left group-type, and we define $\rho^{c}\left(s_{i}\right)$ via S as in the proof of Proposition 3.3. Then, ($L 2$) is satisfied if and only if the g_{i} pairwise commute:

$$
\rho^{c}\left(\sigma_{1} \sigma_{2} s_{1}\right)\left(x_{i} \otimes x_{j} \otimes x_{k}\right)=g_{j} g_{i}\left(x_{k}\right) \otimes j \otimes i=g_{i} g_{j}\left(x_{k}\right) \otimes x_{j} \otimes x_{i}=\rho^{c}\left(s_{2} \sigma_{1} \sigma_{2}\right)
$$

In particular, if (V, c) is both of left and right group-type then ρ^{c} extends to a representation of $S L B_{n}$. More generally, we have:

Proposition 3.4. Suppose that (V, c) and (V, S) are of diagonal type with respect to the (same) basis X and $S^{2}=I d_{V^{\otimes 2}}$. Then, ρ^{c} extends to a representation of $S L B_{n}$ via $\rho^{c}\left(s_{i}\right)=I d_{V}^{\otimes i-1} \otimes S \otimes I d_{V}^{\otimes n-i-1}$.

Proof. It suffices to check (L1), (L2) and (L3), which are straightforward calculations.

Note, that in case (V, c) is of group type (either right or left), c takes a canonical form in terms of the basis $X=\left[x_{1}, \ldots, x_{n}\right]$ and in terms of that basis $S\left(x_{i} \otimes x_{j}\right)=$ $\pm x_{j} \otimes x_{i}$ then (V, c) is of diagonal type if $c S=S c$. In this case, the index of the subgroup $\rho^{c}\left(B_{n}\right)$ in $\rho^{c}\left(L B_{n}\right)$ is finite. The representations τ_{N} in section 4.4 belong to this class.
3.1. Affine group-type BVSs. We are interested in local representations of $L B_{n}$ that detect symmetry, i.e. that do not factor over $S L B_{n}$. Fix $m \in \mathbb{N}$ and let V be an m-dimensional vector space with basis $\left[x_{1}, \ldots, x_{m}\right]$. For each $1 \leq j \leq m$ define $h_{j}\left(x_{i}\right)=x_{\alpha i+\beta j}$ for some $\alpha, \beta \in \mathbb{N}$, where indices are taken modulo m. We will determine sufficient conditions on α and β so that $c\left(x_{i} \otimes x_{j}\right):=x_{j} \otimes h_{j}\left(x_{i}\right)$ gives (V, c) the structure of a right BVS. We will call these affine group-type BVSs. For notational convenience we will identify x_{i} with $i(\bmod m)$ and define $h_{j}(i)=\alpha i+\beta j$ where now α, β are integers modulo m, and denote $x_{i} \otimes x_{j}$ by (i, j).

The operator h_{j} is invertible if and only if $\operatorname{gcd}(\alpha, m)=1$. Since we are interested in finding BVSs that do not factor over $S L B_{n}$, we should look for non-diagonalizable affine BVSs. By the proof of Lemma 3.2 we see that a BVS corresponding to $\left\{h_{j}: 1 \leq j \leq\right.$ $m\}$ is diagonalizable if and only the h_{j} pairwise commute. Computing $h_{i} h_{j}(k)=h_{j} h_{i}(k)$ we see that this happens precisely when $(\alpha-1) \beta \equiv 0(\bmod m)$. In particular, we must assume that $\alpha \not \equiv 1(\bmod m)$ and $\beta \not \equiv 0(\bmod m)$.

By Proposition 3.3 as soon as we have determined values α, β so that (V, c) is a (right) BVS we may extend ρ^{c} to $L B_{n}$ by taking $S\left(x_{i} \otimes x_{j}\right)=x_{j} \otimes x_{i}$. Computing, we have:

$$
\sigma_{1} \sigma_{2} \sigma_{1}(i, j, k)=\left(k, h_{k}(j),\left(h_{k} \circ h_{j}\right)(i)\right)=\sigma_{2} \sigma_{1} \sigma_{2}(i, j, k)=\left(k, h_{k}(j),\left(h_{h_{k}(j)} \circ h_{k}\right)(i)\right) .
$$

Therefore, we must have

$$
\left(h_{k} \circ h_{j}\right)(i)=\alpha^{2} i+\alpha \beta j+\beta k=\left(h_{h_{k}(j)} \circ h_{k}\right)(i)=\alpha^{2} i+\alpha \beta(k+j)+\beta^{2} k,
$$

that is, $\beta(\alpha+\beta)=\beta$. One family of solutions corresponds to $\alpha+\beta=1$ so we set $t=\alpha$ and $\beta=(1-t)$. In this case $(\alpha-1) \beta=-(t-1)^{2}$, so we have proved:

Theorem 3.5. Let $m, t \in \mathbb{N}$ with $\operatorname{gcd}(m, t)=1$ and $(t-1)^{2} \not \equiv 0(\bmod m)$. Then defining $h_{j}\left(x_{i}\right)=x_{t i+(1-t) j}$ and $S\left(x_{i} \otimes x_{j}\right)=x_{j} \otimes x_{i}$ (indices modulo m) on the basis $X:=\left[x_{1}, \ldots, x_{m}\right]$ gives rise to a loop braided vector space (V, c, S) of $L B_{n}$ such that the corresponding $L B_{n}$ representation, φ, does not factor over $S L B_{n}$.

Remark 3.6. For m prime, the family of loop braided vector spaces in Theorem 3.5 are all possible non-diagonalizable affine BVSs, but for m composite there are other solutions. We will only focus on these solutions in the present work.

It is clear from the construction that the representations φ act by permutation on the standard basis vectors of $V^{\otimes n}$. By passing to the action on indices, we may identify the \mathbb{C}-representation φ in Theorem 3.5 with the following homomorphism $\rho_{m, t}: L B_{n} \rightarrow \mathrm{GL}_{n}\left(\mathbb{Z}_{m}\right)$ via

$$
\rho_{m, t}\left(\sigma_{i}\right)=\left(\begin{array}{ccc}
I_{i-1} & 0 & 0 \\
0 & M & 0 \\
0 & 0 & I_{n-i-1}
\end{array}\right), \rho_{m, t}\left(s_{i}\right)=\left(\begin{array}{ccc}
I_{i-1} & 0 & 0 \\
0 & P & 0 \\
0 & 0 & I_{n-i-1}
\end{array}\right),
$$

where $M=\left(\begin{array}{cc}0 & 1 \\ t & 1-t\end{array}\right)$ and $P=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ with entries in \mathbb{Z}_{m}. For later use, we point out that evaluating $\rho_{m, t}\left(\sigma_{i}\right)$ at $t=1$ gives $\rho_{m, t}\left(s_{i}\right)$.

We now investigate the images of these representations.
The restriction of $\rho_{m, t}$ to \mathcal{B}_{n} may look familiar: it is nothing more than the (inverse of) the (unreduced) Burau representation, specialized at an integer t with entries
modulo m. In light of [31] it is not surprising that the Burau representation should admit an extension to $L B_{n}$ (although we caution the reader that [31] may have a different composition convention than ours). Note, that the extended Burau representation at integer t, reduced $\bmod m$ is also found in [5]. The form of the representation here differs from that of loc. cit. because there the (isomorphic) group $O L B_{n}$ is considered. The precise relationship is that the image of σ_{i} is replaced by its inverse, followed by a parameter change $t->t^{-1}$.

Observe that the row-sums of $\rho_{m, t}\left(\sigma_{i}\right)$ and $\rho_{m, t}\left(s_{i}\right)$ are 1 ; therefore, they are $n \times$ n (row)-stochastic matrices (modulo m). In particular, since the affine linear group $\mathrm{AGL}_{n-1}\left(\mathbb{Z}_{m}\right)$ is isomorphic to the group of $n \times n$ stochastic matrices modulo m (see [28], where m prime is considered, but the proof is valid for any m), we see that the image of $\rho_{m, t}$ is a subgroup of $\mathrm{AGL}_{n-1}\left(\mathbb{Z}_{m}\right)$. The question we wish to address is: When is $\rho_{m, t}: L B_{n} \rightarrow \mathrm{AGL}_{n-1}\left(\mathbb{Z}_{m}\right)$ surjective?

