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Abstract A turbulent accretion disc generates acoustic noise which, on propagation upward into the 
tenuous upper layers, forms shock waves. These give rise to a corona above the disc, thereby providing 
the possibility to determine observationally the existence (or otherwise) o f turbulence in the disc. 
Models for stationary coronae of this type are calculated on the basis o f a simplified thermodynamic 
cycle in the shocks. 

1. Introduction 

It is generally assumed that in the accretion discs which occur in some binary stars, 
angular momentum is transported outward by turbulent viscosity. The origin of the tur
bulence is somewhat problematic because a Keplerian gaseous disc is axially stable accord
ing to the Rayleigh criterion. Also, viscosity is not absolutely necessary for the transport 
of momentum: it is possible that a standing curved shock in the disc, generated by the 
flow of gas through the non-circular Roche potential, provides a means for making the 
matter spiral inward (Icke, 1976). It is therefore important to have observational evidence 
about the state of motion in the disc. If the turbulence is strong enough to cause consider
able viscosity, it must also generate acoustic noise of fairly large amplitude. When these 
sound waves reach the upper parts of the disc, the low gas density causes them to steepen 
into shock waves which, by their dissipation, give rise to a corona as an observable conse
quence of the turbulence below. 

The amount of acoustic energy radiated per second by a cubic meter of homogeneous 
isotropic turbulence can be shown to be 

Ea=($EtJ?s ( 1 . 1 ) 

(Proudman, 1952), where j3 is a number depending on the velocity correlation, Et is the 
amount of energy dissipated by the turbulence, and M is the average Mach number of the 
turbulence. In the case of a Heisenberg correlation, one obtains 0 = 37.7. The interesting 
feature of Equation (1.1) is that since Et is proportional to the disc luminosity, the ratio 
of the luminosity of the corona over the luminosity of the disc is a constant for a given 
value of Jt. It is this property which ensures that the coronal radiation is not necessarily 
obliterated by the disc when the latter is very bright. The steep dependence on the Mach 
number is a problem, because it makes a priori predictions of the coronal luminosity 
almost impossible. For M > 0 . 2 , EjEt> 0.01, but even at such a low fraction the corona 
should be distinguishable because its radiation will be mostly emitted in a few emission 
lines of highly ionized heavy elements. 

2. A Simplified Acoustic Heat Engine 

When a sound wave travels through an atmosphere in the direction of decreasing density, 
conservation of action causes the wave amplitude to increase. Because the velocity of 
propagation increases with increasing density, such large-amplitude waves steepen and 
form shock waves. Shocks will rapidly dissipate, but the liberated energy cannot be easily 
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removed by radiation, because the cooling efficiency is insufficient due to the low gas 
density. Therefore, heat conduction must become an important means of energy transport, 
and since the conductivity is only sufficient at high temperatures, a corona is formed. This 
mechanism was extensively studied by Kuperus (1965) for application to the solar corona. 
I shall presently assume a turbulent accretion disc to be the source of acoustic energy, and 
largely follow Kuperus' analysis, with the following modifications: 

(a) a slightly different, and less efficient, thermodynamic cycle; 
(b) integration of the equation of hydrostatic equilibrium instead of using a modified 

scale height. 
Take position at a height z above the plane of the disc. Then a steady shock wave train 

will pass, so that the pressure P and the density p of the ambient gas change in the course 
of time t somewhat like a sawtooth. Every wave tooth then generates a thermodynamic 
cycle at its leading edge and immediately behind, thereby heating the gas. Ideally, this 
cycle consists of (1) adiabatic compression, (2) isochoric compression to a point connected 
with the initial (P,p) by the Hugoniot conditions, (3) linear expansion of P and p . In prac
tice, (1) and (2) cannot be expected to occur in that form, and I shall approximate these 
stages by assuming that the gas, upon passage of a shock front, follows a Hugoniot adia
batic up to a point which is determined by the equilibrium conditions of the atmosphere 
(Figure 1). The specific energy liberated in this cycle is obtained by path integration. All 
initial quantities (i.e. those in front of the shock) will have subscript 0 , final quantities 
subscript x . Assume the gas to be ideal, with constant ratio y of specific heats, and mean 
molecular weight JU . Along the lower branch of the cycle one has 

vx l/U 

/ , = - | P D V ~ J P'P~2*f>'> (2 .0 

P'=P/P0, ' 

p ' = p / P o , » (2.2) 

