On some theorems of Tarafdar

S.A. Husain and V.M. Sehgal

In a recent paper (Bull. Austral. Math. Soc. 13 (1975), 241-245), Tarafdar has considered nonexpansive self mappings on a subset X of a locally convex vector space E and proved an extension to E of a theorem of Göhde. The purpose of this paper is to show that the condition $f: X \to X$, in Göhde-Tarafdar's Theorem in the above paper, may be weakened to $f: X \to E$ with $f(\partial X) \subseteq X$. As a consequence, it is further shown that an extension to E of a well-known common fixed point theorem of Belluce and Kirk due to Tarafdar remains true on domains that are not necessarily bounded or quasi-complete.

Introduction

Let X be a subset of a locally convex vector space E. In a recent paper [7], Tarafdar considered nonexpansive mappings $f: X \to X$ and proved extensions of certain results of Göhde [4], Taylor [8], and Belluce and Kirk [2]. The purpose of this paper is to show that the condition $f: X \to X$ in Göhde-Tarafdar's Theorem ([7], Lemma 2.1) may be weakened to $f: X \to E$ with $f(\partial X) \subseteq X$. As a consequence, it is shown that Theorem 2.1, [7], remains true on domains that are not necessarily bounded or quasi-complete.

1.

Throughout this paper, let E be a locally convex, Hausdorff topological vector space, X a nonempty subset of E, and U a neighborhood base of the origin consisting of absolutely convex subsets of E. For each $U \in U$, let p_{II} be the Minkowski's functional of U in

Received 21 April 1976.

E. Note that, since for any finite family $\{U_i : i = 1, 2, ..., n\} \subseteq U$, there is a $V \in U$ with $V \subseteq \bigcap \{U_i : i = 1, 2, ..., n\}$, therefore (see [5]),

(1)
$$p_{U_i} \leq p_V$$
 for each $i = 1, 2, ..., n$.

For $x, y \in E$, let

214

 $(x, y) = \{z \in E : z = \alpha x + (1 - \alpha)y, 0 < \alpha < 1\},\$

and $[x, y) = \{x\} \cup (x, y)$. For any subset A of E, let co(A) denote the convex hull of A, cl(A) the closure of A, and ∂A the boundary of A in E.

A mapping $f: X \to E$ is a *P*-contraction (see [3]) iff for each $p \in P$, there exists a $\alpha_p < 1$ such that $p(f(x)-f(y)) \leq \alpha_p p(x-y)$ for all $x, y \in X$. If this inequality holds with $\alpha_p \equiv 1$ for each $p \in P$, then f is called a *P*-nonexpansive mapping (see [6], [7]). Note that a *P*-contraction or a *P*-nonexpansive mapping is continuous.

The following result is proved in [6] and is used in this paper.

LEMMA 1. Let X be a closed subset of E. If $x \in X$ and $y \notin X$, then there exists a $z \in [x, y) \cap \partial X$; that is $z = (1-\lambda)x + \lambda y \in \partial X$ for some $\lambda \in [0, 1)$.

Now let X be a closed subset of E and $f: X \to E$ be a mapping. An orbit O(x, f) of any $x \in X$ is a sequence $\{x_n : n \in I, x_0 = x\} \subseteq X$ defined inductively as follows: let $x_0 = x$ and for each $n \in I$, if $f(x_n) \in X$, set $x_{n+1} = f(x_n)$ and if $f(x_n) \notin X$, then let x_{n+1} be any element of $[x_n, f(x_n)] \cap \partial X$ (such a x_{n+1} exists by Lemma 1).

It follows from the above definition that for each $n \in I$, there is a $\mathbf{\gamma}_n \in [0, 1]$ such that

(2)
$$x_{n+1} = \gamma_n x_n + (1-\gamma_n) f(x_n)$$

Note that if $f(x_n) \notin X$, then $x_{n+1} \in \partial X$. Therefore, if $f(\partial X) \subseteq X$ then $f(x_n) \notin X$ implies $f(x_{n+1}) \in X$. Also, note that a point may have many

orbits. However, if $f: X \to X$, then for any $x \in X$,

$$O(x, f) = \{f^n(x) : n \in I, f^0(x) = x\}$$

The following lemma simplifies the proof of the next theorem.