The group $\mathrm{AGL}_{n-1}\left(\mathbb{Z}_{m}\right)$ is the semidirect product of $\left(\mathbb{Z}_{m}\right)^{n-1}$ with $\mathrm{GL}_{n-1}\left(\mathbb{Z}_{m}\right)$ (with the obvious action). The standard way to view $\mathrm{AGL}_{n-1}\left(\mathbb{Z}_{m}\right)$ is as the subgroup of $\mathrm{GL}_{n}\left(\mathbb{Z}_{m}\right)$ consisting of matrices of the form $\left(\begin{array}{cc}A & v \\ 0 & 1\end{array}\right)$ where $A \in \mathrm{GL}_{n-1}\left(\mathbb{Z}_{m}\right)$ and $v \in \mathbb{Z}_{m}^{n-1}$ (a column vector). For economy of notation, we will denote these elements by $g(A, v)$. In this notation the multiplication rule is

$$
\left(A_{1}, v_{1}\right)\left(A_{2}, v_{2}\right)=\left(A_{1} A_{2}, A_{1} v_{2}+v_{1}\right)
$$

To determine the conditions on m, t so that $\rho_{m, t}$ is surjective, we need some additional notation and technical results.

- For $i \neq j$, define $\Delta_{i, j} \in \operatorname{Mat}(n)$ to be the matrix with (i, j)-entry equal to 1 and all other entries zero.
- For $i \neq j$, define $E_{i, j}(\alpha)=I+\alpha \Delta_{i, j}$, i.e. the elementary matrix corresponding to the row operation which adds α times the j th row to the i th row.
- Let $D(\alpha, i):=I+(\alpha-1) \Delta_{i, i}$ be the diagonal matrix with the ($\left.i, i\right)$-entry equal to α and the remaining (diagonal) entries equal to 1 .
Lemma 3.7. Let $B=g\left(I, e_{i}\right) \in \operatorname{AGL}_{n-1}\left(\mathbb{Z}_{m}\right)$, with $e_{i} \in\left(\mathbb{Z}_{m}\right)^{n-1}$ a standard basis vector. Then $\mathrm{AGL}_{n-1}\left(\mathbb{Z}_{m}\right) \subset \mathrm{GL}_{n}\left(\mathbb{Z}_{m}\right)$ is generated by B and the following matrices:
(a) $E_{i, j}(1)$, all $1 \leq i \neq j \leq n-1$ and
(b) $D(\alpha, 1)$ all $\alpha \in \mathbb{Z}_{m}^{\times}$.

Proof. Let $e_{j} \in\left(\mathbb{Z}_{m}\right)^{n-1}$ be an arbitrary standard basis vector and choose A so that $A e_{i}=e_{j}$. Then

$$
g(A, 0) g\left(I, e_{i}\right) g\left(A^{-1}, 0\right)=g\left(I, e_{j}\right)
$$

Since the matrices $g\left(I, e_{j}\right)$ generate all elements of the form $g(I, b), b \in\left(\mathbb{Z}_{m}\right)^{n-1}$, it is enough to show that matrices in (a) and (b) generate all matrices of the form $g(A, 0)$ with $A \in \mathrm{GL}_{n-1}\left(\mathbb{Z}_{m}\right)$.

Since $\left[E_{i, j}(1)\right]^{k}=I+k \Delta_{i, j}=E_{i, j}(k)$ we see that we can obtain all elementary matrices corresponding to replacing row/column i with a multiple of row/column j plus row i. Moreover, we may obtain all matrices that permute rows and all matrices of the form $D(\alpha, j)$ inductively from $D(-1,1)$ via:

$$
\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

Thus we obtain all elementary matrices in $\mathrm{GL}_{n-1}\left(\mathbb{Z}_{m}\right)$ as products of matrices as in (a) and (b).

Finally, observe that the gcd of the entries in any row/column of $A \in$ $\mathrm{GL}_{n-1}\left(\mathbb{Z}_{m}\right)$ must be a unit in \mathbb{Z}_{m}. Using elementary row/column operations (left/right multiplication by elementary matrices) we may transform A into a matrix with the $(1,1)$ entry equal to 1 and the remaining entries equal to zero. It then follows by induction that every $A \in \mathrm{GL}_{n-1}\left(\mathbb{Z}_{m}\right)$ is a product of matrices as in (a) and (b), as required.

Proposition 3.8. Suppose that $t \in \mathbb{Z}$ is chosen so that t and $(1-t)$ are units in \mathbb{Z}_{m} and $\mathbb{Z}_{m}^{\times}=\langle t,-1\rangle$. Then, $\rho_{m, t}\left(L B_{n}\right) \cong \mathrm{AGL}_{n-1}\left(\mathbb{Z}_{m}\right)$.

Proof. We proceed by induction on n. For the case, $n=2$ we must show that M and P as above generate $\mathrm{AGL}_{1}\left(\mathbb{Z}_{m}\right)$. By taking the transpose of M and P followed by a change of basis we can transform these into our standard $\mathrm{AGL}_{1}\left(\mathbb{Z}_{m}\right)$ form as: $\sigma=g(-t, t)=\left(\begin{array}{cc}-t & t \\ 0 & 1\end{array}\right), s=g(-1,1)=\left(\begin{array}{cc}-1 & 1 \\ 0 & 1\end{array}\right)$.

Now $g(-t, t) g(-1,1)=g(t, 0)$, and $g(-1,1) g(t, 0) g(-1,1) g(1 / t, 0)=g(1,1-t)$. Since $(1-t)$ is invertible and $g(1, a) g(1, b)=g(1, a+b)$, we obtain all $g(1, a)$. Since one of t or $1-t$ is even, 2 is a unit in \mathbb{Z}_{m}, with multiplicative inverse, say i_{2}. Now, we compute $g\left(1,-i_{2}\right) g(-1,1) g\left(1, i_{2}\right)=g(-1,0)$. Since $\mathbb{Z}_{m}^{\times}=\langle t,-1\rangle$ we obtain all $g(x, 0)$ where $x \in \mathbb{Z}_{m}^{\times}$. Therefore, we have all $g(1, a) g(x, 0)=g(x, a) \in \mathrm{AGL}_{1}\left(\mathbb{Z}_{m}\right)$.

Now we again take the transpose of $\rho_{m, t}\left(\sigma_{i}\right)$ and $\rho_{m, t}\left(s_{i}\right)$ for $1 \leq i \leq n-1$ and then change to the ordered basis: $[(1, \ldots, 1),(0,1, \ldots, 1), \ldots,(0, \ldots, 0,1)]$, so that the generators have the form $g(A, a)$ with $A \in \mathrm{GL}_{n-1}\left(\mathbb{Z}_{m}\right)$ and $a \in\left(\mathbb{Z}_{m}\right)^{n-1}$. By the induction hypothesis, the images of σ_{i}, s_{i} for $1 \leq i \leq n-2$ generate all matrices of the form $g(B, 0)$ where $B \in \mathrm{AGL}_{n-2}\left(\mathbb{Z}_{m}\right)$. That is, we have all $g(g(C, c), 0)$ with $C \in$ $\mathrm{GL}_{n-2}\left(\mathbb{Z}_{m}\right)$ and $c \in\left(\mathbb{Z}_{m}\right)^{n-2}$. With respect to this basis the image of the generator σ_{n-1} has the form $\Sigma_{n-1}(t):=g\left(J, t e_{n-1}\right)$ where $J=\left(\begin{array}{cccc}1 & 0 & \cdots & 0 \\ \vdots & \ddots & \cdots & \vdots \\ 0 & \cdots & 1 & 0 \\ 0 & \cdots & 1 & -t\end{array}\right)$, and the image of the generator s_{i} is obtained by evaluating $\Sigma_{n-1}(t)$ at $t=1$.

We have now reduced to showing that $g(g(C, c), 0)$ together with $\Sigma_{n-1}(t)$ and $\Sigma_{n-1}(1)$ generate all of $\mathrm{AGL}_{n-1}\left(\mathbb{Z}_{m}\right)$. By Lemma 3.7 it suffices to obtain $g\left(I, e_{n-1}\right)$ as well as all $g\left(E_{i, j}(1), 0\right)$ for $1 \leq i, j \leq n-1$ and $g(D(\alpha, 1), 0)$ for all $\alpha \in \mathbb{Z}_{m}^{\times}$. Since $C \in \mathrm{GL}_{n-2}\left(\mathbb{Z}_{m}\right)$ and $c \in\left(\mathbb{Z}_{m}\right)^{n-2}$ can be chosen arbitrarily, we immediately obtain all $g(D(\alpha, 1), 0)$ as well as the $g\left(E_{i, j}(1), 0\right)$ for $i \leq n-2$ and $1 \leq j \leq n-1$.