U=pQlpx. t 

Using the Hugoniot conditions across the shock, the Equation (2.1) yields 

# = ( 7 + 0 / ( 7 - 1 ) . (2.4) 

The upper branch of the cycle is formed by a linear dependence of P and p on a formal 
parameter f (i.e. time or vertical distance): 

P = P o + ? ( P i - P o ) . 

Along this branch, one then obtains 

(2.5) 

h " " j ' d K = j ( p . + f ( P , - P . ) ) ' 0 , , - P O ) d f ' 
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p' 

v i 
Fig. 1. Thermodynamic cycles traversed on the passage of a shock wave train. Dots: energy yield. 

h=- 7J—A^-U1 + U{H-\)\ogU}. (2.6) 
PoHU- 1 

The total energy yield is the sum of Jt and I2 plus the energy due to the entropy increase: 

kT0 . iH-U *"%-a->*(j£>)-
PaH-l 

s\HU- 1 ' 
^ 1 --O i RRRR 1 ~ I - (2*7) 

Po 2 

Therefore, the total energy e liberated per unit mass by the cycle of Figure 1 is given by 

_/>o / ( / / + ! ) ( ! - £ / ) , H2-l H-l H-\^H-UA 

Po 
log log 

P o l H(HU-\) H2 "*HU-l 2 "°HU-\ 

+ ( ^ + l ) ( ^ ~ [ + i ) l o g ^ } . (2.8) 

The velocity w behind a shock will be given by a linear relation like Equation (2.5): 
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W = W0+I(WT - w 0 ) . (2.9) 

In the coordinate frame moving with the shock velocity D, this velocity is transformed 
into 

u = w-D. (2.10) 

I assume that there is no net mass transported by the shock wave train. It is possible at 
this point to incorporate a stellar wind into the model by requiring the mass flux to be 
constant with z, and positive. I shall not include this extra free parameter, but instead 
require the average of pw over a cycle to be zero: 

I 

<pw>=P0U0 J ( i + r ( ^ - i ) ) (i + ^ o + f ( ^ - o ) d r = o , 
o 

in which the Hugoniot condition p0u0 =px ux has been used to express the velocity ratio 
as U. Thus one obtains a condition on£): 

D J 2 + W-V) ( 2 U ) 

Due to the conservation of linear momentum, one has 

P0 , HU- 1 

* - * 7 r + r ' ( 2 1 2 ) 

whence Equation (2.11) leads to an expression for the shock velocity: 

D = J^D{U,H), (2.13) 

/H+l l + 4 £ / + £ / 2 

The structure of the atmosphere will be calculated on the assumption that it is quasistatic. 
Therefore, it is necessary that the energy e can be liberated within one shock wave length; 
i.e. the shock thickness X must be smaller than the distance L between successive shock 
fronts. The length L is the product of D and the wave period r (which will be considered 
below). For a fully ionized gas, the mean free path is 

X = aT2 p " 1 m, \ 
m o o t ( 2 - 1 5 ) 

a = 3 .93X10~ 1 8 k g n r 2 / r 2 . I 

(Allen, 1973,p. 50). Estimating that D is approximately equal to the product of the sound 
velocity and the shock Mach number Ji, it follows that \<L leads to the condition 

p > 2 . 3 7 X \{f^T^27'lJ('x kgm" 3 . (2.16) 

Therefore, coronal densities of 10~ 1 4 kgm" 3 and temperatures of 1 0 6 K can be allowed 
for relatively small Mach numbers. Consequently, the atmosphere can be treated quasi-
statically, and the energy e, being generated in the distance X, is smeared out over the 
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distance Z,, giving an efficiency X/L to be multiplied with Equation (2.8). Multiplication 
by p 0 and division by r to obtain the energy yield per unit volume and per unit time then 
gives 

