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Abstract. With about one fourth of the RRab stars showing the 
Blazhko effect, amplitude modulation on long time scales is a common 
phenomenon in stellar pulsation. The role of nonradial oscillation modes 
is studied here, and it is proposed that the amplitude modulation is a 
result of a dynamical, nonlinear resonance between the observed radial 
mode and a low-degree nonradial mode. In this scenario, a nonradial 
mode is resonantly excited in Blazhko-type RR Lyrae stars. Degree one 
modes are found to have the highest probability of being excited and a 
crucial test of the model would be the observational determination of the 
degree of the proposed nonradial mode. 

1. Resonances and the Blazhko Effect 

The Blazhko effect refers to the pulsation amplitude modulation on long time 
scales observed in about 20% to 30% of the RRab stars and only marginally in 
RRc stars (Kovacs et al. 2000). The long modulation period naturally suggests 
a close resonance as the cause of this phenomenon. A simple beating between 
two radial modes, in the case of the third overtone having twice the frequency 
of the fundamental (see Borkowski 1980), may appear at a first glance as very 
appealing, but cannot be retained for a multitude of reasons. Most compelling 
probably is the fact that the third overtone is simply not linearly excited, a 
necessary element in a linear beating scenario, but instead is heavily damped. 
Moreover, the closeness of the resonance needed to obtain amplitude modulation 
on time scales much longer than the period of the oscillation itself necessitates 
using a dynamical nonlinear approach for the interaction between the two res
onant modes (see Buchler, Goupil, & Hansen (1997) for nonlinear effects when 
resonances occur among stellar pulsation modes). Interesting to note is that as 
early as 1936, Kluyver already started the development of a nonlinear model up 
to the second order, in an adiabatic approximation, to study the Blazhko effect. 

A most revealing approach to study the nonlinear interaction of modes is 
the amplitude equation formalism, in which the full set of partial differential 
equations of hydrodynamics and radiative transport is reduced to a few ordi
nary differential equations for the long-term behaviour of the amplitudes of the 
dominant modes. We refer the reader to the excellent review by Buchler (1993) 
for a thorough description of the method. The main assumptions are that non-
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linearity, as well as nonadiabaticity are weak; these are fulfilled for the pulsations 
of RR Lyrae stars. In general, amplitude equations can then be expressed as 

— = (iwjt + nk)ak + fk(aj), (1) 

where ak{t) is the time-dependent amplitude of mode k, and ujk and Kk are the 
real oscillatory eigenfrequency and linear growth rate of mode k, respectively. 
The nonlinear term fk(a,j) consists of products of amplitudes, and its explicit 
form is determined by the linear spectrum, especially by the occurrence of reso
nances. In the amplitudes ak(t), the fast oscillatory behaviour can be separated 
from the time behaviour on longer time scales: 

ofc(t) = Ak(t)S
u*t++''M (2) 

and the amplitude equations can be expressed as ordinary differential equations 
for the behaviour of the real amplitudes Ak and phases <f>k on longer time scales. 

By means of amplitude equations, we investigate here the consequences of 
a resonance between the observed radial mode of RR Lyrae stars (fundamental 
or first overtone) and an as yet undetermined other mode. The idea we have 
in mind is that the solution of the amplitude equations which represents the 
steady pulsation in the observed radial mode (called the radial mode fixed point) 
becomes unstable due to the resonant interaction with another mode. This 
instability involves the resonant excitation of the other mode and in the most 
simple solution both modes have a fixed amplitude: a so-called double-mode 
solution in the two resonant modes results. No Blazhko-type behaviour can 
occur then, except when the other mode is of low degree and not symmetric 
about the rotation axis. In that case, amplitude variations can possibly be 
observed as a result of a changing aspect angle with rotational phase, and the 
modulation period is exactly equal to the rotation period. The frequencies of the 
two modes are expected to be phase-locked, in the sense that they exactly fulfil 
the resonance condition (see Buchler et al. 1997), such that only one pulsational 
frequency (and its multiples) is present in the frequency spectrum. 

Another solution which is quite common when resonances occur is a limit 
cycle (see Buchler et al. 1997): a solution in which the amplitudes Ak and 
phases <pk are periodically varying. This solution can be considered as the nat
ural representation of the observed variations in Blazhko RR Lyrae stars. It 
also leads to the observed multiplet structure in the frequency spectrum: Basic 
trigonometry shows that if, for example, the amplitude Ak of the radial mode 
is assumed to vary around a mean amplitude AQ with amphtude Am, the signal 
[A0 + Am cos{u!Bt)] cos(ujkt + (j>) (see Eq. 2), where cok is the oscillation fre
quency and U>B the Blazhko or modulation frequency, consists of the frequencies 
u>k, Lok — WB and tok + U>B • The period of the modulation is determined by the 
nonlinear interaction and is not related to the rotation period. Other and more 
complicated solutions of the amplitude equations also exist. 