Let e_{n-1} denote the standard basis vector in $\left(\mathbb{Z}_{m}\right)^{n-1}$ and set

$$
T(t):=\Sigma_{n-1}(t) \Sigma_{n-1}(1) \Sigma_{n-1}(t)^{-1} \Sigma_{n-1}(1)=I+(1-t)\left(\Delta_{n-1, n-2}-\Delta_{n-1, n}\right)
$$

We compute $T(t)^{k}=I+k(1-t)\left(\Delta_{n-1, n-2}-\Delta_{n-1, n}\right)$ and since $(1-t)$ is invertible modulo m we may choose $k=(1-t)^{-1}$ to obtain $T(0)=I+\left(\Delta_{n-1, n-2}-\Delta_{n-1, n}\right)$. Now we compute:

$$
g(D(-1, n-2), 0) T(0) g(D(-1, n-2), 0) T(0)=g\left(I,-2 e_{n-1}\right) .
$$

Since -2 is invertible modulo m, we may appeal to Lemma 3.7 to produce all elements of the form $g(I, b)$, once we obtain the remaining generators of $\mathrm{GL}_{n-1}\left(\mathbb{Z}_{m}\right)$.

Thus, it remains to produce $g\left(E_{n-1, j}(1), 0\right)$ for all $1 \leq j \leq n-2$. For this, we set $X=g\left(\left(I+\sum_{j=1}^{n-2} a_{i} \Delta_{n-3, i}\right) D\left(a_{n-2}, n-2\right), 0\right)$, that is, the $n \times n$ matrix with the
$(n-2)$ th row equal to $\left(a_{1}, \ldots, a_{n-2}, 0,0\right)$ and $X_{i, j}=\delta_{i, j}$ for $i \neq(n-2)$. Notice that X is of the form $g(g(C, 0), 0)$ with $C \in \mathrm{GL}_{n-2}\left(\mathbb{Z}_{m}\right)$, assuming that a_{n-2} is invertible. Setting $Z=X^{-1} \Sigma_{n-1}(1) X \Sigma_{n-1}(1)$ we find that the $(n-1)$ th row of Z has entries $\left(a_{1}, \ldots, a_{n-3}, a_{n-2}-1,1,0\right)$ and $Z_{i, j}=\delta_{i, j}$ for $i \neq(n-1)$. Specializing at appropriate values of a_{i} (e.g. $a_{n-2} \in\{1,2\}, a_{i} \in\{0,1\}$ for $i<n-2$) we obtain all $g\left(E_{n-1, j}(1), 0\right)$ for $1 \leq j \leq n-2$. Thus, by Lemma 3.7 we have completed the induction and the result follows.

Remark 3.9. We conjecture that Prop. 3.8 is sharp.
Clearly $\left\{\operatorname{det}(T): T \in \operatorname{AGL}_{n-1}\left(\mathbb{Z}_{m}\right)\right\}=\mathbb{Z}_{m}^{\times}$. Since $\operatorname{det}(M)=-t$ and $\operatorname{det}(S)=-1$, the image of $\rho_{m, t}\left(L B_{n}\right)$ consists of matrices with determinant $\pm t^{k}$. This shows if $\rho_{t, m}\left(L B_{n}\right) \cong \mathrm{AGL}_{n-1}\left(\mathbb{Z}_{m}\right)$ then $\langle t,-1\rangle=\mathbb{Z}_{m}^{\times}$. In particular, if \mathbb{Z}_{m}^{\times}is not a cyclic group or the direct product of \mathbb{Z}_{2} with a cyclic group \mathbb{Z}_{d} then $\rho_{t, m}\left(L B_{n}\right)$ is a proper subgroup of $\mathrm{AGL}_{n-1}\left(\mathbb{Z}_{m}\right)$. Clearly, t and $(1-t)$ can both be units only if m is odd. In this case, the group $\mathbb{Z}_{m}^{\times} \cong \mathbb{Z}_{d} \times \mathbb{Z}_{2}$ if only if $m=p^{a} q^{b}$ is a product of at most 2 odd primes and $\operatorname{gcd}\left(p^{a}-p^{a-1}, q^{b}-q^{b-1}\right)=2$.
3.2. Relationship with Drinfeld doubles. In [15] it is observed that a BVS (V, c) with corresponding operators g_{1}, \ldots, g_{n} may be realized as a Yetter-Drinfeld module over the group $G=\left\langle g_{1}, \ldots, g_{n}\right\rangle$. When G is finite, these can be identified with objects in $\operatorname{Rep}(D G)$ (regarded as a braided fusion category) where $D G$ is the Drinfeld double of the group G.

As a vector space $D G=G^{\mathbb{C}} \otimes \mathbb{C}[G]$ where $G^{\mathbb{C}}$ is the Hopf algebra of functions on G with basis $\delta_{g}(h)=\delta_{g, h}$ and $\mathbb{C}[G]$ is the (Hopf) group algebra. The Hopf algebra structure on $D G$ is well-known. For an account of the associated braid group representations (and further details) see [13].

The irreducible representations of $D G$ are labeled by pairs (\bar{g}, χ) where \bar{g} is a conjugacy class in G and χ is the character of an irreducible representation of the centralizer of g in $G: C_{G}(g)$. The representation $\rho_{m, t}$ of Theorem 3.5 can be obtained in this way. We now describe this explicitly.

Let m, t be positive integers with $\operatorname{gcd}(m, t)=1$ and $t \neq 1(\bmod m)$. Let ℓ be the order of t modulo m, and $\mathbb{Z}_{m}=\langle r\rangle$ be the cyclic group modulo m with generator r. The $\operatorname{map} \tau(r)=r^{t}$ defines an automorphism of \mathbb{Z}_{m}, which generates a cyclic subgroup \mathbb{Z}_{ℓ} of $\operatorname{Aut}\left(\mathbb{Z}_{m}\right)$. Therefore, we may form the semidirect product $G=\mathbb{Z}_{m} \rtimes \mathbb{Z}_{\ell}$ via

$$
s r s^{-1}=r^{t}
$$

where $\langle s\rangle=\mathbb{Z}_{\ell}$. Let us further assume that $\operatorname{gcd}(m, t-1)=1$. It follows from the relations above that $r^{i} s r^{-i}=r^{i(1-t)} s$ for all i, and the conjugacy class of s is $\left\{r^{i(1-t)} s\right.$: $0 \leq i \leq m-1\}$. For notational convenience, let $q=r^{1-t}$ so that q has order m and the conjugacy class of s is $\left\{q^{i} s: 0 \leq i \leq m-1\right\}$. Then $V=V_{(s, 1)}$ has basis $\left\{q^{i} \mid 0 \leq i \leq\right.$ $m-1\}$, a set of coset representatives of $G / C_{G}(s)$. The action of the R-matrix of $D G \check{R}$
on $V \otimes V$ is (where P denotes the usual transposition):

$$
\begin{aligned}
\check{R}\left(q^{i} \otimes q^{j}\right) & =P R\left(q^{i} \otimes q^{j}\right) \\
& =P\left(\sum_{g \in G} \delta_{g} \otimes g\right)\left(q^{i} \otimes q^{j}\right) \\
& =P\left(q^{i} \otimes q^{i(1-t)} s q^{j}\right) \\
& =P\left(q^{i} \otimes q^{i(1-t)+j t}\right) \\
& =q^{i(1-t)+j t} \otimes q^{i} .
\end{aligned}
$$

Clearly, we may identify \check{R} with the \mathbb{Z}-linear operator on $\mathbb{Z}_{m} \times \mathbb{Z}_{m}$ given by

$$
(i, j) \mapsto((1-t) i+t j, i) .
$$

This is the transpose of the braided vector space described in Theorem 3.5.
4. Finite dimensional quotient algebras. In order to study certain local and finitedimensional representations ρ of $L B_{n}$, such as the BVS representations ρ^{c} described in Section 3 above, we are interested in certain finite-dimensional quotient algebras of the group algebra $\mathbb{C}\left[L B_{n}\right]$, namely the algebras

$$
L_{n}^{\rho}:=\mathbb{C}\left[L B_{n}\right] / \operatorname{ker} \rho
$$

In passing to the group algebra, we linearize. Thus, ker $\rho=\left\{x \in \mathbb{C}\left[L B_{n}\right] \mid \rho(x)=0\right\}$. This should be contrasted with the group representation version: $\operatorname{ker}_{G} \rho=\{g \in$ $\left.L B_{n} \mid \rho(g)=1\right\}$. It can easily happen that $\operatorname{ker}_{G} \rho=\{1\}$ but $\operatorname{ker} \rho \neq\{0\}$. ${ }^{*}$ This raises some questions. (1): What is a good presentation of L_{n}^{ρ} for each n ? Can the kernel be described in closed form for all n ? (2): What are the irreducible representations of L_{n}^{ρ} ?