^ s h o c k ^ y ^ p ^ o E(U,ff)/D(U,H) J m - V 1 , (2.17) 

r^,,, ( # + 1 ) 0 - 0 ) , H2-\, H-l H-l, H-U 
E ^ H W - i ) + 1 0 8 W r i + —108 TnTi+ 

+iH+l)(if[^T+*)loga ( 2 1 8 ) 

The working of the heat engine driven by the shock wave train has now been summarized 
by the cycle average E^^ and the propagation velocity D. 

3. The Structure of a Stationary Corona 

The quantities P0, Po> T0, u0 and U describe the structure of the corona. These must be 
linked by five equations. The first two of these have already been introduced, namely the 
equation of state for a perfect gas, and the Hugoniot momentum equation: 

Po = PokT0ln, (3.1) 

P0 2HU-1 
— = " 0 - 7 7 x 7 - • ( 3 - 2 ) 
Po # + 1 

The third equation is the one describing the transfer of energy. Since there is no net mass 
flux, no matter is carried up against the gravitational potential, whence one obtains simply 

d / i d7"\ 
- (pwh + i p w 3 - K — ) = End - E M . (3.3) 

The radiant energy loss E^ is to be considered below. Geometrical dilution effects have 
been ignored for simplicity but could, if necessary, be taken into account. However, this 
refinement would also necessitate a detailed consideration of the sideways propagation of 
the sound waves. In the above, h is the specific enthalpy, and the thermal conductivity K 
is given by 

K = 1 0 - u ^ 2 J m ^ s ^ K " 1 , (3.4) 

(Allen, 1973, p .50) . The wave period r is independent of z: since the corona is driven 
from below, r is a boundary condition at z = 0. The assumption of a single period is neces
sary for the calculation of a stationary corona. The error thus introduced is probably not 
large: any shock wave train is expected to be dominated by the period of its strongest 
shocks, because the velocity of propagation increases with amplitude so that weaker shocks 
are overtaken and obliterated. I assume that the dominant period of the vertical compo
nent of the turbulence in the disc corresponds to the period of oscillation around the z = 0 
plane in the gravitational field of the accreting star: 
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; 3.79 X 10 9 p 2 T2 Jn f 3 s"1 for 7 X 9 . 1 2 X 10 4 K, 

" X2.88X l O ^ p 2 ^ 1 J m ^ s " 1 for 7 > 9 . 1 2 X 10 4 K, 

which is sufficiently precise for the present purpose (see Figure 2). Because the shock 
thickness X is much less than a shock wave length L, the velocity w is but a small perturba
tion when averaged over L\ therefore, I shall assume a quasistatic state with w ^ O . Simi
larly, all thermodynamic quantities are on the average equal to those describing the situa
tion in front of each shock, whence all zero indices will be suppressed from now on. 
Assembling the structure equations for the corona one finds after some manipulation 

!*S-_/£^* + ^ ( 3 i i ) 
dz \kdz dz'T' 1 ' 

to~^VniDWJolog\Mriu') w+iiTdz' ( 3 1 2 ) 

'•*M- <3-5) 

assuming the oscillation amplitude to be small with respect to the distance R of the 
accreting star with mass M. The period is connected with the distance L between shocks 
and the shock velocity D by 

r=L/D. (3.6) 

The fourth equation for the corona is the momentum equation 

IdP dw d4> 
- T - + V V — = - — , (3.7) 
p dz dz dz 

where <£ is the gravitational potential in the disc: 

- - T O - <3-S> 
Finally, the increase in entropy S caused by the shocks must be taken into account. 
From the Hugoniot conditions, the jump AS can be calculated, and with Equation (3.6) 
one obtains 

dz L TD * \ H U - \ ' 

Because S = cv logPp~y, this can be written (using Equations (3 .1 ,2) and (2.13)) 

V id ^ dz 7 7 - 1 dz ' D(U,H) *\HU-\ 1 K } 

All the necessary equations are now at hand. It remains to determine the radiative energy 
loss Erad. I have used the cooling function for an optically thin plasma calculated by 
Pottasch (1965), approximating the numerical values by the analytical form 
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Fig. 2. Dots: cooling function calculated by Pottasch (1965) . Dashes: approximation adopted for 
the integrations. 