LEMMA 2. Let X be a closed subset of E and let $f: X \rightarrow E$ be a mapping such that $f(\partial X) \subseteq X$. If

(a) f is P-nonexpansive mapping then for any $p \in P$ and orbit $O(x, f) \equiv \{x_n : n \in I, x_0 = x\}$ of $x \in X$, then $p(x_n - f(x_n)) \leq p(x - f(x))$ for each $n \in I$, and if

(b) f is a P-contraction,

then for each $p \in P$ and $\varepsilon > 0$, there exists a $x \in X$ such that $p(x-f(x)) < \varepsilon$.

Proof. Let $O(x, f) = \{x_n : n \in I, x_0 = x\}$ be an orbit of $x \in X$ and let $p \in P$. Then by (2),

(3)
$$x_{n+1} - x_n = (1 - \gamma_n) (f(x_n) - x_n)$$
 and $x_{n+1} - f(x_n) = \gamma_n (x_n - f(x_n))$.

Since for each $n \in I$,

$$p(x_{n+1} - f(x_{n+1})) \le p(x_{n+1} - f(x_n)) + p(f(x_n) - f(x_{n+1}))$$
,

therefore, in either case (a) or (b), it follows by (3) that (4) $p(x_{n+1}-f(x_{n+1})) \leq p(x_n-f(x_n)) \leq \ldots \leq p(x_0-f(x_0)) = p(x-f(x))$. This proves (a). To prove (b), it suffices to show that $p(x_n-f(x_n)) \neq 0$. Now, by (4), $\{p(x_n-f(x_n))\}$ is a nonincreasing sequence of nonnegative reals and hence there is $r \geq 0$ such that $p(x_n-f(x_n)) \neq r$. We show that r = 0. Suppose r > 0. Choose an $\varepsilon > 0$ and a $n_0 \in I$ such that $a_p(r+\varepsilon) < r$ and $p(x_n-f(x_n)) < r + \varepsilon$ for all $n \geq n_0$. Now choose a $m \in I$, $m \geq n_0$, such that $x_{m+1} = f(x_m)$. (Let $m = n_0$ if $f(x_{n_0}) \in X$ and if $f(x_{n_0}) \notin X$, let $m = n_0 + 1$. Note $f(x_{n_0}+1) \in X$, see the remark before Lemma 2.) Then for this $m \in I$,

$$r \leq p(x_{m+1}-f(x_{m+1})) \leq \alpha_p p(x_m-f(x_m)) \leq \alpha_p(r+\varepsilon) < r$$

which contradicts that r > 0. Thus $p(x_n - f(x_n)) + 0$.

A subset X of E is called starshaped if there exists a $q \in X$ such that for each $x \in X$ and $\gamma \in [0, 1]$, $\gamma q + (1-\gamma)x \in X$. The element q is called a star center of X.

The following result improves a result of Göhde [4] and also Lemma 2.1 in [7].

THEOREM 1. Let X be a closed, starshaped subset of E and let $f: X \rightarrow E$ be a P-nonexpansive mapping such that $f(\partial X) \subseteq X$. Suppose the set f(X) bounded and f satisfies the condition:

(5) there exists a compact subset $L \subseteq X$ such that for each $x \in X$, there is an orbit O(x, f) with $cl(O(x, f)) \cap L \neq \emptyset$.

Then $\{x \in X : f(x) = x\}$ is a nonempty compact subset of L.

Proof. Let p be a fixed element of P. First, we show that for each $\varepsilon > 0$, there exists an $x \in L$ such that

$$(6) p(x-f(x)) < \varepsilon$$

Let q be a star center of X. Since, by hypothesis, f(X) is a bounded subset of E, therefore there exists an $N \in I$ such that

(7)
$$\frac{1}{N} \sup\{p(q-f(x)) : x \in X\} < \frac{\varepsilon}{4}$$

Define a mapping $g : X \to E$ by

(8)
$$g(x) = \frac{1}{N}q + \left(1 - \frac{1}{N}\right)f(x)$$

Then g is a P-contraction $\left(\alpha_p \equiv 1 - \frac{1}{N} \text{ for each } p \in P\right)$ and since $f(\partial X) \subseteq X$, it follows by (8) that $g(\partial X) \subseteq X$. Thus, by Lemma 2 (b), there is a $y \in X$ satisfying $p\left(y-g(y)\right) \leq \frac{\varepsilon}{4}$ and hence, by (7) and (8),

$$(9) \qquad p\big(y-f(y)\big) \leq p\big(y-g(y)\big) + p\big(g(y)-f(y)\big) \leq \frac{\varepsilon}{4} + \frac{1}{N}p\big(q-f(y)\big) \leq \frac{\varepsilon}{2}.$$