In this section, we first use an analogy to show why the answers to these questions will be useful. This analogy shows that the study of the quotient algebras L_{n}^{ρ} is of intrinsic interest. Then, we analyse these representations, and answer (2) in certain cases. All will be reasonably self-contained, but further background and references for relevant concepts from the representation theory of Artin's braid group can be found e.g. in $[\mathbf{2 0}, \mathbf{1 8}, \mathbf{2 4}, \mathbf{2 5}, 30]$.
4.1. A braid group quotient analogy. Consider the ordinary braid group \mathcal{B}_{n}. For each $N, V=\mathbb{C}^{N}$ and $q \in \mathbb{C}^{*}$ there is a well-known BVS with $c=c_{N}$, where in the case $N=2$:

$$
c_{2}=q\left(\begin{array}{cccc}
1 & & & \\
& 1-q^{-2} & -q^{-1} & \\
& -q^{-1} & 0 & \\
& & & 1
\end{array}\right) .=\left(\begin{array}{cccc}
q & & & \\
& \left(q-q^{-1}\right) & -1 & \\
& -1 & 0 & \\
& & & q
\end{array}\right) .
$$

We write ρ_{N} for the representation $\rho^{c_{N}}$.

[^1]For $\underline{q}=\left(q_{1}, q_{2}, \ldots\right)$ a tuple in \mathbb{C}^{*} define $\chi_{\underline{q}}=\prod_{i}\left(\sigma_{1}-q_{i}\right) \in \mathbb{C}\left[\mathcal{B}_{n}\right]$. The Hecke algebra is $H_{n}=\mathbb{C}\left[B_{n}\right] / I_{q}$, where I_{q} being the ideal generated by $\chi_{\left(q,-q^{-1}\right)}=\left(\sigma_{1}-q\right)\left(\sigma_{1}+\right.$ $\left.q^{-1}\right) \in \mathbb{C}\left[B_{n}\right]$ for some $q \in \mathbb{C}^{*}$. In the following, we work with a fixed q and often omit the q-dependence from the notation (as done for $H_{n} \equiv H_{n}(q)$). Evidently, ρ_{N} factors through H_{n}, but it is not linearly faithful for all n. The quotients H_{n}^{N} are defined by $H_{n}^{N}=\mathbb{C}\left[\mathcal{B}_{n}\right] / \operatorname{ker} \rho_{N}$.

So what is a good presentation for H_{n}^{N} for given N ? There is an element \mathbf{f} of H_{m} for $m=N+1$ such that

$$
\begin{equation*}
\operatorname{ker} \rho_{N}=H_{n} \mathbf{f} H_{n}, \tag{4.1}
\end{equation*}
$$

for all n (with the kernel understood to be 0 for $n<m$). To construct \mathbf{f} for a given N, recall that for each m there is a nonzero element \mathbf{f}_{m} of H_{m} unique up to scalars such that $\sigma_{i} \mathbf{f}_{m}=\mathbf{f}_{m} \sigma_{i}=\left(-q^{-1}\right) \mathbf{f}_{m}$ for all i. For example, we can take $\mathbf{f}_{2}=U_{1}$ where $U_{i}:=\sigma_{i}-q$ and $\mathbf{f}_{3}=U_{1} U_{2} U_{1}-U_{1}$. We may take $\mathbf{f}=\mathbf{f}_{N+1}$ or any nonzero scalar multiple thereof. That is, there is a single additional relation that characterises H_{n}^{N} as a quotient of H_{n} for all n and q, namely $\mathbf{f}_{N+1}=0$ [25]. Thus, H_{n}^{2} is the Temperley-Lieb algebra and so on.
4.2. On localization. Given an algebra A, let $\Lambda(A)$ be the set of irreducible representations up to isomorphism. Another feature of the braid/Hecke/TemperleyLieb paradigm is localization.

Given an algebra A and idempotent $e \in A$, then $e A e$ is also an algebra (not a subalgebra) and the functors G_{e}, F_{e} :

$$
\begin{equation*}
A-\bmod , \underset{F_{e}}{\stackrel{G_{e}}{\leftrightarrows}} A e-\bmod , \tag{4.2}
\end{equation*}
$$

('globalization' and 'localization', respectively) given on modules by

$$
\begin{gathered}
G_{e} N=A e \otimes_{e A e} N \\
F_{e} M=e M
\end{gathered}
$$

are an adjoint pair. Useful corollaries to this include the following:
(LI) Let L_{i}, L_{j} be distinct simple A-modules, with $e L_{i}$ and $e L_{j}$ nonzero. Then, $e L_{i}, e L_{j}$ are distinct simple $e A e$-modules.
(LII) If L_{i} has composition multiplicity m_{i} in A-module M, and $e L_{i} \neq 0$, then $e L_{i}$ has multiplicity m_{i} in $e A e$-module $e M$:

$$
\begin{equation*}
\left[M: L_{i}\right]=\left[e M: e L_{i}\right] \tag{4.3}
\end{equation*}
$$

(LIII) The set $\Lambda(A)$ of irreducible representations of A (up to isomorphism) is in bijection with the disjoint union of those of $e A e$ and those of $A / A e A$:

$$
\begin{equation*}
\Lambda(A) \cong \Lambda(e A e) \sqcup \Lambda(A / A e A) \tag{4.4}
\end{equation*}
$$

The idea here is very general. Given an algebra A to study, we find an idempotent in it, then study A by studying $e A e$ and $A / A e A$. In general $e A e$ and $A / A e A$ are also
unknown and this subdivision does not help much. But for H_{n}^{N} we have an e such that

$$
\begin{equation*}
e H_{n}^{N} e \cong H_{n-N}^{N} \tag{4.5}
\end{equation*}
$$

so we can consider $e A e$ to be known by an induction on n. The analysis goes as follows.
For H_{n}^{N}, in addition to the property (4.1), there is also an element \mathbf{e} of H_{n}^{N} for some n (in fact $n=N$ and $\mathbf{e}=\mathbf{f}_{N}$) such that the matrix $\rho_{N}(\mathbf{e})$ is rank=1. It follows that

$$
\begin{equation*}
\rho_{N}(\mathbf{e}) \rho\left(H_{N}^{N}\right) \rho_{N}(\mathbf{e}) \subseteq \mathbf{k} \rho_{N}(\mathbf{e}) \tag{4.6}
\end{equation*}
$$

Indeed, we have the following ('localization property'): For all n,

$$
\begin{equation*}
\rho_{N}(\mathbf{e}) \rho_{N}\left(H_{n}^{N}\right) \rho_{N}(\mathbf{e})=\underbrace{\rho_{N}(\mathbf{e})}_{\text {on } V^{N}} \otimes \underbrace{\rho_{N}\left(H_{n-N}^{N}\right)}_{\text {on } V^{n-N}}, \tag{4.7}
\end{equation*}
$$

(cf. (4.5)).
We have from (4.7) that $\mathbf{e} H_{n}^{N} \mathbf{e} \cong H_{n-N}^{N}$ and, since $\mathbf{e}=\mathbf{f}_{N}$, that $H_{n}^{N} / H_{n}^{N} \mathbf{e} H_{n}^{N} \cong$ H_{n}^{N-1}. So, by (4.4) the irreducible representations of H_{n}^{N} can be determined by an iteration on $n($ and $N)$.

It is sometimes possible to lift this to the loop-braid case. How might the braid group paradigm generalize? Of course every finite-dimensional quotient of the group algebra of the braid group \mathcal{B}_{n} has a local relation - a polynomial relation $\chi_{\underline{q}}=0$ obeyed by each braid generator. Thus we can start, organisationally, by fixing such a relation. If this relation is quadratic then the quotient algebra is finite dimensional for all n, in particular it is the Hecke algebra. If the local relation is cubic or higher order then this quotient alone is not enough to make the quotient algebra finite-dimensional for all n [9] (and also not enough to realise the localisation property, as in Section 4.2).