With (2.17), (3.8, 10) these form a closed set for the variables p, T and V as a 
function of z. In order to make the equations manageable for numerical integration, I 
shall express temperature in units of 10 4 K, length in units of R which is taken to be 
10 8 m, and density in 10" 1 4 kgm~ 3 . The mass Af of the accreting star is one solar mass 
(1.989 X 10 3 0 kg) and the average molecular weight is 8.36 X 10" 2 8 kg. The length scaling 
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means, that a decrease in the radius R of the basis point in the disc entails a corresponding 
increase in z. 

The Equations (3.11 — 13) were solved numerically by a predictor-corrector method. 
Integration was performed from high z towards low z rather than the other way around, 
for computational stability. Several densities and temperatures at various heights were 
tried as initial conditions, and a good set of results (satisfying condition (2.16)) is shown 
in Figures 3 and 4. The acoustic energy flux density Ea is calculated from Equations (1.1), 
(2.17). At the lowest z point in Figures 3 and 4, the values of Ea are 4.3, 3.8 and 
3.4 Jm~ 3 s"1 for the cases 1, 2 and 3 , respectively. At these points the integration was 
stopped because of the close approach of U to the singular value l/H. Multiplication of 
these Ea by a volume %nR3m3 gives energy fluxes of about 1.8X 1 0 2 5 , 1.6X 10 2 5 and 
1.4 X 10 2 5 J s"1 in the three examples. This could be compared with the disc luminosities 
calculated by Bath et al. (1974), ranging from 5 X 1 0 2 3 J s " 1 for a disc with temperature 
1 0 4 K t o 1 0 2 7 J s " 1 for a 4X 10 s K disc. 

50 Z 8 !00 
Fig. 3. Temperature in the corona, in units of 1 0 4 K, as a function of height, in units of 1 0 8 m. 
Scaling of z upwards with a factor of / means moving to a radius R in the disc scaled down by the 
same factor (e.g. z = 1 corresponds to R = 1 0 8 , z = 10 to R = 1 0 7 etc.). 
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Fig. 4 . Density in units of 1 0 ~ 1 4 k g m " 3 , and shock strength parameter U, for the cases shown in 
Figure 3. 

4. Conclusions 

Turbulent accretion discs generate coronae, and it should be possible to obtain observa
tional evidence as to whether turbulence, and hence turbulent viscosity, plays a role in 
the angular momentum transport necessary for accretion. One should expect to see (under 
favourable circumstances, such as eclipse by a sufficiently dark companion) inner coronae 
in the ultraviolet, and emission lines from outer coronae with excitation temperatures of 
possibly millions kelvin. The detailed spectrum will be difficult to predict 
because of complications with collisional de-excitation and dielectronic recombination. 
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D I S C U S S I O N 

Jones: The idea of strong turbulence in the disc has been brought up several times during this session 
and I would like to make a cautionary remark about this. We have seen from Dr Flannery's results that 
the disc is quite cold and so we are led to think in terms of what is often referred to as 'supersonic 
turbulence'; by this one presumably means random motions with supersonic velocities. By its very 
nature 'supersonic turbulence' is highly dissipative (though not via an eddy cascade process) and I have 
doubts as to whether such a state o f fluid mot ion could be set up and maintained. For one thing, the 
principal result of trying to establish such a state would be to heat up the disc and thereby reduce the 
effective flow Mach number to a value less than unity. It is necessary to exercise care, therefore, in 
constructing models of the disc where turbulence may be present. 

Icke: I agree wholeheartedly. 
Hall: Let me draw your attention to KU Cygni, a binary which seems to show evidence of a corona 

such as you have proposed. 
Icke: I apologize for not being familiar with the observations, but I will certainly look it up. 
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