As RR Lyrae stars are classical radial pulsators, it is obvious to consider 
first a resonance between two radial modes of the type 

ncop ss UIQ , (3) 

https://doi.org/10.1017/S0252921100057936 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100057936


The Resonant Mode Interaction Model for the Blazhko Effect 309 

-3.0 

-4.0 

| -5.0 

-6.0 

-7.0 

13.0 15.0 17.0 19.0 21.0 23.0 25.0 27.0 

uteT1] 

Figure 1. Inertia and stability of low-degree modes in the frequency 
range of the first three radial modes. 

where wp is the frequency of the observed mode (fundamental or first overtone) 
and wo is the frequency of an overtone. Moskalik (1986) studied such a reso
nance, in particular 2wp « wo between the fundamental and the third overtone. 
It is now, however, believed that the appropriate resonances do not occur in the 
RR Lyrae instability strip (Kovacs 1995), and, moreover, these overtones are 
so heavily damped that it is highly unlikely that they could disturb the steady 
pulsation in the observed radial mode. Therefore, nonradial modes must be 
involved. As shown by Buchler et al. (1997), nonradial modes cannot be res
onantly excited when n > 1 in the resonance condition, and so only the direct 
1:1 resonance u>p « U>NR will be studied further. 

2. Nonradial Modes in RR Lyrae Stars 

In evolved stars, such as RR Lyrae stars, low-degree oscillation modes have a dual 
character. They behave as p modes in the outer envelope and as g modes of high 
radial order in the deep interior. The g-mode radial order typically is between 
100 and 200 for degree 1 modes in the frequency range of the lowest radial 
modes. It increases with increasing degree and decreasing frequency according to 
n oc y/£(£ + l)/wn,e- The relative frequency separation between two consecutive 
nonradial modes Aw/w„/ « 1/n and takes on values from 10- 2 to 10 - 3 for 
increasing degrees between 1 and 10. The frequency spectrum for low-degree 
modes is thus much denser than that of the radial modes. This is illustrated in 
Fig. 1, where the moments of inertia I = f p\£\2dV are presented as a function 
of frequency for a typical RR Lyrae model (for more details, see Van Hoolst et 
al. 1998). 

As the eigenfunctions of nonradial modes, in contrast to those of the ra
dial modes, also oscillate in the interior, their moments of inertia are larger 
than those of the radial modes. The moments of inertia have lowest values in 
the neighbourhood of the radial mode frequencies. The variations are due to 
differences in trapping in the outer acoustic cavity. Even for the best-trapped 
low-degree modes, the moment of inertia is still about one order of magnitude 
larger than that of radial modes. 
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Many of the low-degree nonradial modes in the neighbourhood of the radial 
mode frequencies are unstable (Van Hoolst, Dziembowski, & Kawaler 1998). 
Their growth rates are typically one order of magnitude or more smaller than 
those of the radial modes. This can be understood quite easily by noting that 
the growth rate is inversely proportional to the moment of inertia. 

The trapping properties depend on the width of the evanescent zone sep
arating the two propagation zones, which changes with degree. The larger the 
width, the more efficient the trapping can be. It is found that modes of degree 
1 can be well trapped, for degrees 2, 3 and 4 the trapping is much weaker, and 
pronounced minima in the moment of inertia only start to appear again from 
degree 5 on. For these higher-degree modes, the minima are found to be further 
away from the radial mode frequencies. 

A small subset of modes can be studied with no quantitative information 
about the structure of the deep interior. These modes have been called strongly 
trapped unstable (STU) modes by Van Hoolst et al. (1998) and they can have 
linear growth rates and moments of inertia of the order of the radial modes. 
Very strong dissipation in the deep interior is necessary for their existence and 
they are only found for larger degrees (say larger than 5). Osaki (1977) has 
developed a scheme for calculating nonradial modes of highly condensed stars 
assuming that strong dissipation takes place in the deep interior. The same 
Osaki-method is used by Shibahashi & Takata (1995, see also Shibahashi, 2000) 
for calculating degree two nonradial modes of RR Lyrae stars. We note that 
at that degree, we didn't find any of these modes. For the resonant interaction 
model for the Blazhko effect, the STU modes are of no interest since they are 
too far from resonance with the radial modes. 