Below, we study group-type representations of $L B_{n}$ in this context.
4.3. Some more preparations: the BMW algebra. We define the BMW algebra over \mathbb{C} as follows. For $n \in \mathbb{N}$ and $r, q \in \mathbb{C}^{*}$ with $q^{2} \neq 1, \mathbb{C}$-algebra $\mathcal{C}_{n}(r, q)$ is generated by $b_{1}, b_{2}, \ldots, b_{n-1}$ and inverses obeying the braid relations

$$
\begin{equation*}
b_{i} b_{i+1} b_{i}=b_{i+1} b_{i} b_{i+1}, \quad b_{i} b_{j}=b_{j} b_{i} \quad(|i-j|>1) \tag{4.8}
\end{equation*}
$$

and, defining

$$
\begin{equation*}
u_{i}=1-\frac{b_{i}-b_{i}^{-1}}{q-q^{-1}}=\frac{b_{i}^{-1}}{q^{-1}-q}\left(b_{i}-q\right)\left(b_{i}+q^{-1}\right) \tag{4.9}
\end{equation*}
$$

obeying the additional relations

$$
\begin{gather*}
u_{i} b_{i}=r^{-1} u_{i} \tag{4.10}\\
u_{i} b_{i-1}^{ \pm 1} u_{i}=r^{ \pm 1} u_{i} . \tag{4.11}
\end{gather*}
$$

Relation (4.10) is equivalent to a 'cubic local relation'

$$
\begin{equation*}
\left(b_{i}-r^{-1}\right)\left(b_{i}-q\right)\left(b_{i}+q^{-1}\right)=0 . \tag{4.12}
\end{equation*}
$$

Relation (4.10) also implies

$$
u_{i}^{2}=\left(1+\frac{r-r^{-1}}{q-q^{-1}}\right) u_{i}
$$

Relation (4.11) implies

$$
u_{i} u_{i \pm 1} u_{i}=u_{i} .
$$

Of course we also have from (4.8):

$$
u_{i} u_{j}=u_{j} u_{i} \quad(|i-j|>1) .
$$

Indeed the u_{i} 's generate a Temperley-Lieb subalgebra of $\mathcal{C}_{n}(r, q)$. This subalgebra realizes a different quotient of the braid group algebra: the images of the braid generators are $a_{i}=1-q^{\prime}(q, r) u_{i}$, where q^{\prime} is defined by $q^{\prime}+q^{\prime-1}=1+\frac{r-r^{-1}}{q-q^{-1}}$ with a quadratic local relation, and with the two eigenvalues depending on q and r.

For us the interesting case of $\mathcal{C}(r, q)$ is $r=q$, where the braid generators of the TL subalgebra obey the symmetric group relations. In this case, then, we have images of both the braid group and the symmetric group in $\mathcal{C}_{n}(q, q)$, as for $L B_{n}$. Indeed, we have the following.

Lemma 4.1. There is a map $\psi: L B_{n} \rightarrow \mathcal{C}_{n}(q, q)$ given by $\sigma_{i} \mapsto b_{i}, s_{i} \mapsto a_{i}=1-u_{i}$.
Proof. With $r=q$ we have $u_{i}^{2}=2 u_{i}$ and $q^{\prime}=1$ so $a_{i}=1-u_{i}$ and $a_{i}^{2}=1$ as already noted. Relations (L1,L2) can be directly checked.
4.4. The representations τ_{N} of $L B_{n}$. For each N, and $x \in \mathbb{C}$, there is a well-known local representation τ_{N}^{x} of $\mathbb{C}\left[\mathcal{B}_{n}\right] / I_{x, 1,-1}$, with $I_{x, 1,-1}$ as defined in section 4.1 (trivially rescalable, setting $x=q^{2}$, to a representation τ_{N} of $\mathbb{C}\left[\mathcal{B}_{n}\right] / I_{q, q^{-1},-q^{-1}}$; and that in case $N=2$ is also a representation of $\left.\mathcal{C}_{n}(q, q)\right)$. One takes the diagonal BVS with
$g_{1}=\left(\begin{array}{cccc}x & 0 & & \\ 0 & 1 & & \\ 0 & 0 & \ddots & \\ 0 & 0 & 0 & 1\end{array}\right) ., g_{2}=\left(\begin{array}{cccc}1 & 0 & & \\ 0 & x & & \\ 0 & 0 & \ddots & \\ 0 & 0 & 0 & 1\end{array}\right) ., \ldots, g_{N}=\left(\begin{array}{cccc}1 & 0 & & \\ 0 & 1 & & \\ 0 & 0 & \ddots & \\ 0 & 0 & 0 & x\end{array}\right)$.
We abbreviate the basis element $e_{i_{1}} \otimes e_{i_{2}} \otimes \ldots \otimes e_{i_{n}}$ of V^{n} as $\left|i_{1} i_{2} \ldots i_{n}\right\rangle$, so that $e_{1} \otimes$ $e_{1} \otimes e_{2}$ becomes |112) and so on. Then,

$$
\sigma_{j}\left|i_{1} i_{2} \ldots i_{n}\right\rangle=\left\{\begin{array}{cl}
x\left|i_{1} i_{2} \ldots i_{n}\right\rangle & i_{j}=i_{j+1} \tag{4.13}\\
\left|i_{1} i_{2} \ldots i_{j+1} i_{j} \ldots i_{n}\right\rangle & \text { otherwise }
\end{array}\right.
$$

Specifically for $N=2$ (with basis elements of V^{2} ordered $\left.|11\rangle,|12\rangle,|21\rangle,|22\rangle\right)$:

$$
\sigma_{i} \stackrel{\tau_{2}^{x}}{\mapsto} I d_{2} \otimes I d_{2} \otimes \ldots \otimes\left(\begin{array}{cccc}
x & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & x
\end{array}\right) . \otimes I d_{2} \otimes \ldots \otimes I d_{2}
$$

Strictly speaking we need to rescale: $g_{1}=\left(\begin{array}{cc}q & 0 \\ 0 & 1 / q\end{array}\right) . ; g_{2}=\left(\begin{array}{cc}1 / q & 0 \\ 0 & q\end{array}\right)$.. So

$$
\sigma_{i} \stackrel{\tau_{2}}{\mapsto} I d_{2} \otimes I d_{2} \otimes \ldots \otimes\left(\begin{array}{cccc}
q & 0 & 0 & 0 \\
0 & 0 & 1 / q & 0 \\
0 & 1 / q & 0 & 0 \\
0 & 0 & 0 & q
\end{array}\right) . \otimes I d_{2} \otimes \ldots \otimes I d_{2}
$$

This gives, for example,

$$
\frac{\sigma_{i}-\sigma_{i}^{-1}}{q-q^{-1}} \stackrel{\tau_{2}}{\lessgtr} I d_{2} \otimes I d_{2} \otimes \ldots \otimes\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \tag{4.14}\\
0 & 0 & -1 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) . \otimes I d_{2} \otimes \ldots \otimes I d_{2}
$$

Let us define quotient \mathbb{C}-algebra

$$
B_{n}^{\tau_{N}}=\mathbb{C}\left[\mathcal{B}_{n}\right] / \operatorname{ker} \tau_{N} .
$$

Proposition 4.2. The algebra $B_{n}^{\tau_{N}}$ is semisimple.
Proof. In case x is real the algebra is evidently generated by hermitian (indeed real symmetric) matrices. In other cases, one can show that the same is true for a different generating set.

Proposition 4.3. The map $s_{i} \mapsto \tau_{N}\left(\frac{\sigma_{i}-\sigma_{i}^{-1}}{q-q^{-1}}\right)$ extends τ_{N} to a representation of $L B_{n}$. That is to say, $B_{n}^{\tau_{N}}$ is a quotient of $\mathbb{C}\left[L B_{n}\right]$.

Proposition 4.4. The case τ_{2} factors through $\mathcal{C}_{n}(q, q)$. That is $b_{i} \mapsto \tau_{2}\left(\sigma_{i}\right)$ gives a representation of $\mathcal{C}_{n}(q, q)$.

Given any realization of \mathcal{B}_{n}, and $q \in \mathbb{C}$, we define u_{i} as in (4.9). (The image $\tau_{2}\left(u_{i}\right)$ obeys the BMW relation (4.11), but $\tau_{N}\left(u_{i}\right)$ for $N>2$ does not.) As noted in (4.3), $s_{i} \mapsto$ $\tau_{N}\left(a_{i}=1-u_{i}\right)$ gives a representation of \mathfrak{S}_{n} for each N. Indeed, the τ_{N} representation of \mathfrak{S}_{n} coincides with the classical case, $q=1$, of the ρ_{N} Hecke algebra representation:

$$
\begin{equation*}
\rho_{N}^{q=1}\left(U_{i}\right)=\tau_{N}\left(u_{i}\right) . \tag{4.15}
\end{equation*}
$$

Thus from Section 4.1, we have $\mathbf{f}_{N}^{1}:=\rho_{N}^{q=1}\left(\mathbf{f}_{N}\right) \in \tau_{N}$.
Given a loop BVS one obvious question is: Do we have an analogue of (4.7) here together with corresponding strong representation theoretic consequences? We are particularly interested in cases that do not factor over $S L B_{n}$. But the question is hard in general and it is instructive to start with a 'toy' such as the class of loop BVSs above.
4.5. Fixed-charge submodules of τ_{N}. One aim is to decompose the representations τ_{N} into irreducible representations. To this end, note that the subspaces of τ_{N} of fixed N-colour-charge (the colour-charge is the composition of n giving for each i in $\{1,2, \ldots, N\}$ the number of i 's in a basis element $\left.\left|i_{1} i_{2} \ldots i_{n}\right\rangle\right)$ are invariant under the $\mathbb{C}\left[L B_{n}\right]$ action.

Lemma 4.5. The \mathfrak{S}_{N} action permuting the standard ordered basis $\left\{e_{1}, e_{2}, \ldots, e_{N}\right\}$ of $V=\mathbb{C}^{N}$ commutes with the $L B_{n}$ action on V^{n}.

We write the action of \mathfrak{S}_{N} on the right. So, if M is an $L B_{n}$-submodule of V^{n} then $M w$ is an isomorphic submodule for any $w \in \mathfrak{S}_{N}$. This \mathfrak{S}_{N} action acts on the set of charges. Thus, we can index charge-submodules (up to isomorphism) by the set $\Lambda_{N, n}$ of integer partitions of n of maximum depth N. This is the same as the charge decomposition of the Hecke algebra representation ρ_{N} (where the submodules are called Young modules). But the further decomposition into irreducibles is not the same as in the Hecke case.

For an explicit example, the basis B_{λ} for the λ subspace in case $\lambda=(2,1)$ is $B_{21}=\{112,121,211\}$. We write Y_{λ} for the charge λ submodule. Thus we have

$$
\begin{equation*}
\tau_{N, n} \cong \bigoplus_{\lambda \in \Lambda_{N, n}} m_{\lambda} Y_{\lambda}, \tag{4.16}
\end{equation*}
$$

where m_{λ} is the multiplicity.
If \mathfrak{S}_{N} or a subgroup G fixes a submodule Y_{λ} then this module is itself a right G-module and an idempotent decomposition of 1 in $\mathbb{C}[G]$ induces a decomposition of Y_{λ}.

For each λ there is a G fixing Y_{λ}, call it G_{λ}, a Young subgroup of \mathfrak{S}_{N} (possibly trivial). As usual an idempotent decomposition of 1 in $\mathbb{C}[G]$ may be characterised by tuples of Young diagrams/integer partitions. For each such label there is also a secondary index running over the dimension of the corresponding irreducible representation of G; but idempotents with the same primary label are isomorphic. If Y_{λ} has a non-trivial such decomposition we will write Y_{λ}^{μ} for the submodule with primary label μ. We call these modules $Y_{\lambda}^{\underline{\mu}}$ harmonic modules. For given λ write Λ_{λ} for the set of primary labels (the index set for irreducible representations $\Delta_{\underline{\mu}}$ of G_{λ}). Thus,

$$
\begin{equation*}
Y_{\lambda}=\bigoplus_{\underline{\mu} \in \Lambda_{\lambda}} \operatorname{dim} \Delta_{\underline{\mu}} Y_{\bar{\lambda}}^{\underline{\mu}} \tag{4.17}
\end{equation*}
$$

Note that the decomposition of Y_{λ} into irreducible modules for the restriction to the 'classical' subalgebra H^{N} generated by the $u_{i} \mathrm{~s}$ (the symmetric group action) is well-known. This gives a lower bound on the size of summands of Y_{λ} as a module for the full algebra.

Lemma 4.6. Actions of subgroup \mathfrak{S}_{n} and \mathcal{B}_{n} on $Y_{\left(1^{n}\right)}$ are identical up to sign.
Comparing the 'classical' decomposition of $Y_{\left(1^{n}\right)}$ above with the idempotent decomposition with $G=\mathfrak{S}_{N}=\mathfrak{S}_{n}$ in this case we see that they are the same.

To apply localization later we will be interested, for each given N, in detecting submodules M of Y_{λ} on which $\mathbf{e}=\mathbf{f}_{N}^{1}$ acts like 0 . We call these e-null, or \mathbf{f}_{N}^{1}-null, submodules. Any such submodule M decomposes also as an \mathfrak{S}_{n}-submodule, and so \mathbf{f}_{N}^{1} would have to act like 0 on each of the submodules in this decomposition. For example, in case $N=2$ only the irreducible \mathfrak{S}_{n}-module $\Delta_{(n)}$ has this property at rank- n. So here there can only be such a submodule M if $\Delta_{(n)}$ is also an $L B_{n}$-submodule of Y_{λ}. A basis element for \mathfrak{S}_{n}-submodule $\Delta_{(n)}$ in Y_{λ} is known. We take

$$
b=\sum_{w \in \mathfrak{S}_{n}} w 111 \ldots 222,
$$

where $111 \ldots 222$ is the initial basis element of Y_{λ} in the lex order. Then, for example $b \stackrel{\lambda=(2,1)}{=} 2(112-121+211)$. Note here that $q \sigma_{1}(112-121+211)=x 112-$ $211+121$, so $\Delta_{(3)}$ is not an $L B_{3}$-submodule unless $x=-1$.

Lemma 4.7. (I) In case $N=2, x \neq-1$, no Y_{λ} has e-null proper submodule except in case $\lambda=(1,1)$, where $Y_{\left(1^{2}\right)}^{\left(1^{2}\right)}$ is \mathbf{f}_{2}^{1}-null.
(II) In case $N=3$ the module $Y_{\left(n-2,1^{2}\right)}^{\left(1^{2}\right)}$ is \mathbf{f}_{3}^{1}-null for $n>3$.

Proof. (I) The example above is indicative, except in case $(1,1)$ where there is no x term.
(II) A basis of $Y_{\left(2,1^{2}\right)}^{\left(1^{2}\right)}$ is $\{1123-1132,1213-1312,1231-1321,2113-3112,2131-$ $3121,2311-3211\}$. One readily checks the \mathbf{f}_{3}^{1} action on this. The other cases are similar.

There is an injective algebra map

$$
B_{n-N}^{\tau_{N}} \xrightarrow{\sim} \mathbf{f}_{N}^{1} \otimes B_{n-N}^{\tau_{N}} \hookrightarrow \mathbf{f}_{N}^{1} B_{n}^{\tau_{N}} \mathbf{f}_{N}^{1}
$$

Thus, any $B_{n}^{\tau_{N}}$-module gives rise to a $B_{n-N}^{\tau_{N}}$ module by first localizing (we will write simply F for the localisation functor $F_{\mathbf{f}_{N}^{\prime}}$ here), then restricting.

Lemma 4.8. There is an isomorphism of $B_{n-N}^{\tau_{N}}$-modules

$$
\mathbf{f}_{N}^{1} Y_{\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{N}\right)} \cong \begin{cases}Y_{\left(\lambda_{1}-1, \lambda_{2}-1, \ldots, \lambda_{N}-1\right)} & \lambda_{N}>0 \\ 0 & \lambda_{N}=0\end{cases}
$$

Proof. For any given N we can write $w \in B_{\lambda}$ as

$$
w=\underbrace{w_{1} w_{2} \ldots w_{N}}_{w_{-}} \underbrace{w_{N+1} w_{N+2} \ldots w_{n}}_{w_{+}}=w_{-} w_{+} .
$$

Then

$$
\mathbf{f}_{N}^{1} w=\mathbf{f}_{N}^{1} w_{-} w_{+}= \begin{cases}0 & \text { unless } w_{-} \text {is a permutation of } 12 \ldots \mathrm{~N} \tag{4.18}\\ 12 \ldots N & w_{+} \\ w_{-} \text {is a perm. of } 12 \ldots \mathrm{~N}\end{cases}
$$

where $\overline{123}=123+213+132+231+312+321$ and so on. That is, $\mathbf{f}_{N}^{1} V^{n} \cong V^{n-N}$ and $\mathbf{f}_{N}^{1} Y_{\lambda} \cong Y_{\lambda-\left(1^{N}\right)}$ as vector spaces, and hence modules.