3. Probability for Instability of the Observed Radial Mode Fixed 
Point 

We consider the dynamical nonlinear interaction between the observed radial 
mode and one of the low-degree nonradial modes with nearly equal frequency, 
and study whether these nonradial modes can be nonlinearly excited due to 
the resonance, or, equivalently, whether the radial mode fixed point (FP) can 
become unstable. The FP is stable if, apart from two trivial conditions, 

RJA4 < Dj + g\ (4) 

(Van Hoolst et al. 1998). Here, R( represents the strength of the nonlinear 
resonant coupling between the two modes, A is the amplitude of the radial 
mode FP, Dt is the nonlinear frequency difference, and ge the nonlinear growth 
rate of the nonradial mode. The coupling Re can be determined from nonlinear 
adiabatic calculations and uses the eigenfunctions and frequencies of the two 
resonant modes. Instability of the radial mode FP is seen to be promoted if the 
resonant coupling is strong and the amplitude of the radial mode FP is large; a 
large nonlinear frequency difference of the modes and a heavy damping of the 
nonradial modes tend to favour the stable FP. We therefore consider only those 
modes that are closest to the exact resonance, and low-degree modes which are 
not heavily damped. 
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Figure 2. Probability for instability of the radial fundamental mode FP. 

Because the frequency spectrum of the nonradial modes is so dense, we 
adopt a statistical approach for the study of the stability. From Condition (4) it 
follows that the radial mode FP is unstable when a nonradial mode exists with 
a frequency in a certain interval in frequency space close to the radial mode 
frequency that has a width 2(RJA4 — g\)x^2. The probability for instability can 
then be expressed as the ratio of this width to the frequency difference between 
two consecutive nonradial modes Aw = ui(<n — u^,n+i. As the nonlinear growth 
rate ge for the lowest-degree modes is found to be much smaller than R(A2 for 
realistic amplitudes, we have 

P { A , l ) ^ A \ (5) 

Probabilities for instability of the fundamental radial mode due to resonant 
interaction with low-degree modes are given in Fig. 2, for the same RR Lyrae 
model as used in Fig. 1. Fundamental mode pulsators, or RRab stars, typically 
have an amplitude A = 6R/R = 0.075 and probabilities are found up to 40%. 
First overtone pulsators, or RRc stars, have a smaller amplitude of about 0.025, 
and therefore the probabilities are found to be smaller, up to 20% (Van Hoolst 
et al. 1998). These probabilities are somewhat higher than the observed inci
dence of the Blazhko effect, certainly for the first overtone pulsators. It should 
be remembered however that instability does not necessarily imply amplitude 
modulation. 

For increasing degrees the frequency separation decreases, but the probabil
ity for instability is generally not found to increase because either the trapping 
is weaker or the frequency distance between the best-trapped modes and the 
radial mode is larger for higher-degree modes, both resulting in a smaller cou
pling R(. The excitation of the degree one mode is therefore expected to be 
the most likely. The observational determination of the degree of the proposed 
nonradial component constitutes a crucial test for models for the Blazhko effect. 
Contrary to the proposed model, the oblique pulsator model of Shibahashi & 
Takata (1995, see also Shibahashi 2000) predicts a degree two component. 

Dziembowski & Cassisi (1999, 2000) have shown that the instability only 
weakly depends on model parameters such as mass, chemical composition and 
evolutionary state. 
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The effects of rotation have been ignored here. For rotating RR Lyrae stars, 
the resonance between pairs of modes with m ^ O and the radial mode should 
also be considered. This situation is analogous to the parametric excitation 
of nonradial modes considered by Dziembowski, Krolikowska, k Kosovitchev 
(1988) for 6 Scuti stars, and its effect is to increase the probability of resonant 
instability. The rotation rate of RR Lyrae stars is unknown at present. Only an 
upper limit could be determined by Peterson, Carney, k Latham (1996), who 
found the rotation to be slow compared to that of blue horizontal branch stars 
(BHB). These authors also looked specifically for line broadening in Blazhko 
stars with short modulation period. None was found to show detectable rotation, 
although rotational line broadening has been detected in BHB stars with rotation 
periods comparable to the Blazhko modulation periods. 
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Discussion 

Robert Buchler: A few years ago we found that the stability of the radial modes 
is non-monotonic and found the 8th or 9th overtone becomes close to neutrally 
stable or unstable. Furthermore, these modes (which we labeled strange modes) 
can be in a 4:1 resonance. This is a promising scenario in the Blazhko effect and 
we are going to check it with hydrodynamic modeling. 
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