Lemma 4.9. Let $\lambda \in \Lambda$ and $l=l_{\lambda}$ the number of distinct row-lengths in λ, so that $\underline{\mu}$ in $Y_{\lambda}^{\underline{\underline{\mu}}}$ has l_{λ} distinct components (each μ_{i} a partition). Let $\underline{\mu^{\prime}}$ denote $\underline{\mu}$ with the l-th \bar{c} component omitted. There is an isomorphism of $B_{n-N}^{\tau_{N}}-$ modules

$$
\mathbf{f}_{N}^{1} Y_{\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{N}\right)}^{\mu} \cong \begin{cases}Y_{\left(\lambda_{1}-1, \lambda_{2}-1, \ldots, \lambda_{N}-1\right)}^{\mu} & \lambda_{N}>1 \\ Y_{\left(\lambda_{1}-1, \lambda_{2}-1, \ldots, \lambda_{N}-1\right)}^{\mu^{\prime}} & \lambda_{N}=1,\left(\mu_{l}\right)_{2}=0 \\ 0 & \lambda_{N}=1,\left(\mu_{l}\right)_{2}>0 \\ 0 & \lambda_{N}=0\end{cases}
$$

Proof. The decomposition of Y_{λ} by the right-action of the charge group, commutes with the left-action of \mathbf{f}_{N}^{1}. So, noting Lemma 4.8 , it only remains to verify the $\lambda_{N}=1$ cases. In these cases, the first column of λ is uniquely the longest, of length N. Thus, the colours involved in the last component of $\underline{\mu}$ are symmetrised by \mathbf{f}_{N}^{1}. Any colour
symmetry idempotent acting from the right corresponding to μ_{l} with $\left(\mu_{l}\right)_{2}>0$ involves an antisymmetriser in its construction, and hence annihilates $\mathbf{f}_{N}^{1} Y_{\lambda}$.

Lemma 4.10. For $x \neq-1$ the harmonic modules of $L B_{n}$, i.e. the modules $\left\{Y_{\lambda}^{\underline{\mu}} \mid \lambda \in\right.$ $\left.\Lambda_{n}, \underline{\mu} \in \Lambda_{\lambda}\right\}$, are pairwise non-isomorphic.

Proof. Work by induction on n. Compare $Y=Y_{\lambda}^{\underline{\mu}}, Y^{\prime}=Y_{\lambda^{\prime}}^{\mu^{\prime}}$, say, with $\underline{\mu} \neq \underline{\mu}^{\prime}$. If either $\mathbf{f}_{N}^{1} Y$ or $\mathbf{f}_{N}^{1} Y^{\prime} \neq 0$ for some $N \geq\|\lambda\|:=\lambda_{1}^{t}$ then $Y \not \equiv Y^{\prime}$ by Lemma 4.9 and the inductive assumption. The remaining cases are when one or both of Y, Y^{\prime} are of type-III in Lemma 4.9. These are routine to check.

How can we understand this proliferation of submodules? Analogous results to the above hold for the Hecke quotients H_{n}^{N}. There it is very useful to use a geometrical principle to organise the indexing sets for canonical classes of modules (such as Young modules; or simple modules - except that there it turns out that, roughly speaking, the same index set can be used for these different classes). One way to understand this geometry comes from the theory of weight spaces in algebraic Lie theory. Here, we do not have any such dual picture, but we can naively bring over the same organisational principle. This tells us to consider λ as a vector in \mathbb{R}^{N}, and then to draw the set of $\lambda \mathrm{s}$ in \mathbb{R}^{N-1} by projecting down the $(1,1, \ldots, 1)$ line. One merit of this is that it allows us to draw the entire $N=3$ 'weight space' of Young module indices in the plane.
4.6. Branching rules for harmonic modules. We consider here the natural restriction from $L B_{n}$ to $L B_{n-1}$, and claim Figure 1 gives the branching rules for $N=3$.

Proposition 4.11. The branching rules for Young modules corresponding to the natural restriction from $L B_{n}$ to $L B_{n-1}$ are

$$
\downarrow Y_{\lambda}=\bigoplus_{i} Y_{\lambda-e_{i}},
$$

where the sum is over removable boxes in the Young diagram λ.
Proof. The $l B_{n-1}$ action ignores the last symbol in the colour-word basis for Y_{λ}.
Proposition 4.12. The directed graph in Figure 1 gives the branching rules for harmonic modules for $N=3$, using the geometric realisation.

Proof. First note that well in the interior of the picture the Young and harmonic modules coincide and we can use Prop.4.11. Specifically this gives all cases in the forward cone of the point $(4,2)$.

The remaining cases in the forward cone of $(2,1)$ may be verified by using Propositions (4.17) and (4.11).

For the remaining 'boundary' cases we split up into cases in the following subsets: (i) the $(1,0)$-ray of point $(3,1)$; (ii) the $(1,0)$-ray of point $(2,0)$; (iii) the $(1,1)$-ray of point $(3,2)$; (iv) the $(1,1)$-ray of point $(2,2)$; (v) the point $(2,1)$; (vi) the point $(1,0)$; (vii) the point $(1,1)$; (viii) the point $(0,0)$.

We indicate the proof with two representative examples. Case (ii): In the fibre over $(2,0)$ we have

$$
\downarrow Y_{(6,4,4)}^{(2)}=Y_{(6,4,3)} \oplus Y_{(5,4,4)}^{(2)},
$$

Figure 1. Branching rules for harmonic modules for $N=3$. All 'parallel' edges are directed in the same direction.
by using 4.11 and commutativity of (left) restriction with the (right) idempotent decomposition.
Case (vi): In the fibre over $(1,0)$ we have

$$
\downarrow Y_{(2,1,1)}^{((1))(2))}=Y_{(2,1)} \oplus Y_{\left(1^{3}\right)}^{((3))} \oplus Y_{\left(1^{3}\right)}^{((2,1))} .
$$

Here, the basis is

$$
1123+1132,1213+1312,1231+1321,2113+3112,2131+3121,2311+3211
$$

Since the restriction is defined by disregarding the last symbol in the color-world basis it is clear that on restriction the 1st, 2nd and 4th give a basis of $Y_{(2,1)}$, while the remainder injects into $Y_{\left(1^{3}\right)}$, and indeed into $Y_{\left(1^{3}\right)}\left(1+s_{2}\right)$.

ThEOREM 4.13. In cases $N=2,3, x \neq-1$, the harmonic modules are irreducible.
Proof. We work by induction on n. Consider a harmonic module Y at level n. By Propositions 4.12, 4.10 and the inductive assumption restriction to $n-1$ is multiplicityfree. So it is enough to show that there is a basis element b in a good basis with respect to this restriction (a basis that decomposes into bases for the summands of the restriction) such that $Y=B_{n}^{\tau_{N}} b$.

In case, Y is also a Young module it is easy to see that $Y=B_{n}^{\tau_{N}} b$ for any standard basis element; and that the standard basis is a good basis for the restriction to Young
modules; and that at least one of these is a summand of the restriction to harmonic modules.

In case Y is not a Young module (i.e. on the boundary) the modification is routine and we content ourselves here with some representative examples:
(1) Recall the restriction Res $Y_{(2,1,1)}^{(2)}=Y_{(1,1,1)}^{(3)} \oplus Y_{(1,1,1)}^{(2,1)} \oplus Y_{(2,1)}$. An element lying in the last summand is $1213+1312$. Acting with σ_{3} on this we get $1231+1321$. It is easy to see that this generates the whole module.
(2) Recall the restriction Res $Y_{(2,2,1)}^{(2)}=Y_{(2,1,1)}^{(2)} \oplus Y_{(2,1,1)}^{\left(1^{2}\right)} \oplus Y_{(2,2)}^{(2)}$. An element lying in the last summand is $11223+22113$. Acting with σ_{4} on this we get $11232+22131$. It is easy to see that this generates the whole module.
(3) We have

$$
\operatorname{Res} Y_{(4,2,2)}^{(2)}=Y_{(4,2,1)} \oplus Y_{(3,2,2)}^{(2)}
$$

A good basis is $\{11112233+11113322,11112323+11113232, \ldots, 11123213+$ $11132312, \ldots, 32211113+23311112, \ldots\}$, where all the explicitly written elements lie in the basis for $Y_{(4,2,1)}$ in the restriction (the first word ends in 3). Now, apply σ_{7} : $\sigma_{7}(11123213+11132312)=11123231+11132321$, which lies in $Y_{(3,2,2)}^{(2)}$.

Categorical versions of the structure for $N=2$ and $N=3$ also can be worked out explicitly. (But in light of Proposition 4.2 these are not as powerful a tool here as in the corresponding Hecke cases.) We will leave them for future publication.

We make the obvious conjecture for the generalisation to higher N : that the harmonic modules are again a complete set of irreducibles.

Acknowledgements. Zoltán Kádár is supported by EPSRC grant EP/I038683/1. Paul Martin is partially supported by EPSRC grant EP/I038683/1, and would like to thank James Griffin for useful conversations. Eric Rowell is partially supported by NSF grant DMS-1108725. Zhenghan Wang, partially supported by NSF DMS 1108736, would like to thank the School of Mathematics and Department of Physics at University of Leeds for their hospitality during his visit, where this project began.

REFERENCES

1. N. Andruskiewitsch and H.-J. Schneider, Pointed Hopf algebras. New directions in Hopf algebras, 1-68, Math. Sci. Res. Inst. Publ., 43 (Cambridge University Press, Cambridge, 2002).
2. B. Audoux, P. Bellingeri, J.-B. Meilhan and E. Wagner, Homotopy classification of ribbon tubes and welded string links, J. Math. Phys. 55 (2014), 061702.
3. J. C. Baez, D. K. Wise, A. S. Crans, Exotic statistics for strings in 4D BF theory, $A d v$. Theor. Math. Phys. 11(5) (2007), 707-749.
4. V. G. Bardakov, The structure of a group of conjugating automorphisms, Algebra Logika 42(5) (2003), 515-541, 636; translation in Algebra Logic 42(5) (2003), 287-303.
5. V. G. Bardakov, Linear representations of the group of conjugating automorphisms and the braid groups of some manifolds, (Russian) Sibirsk. Mat. Zh. 46(1) (2005), 17-31; translation in Siberian Math. J. 46(1) (2005), 13-23.

Extending representations of braid groups to the automorphism groups of free groups, J. Knot Theory Ramifications 14(8) (2005), 1087-1098.
6. M. Barkeshli, P. Bonderson, M. Cheng, and Z. Wang, Symmetry, Defects, and Gauging of Topological Phases, ar Xiv preprint ar Xiv:1410.4540 (2014).
7. D. Bar-Natan and Zs. Dancso, Finite type invariants of w-Knotted objects: from Alexander to Kashiwara and Vergne, arXiv preprint arXiv:1309.7155.
8. J. Birman, Braid links and mapping class groups, in Annals of Mathematics Studies, vol. 82 (Princeton, 1975).
9. J. Birman and H. Wenzl, Braids, link polynomials and a new algebra, Trans. Amer. Math. Soc. 313 (1)(1989), 249-273.
10. T. E. Brendle and A. Hatcher, Configuration spaces of rings and wickets, Commentarii Matematici Helvetici 88(1), (2013), 131-162.
11. L. Crane, Louis, D. Yetter, Categorical Construction of 4D Topological Quantum Field Theories, in Quantum Topology (Kauffman, L.H. and Baadhio, R.A., Editors) (World Scientific, Singapore, 1993).
12. D. M. Dahm, A generalisation of braid theory, PhD thesis (Princeton University, 1962).
13. P. Etingof, E. C. Rowell and S. J. Witherspoon, Braid group representations from quantum doubles of finite groups, Pacific J. Math. 234(1) (2008), 33-41.
14. R. Fenn, R. Rimányi and C. Rourke, Some remarks on the braid-permutation group, in Topics in Knot Theory (Erzurum, 1992), 57-68, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 399, Kluwer Acad. Publ., Dordrecht, 1993.
15. C. Galindo and E. C. Rowell, Braid Representations from Unitary Braided Vector Spaces, J. Math. Phys. arXiv:1312.5557.
16. D. L. Goldsmith, The theory of motion groups, Michigan Math. J. 28(1) (1981), 3-17.
17. V. F. R. Jones, Braid groups, Hecke algebras and type II_{1} factors, in Geometric Methods in Operator Algebras (Kyoto, 1983), 242-273, Pitman Res. Notes Math. Ser. 123, Longman Sci. Tech., Harlow, 1986.
18. V. F. R. Jones, Hecke algebra representations of braid groups and link polynomials, Ann. of Math. 126(2) (1987), 335-388.
19. S. Kamada, Braid presentation of virtual knots and welded knots, Osaka J. Math. 44(2) (2007),, 441-458.
20. C. Kassel and V. Turaev, Braid Groups, in Graduate Texts in Mathematics, vol. 247 (Springer, New York, 2008).
21. L. H. Kauffman and S. Lambropoulo, Virtual braids and the L-move, J. Knot Theory Its Ramifications, 15 (2006), 773.
22. X.-S. Lin, The motion group of the unlink and its representations, in Topology and physics : Proceedings of the Nankai International Conference in Memory of Xiao-Song Lin, Tianjin, China, 27-31 July 2007 (Lin, Kevin, Wang, Zhenghan, and Zhang, Weiping, Editors) (World Scientific, Singapore, 2008), 411.
23. J. McCool, On basis-conjugating automorphisms of free groups, Canad. J. Math. 38(6) (1986) 1525-1529.
24. P. Martin, Potts models and related problems in statistical mechanics (World Scientific, Singapore, 1991).
25. P. Martin, On Schur-Weyl duality, A_{n} Hecke algebras and quantum $s l(N)$, Int. J. Mod. Phys. A7 (Suppl.1B) (1992), 645-673.
26. J. Murakami, The Kauffman polynomial of links and representation theory, Osaka J. Math. 24 (4) (1987), 745-758.
27. C. Nayak, S.-H. Simon, A. Stern, M. Freedman, and S. Das Sarma, Non-Abelian anyons and topological quantum computation, Rev. Modern Phys. 80(3) (2008), 1083.
28. D. G. Poole, The stochastic group, Amer. Math. Monthly 102(9) (1995), 798-801.
29. E. Rowell and Z. Wang, Localization of unitary braid group representations, Comm. Math. Phys. 311(3) (2012), 595-615.
30. V. G. Turaev, Quantum Invariants of Knots and Manifolds (de Gruyter, 1994).
31. V. V. Vershinin, On homology of virtual braids and Burau representation, J. Knot Theory Ramifications 10(5) (2001), 795-812. Knots in Hellas-98, Vol. 3 (Delphi).
32. Z. Wang, Topological quantum computation, AMS CBMS-RCSM 112 (2010).
33. Z. Wang, Quantum computing: a quantum group approach, Proceedings of the XXIX International Colloquium on Group-Theoretical Methods in Physics Tianjin, China, 20-26 August 2012. (Bai C., Gazeau J.P., Ge M.L., Editors) (World Scientific, Singapore, 2013), 97108.
34. K. Walker and Z. Wang, (3+1)-TQFTs and topological insulators, Front. Phys. 7(2) (2012), 150-159.

[^0]: ${ }^{\dagger}$ Roughly speaking, a motion of a submanifold N of a smooth manifold M is a path f_{t} in the diffeomorphism group $\operatorname{Diff}(M)$ such that the start and end points are in the subgroup $\operatorname{Diff}(M, N)$ of elements that restrict to elements of $\operatorname{Diff}(N)\left[\mathbf{1 2}, \mathbf{1 6}, \mathbf{2 2}\right.$. When N is n points in \mathbb{R}^{2} the group of motions up to suitable equivalence is a braid group; and when N is the trivial link with n components in \mathbb{R}^{3} we get a loop braid group. See also later.

[^1]: *Note also that while group representations and group algebra representations are closed under tensor products, the linear kernel is not preserved in general.