For this $y \in X$, let $O(y, f) = \{y_n : n \in I, y_0 = y\}$ be an orbit of y such that $cl(O(y, f)) \cap L \neq \emptyset$. This implies that there is a $y_n \in O(y, f)$ and an $x \in L$ such that

https://doi.org/10.1017/S0004972700022589 Published online by Cambridge University Press

216

$$(10) p(x-y_n) \leq \frac{\varepsilon}{4} .$$

Since f if P-nonexpansive, it follows, by Lemma 2 (a), (9), and (10), that

$$p(x-f(x)) \leq p(x-y_n) + p(y_n-f(y_n)) + p(f(y_n)-f(x)) \leq \frac{\varepsilon}{2} + p(y-f(y)) < \varepsilon$$

This proves (6). It now follows by (6) that for each $n \in I$, $n \ge 1$, there is an $x_n \in L$ such that

$$(11) p(x_n - f(x_n)) \leq \frac{1}{n} .$$

Since L is compact, there is a subnet $\{x'_n\}$ of the net $\{x_n : n \in I, n \ge 1\}$ and an $x_0 \in L$ such that $\{x'_n\} \to x_0$, and it follows, by (11), that

(12)
$$p(x_0 - f(x_0)) = 0$$

Thus, for each $p \in P$, there exists an $x_p \in L$ such that

(13)
$$p(x_p - f(x_p)) = 0$$
.

Let, for each $p \in P$, $A_p = \{x \in L : p(x-f(x)) = 0\}$ and $F = \{A_p : p \in P\}$. Then, by (12), A_p is a nonempty, closed subset of Lfor each $p \in P$. Further, since for any finite subset $\{p_i : i = 1, 2, ..., n\} \subseteq P$, there exists a $p \in P$ with $p_i \leq p$ for each i (see the first paragraph of Section 1); therefore

$$A_p \subseteq \bigcap \{A_{p_i} : i = 1, 2, ..., n\}$$
.

Since, by (12), $A_p \neq \emptyset$, it follows that the family F has a finite intersection property. Consequently $F = \bigcap\{A_p : p \in P\}$ is a nonempty compact subset of L. Clearly $F \subseteq \{x \in X : f(x) = x\}$. Also, if for some $x \in X$, f(x) = x, then $\operatorname{cl}(O(x, f)) = \{x\}$ and hence, by (5), $x \in L$, and since p(x-f(x)) = 0 for each $p \in P$, it follows that $x \in F$. Thus $F = \{x \in X : f(x) = x\}$.

REMARK. It may be remarked that Theorem 1 extends Lemma 2.1 in [7],

where boundedness of X is crucial in the construction of norm $\|\|_B$ for the proof. Our proof does not require such a construction of the norm and appears simpler even in this more general case.

2.

The purpose of this section is to show that the conditions on X being bounded and quasi-complete in Theorem 2.1 in [7] are unnecessary.

The following lemma, whose proof is given in ([7], Lemma 2.2), is stated here for completeness.

LEMMA 3. Let L be a compact subset of E. If for some $p \in P$, $d_n = \sup\{p(x-y) : x, y \in L\} > 0$.

Then there exists $u \in co(L)$ such that

 $r = \sup\{p(x-u) : x \in L\} < d_p$.

The proof of the following result is similar to the argument in Bakhtin [1].

THEOREM 2. Let X be a nonempty, closed, and convex subset of E and Γ a commutative family of P-nonexpansive self mappings of X satisfying the condition:

(14) there exists a $g \in \Gamma$ and a compact set $L \subseteq X$ such that

(i) g(X) is bounded and

(ii) for each $x \in X$, $cl\{g^n(x) : n \in I\} \cap L \neq \emptyset$.

Then the family Γ has a common fixed point in L.

Proof. Let

 $\begin{array}{l} \mathsf{A} = \{S \subseteq X : S \text{ is nonempty, closed, convex, and } f(S) \subseteq S \text{ for each } f \in \Gamma\} \end{array} \\ \text{Then } X \in \mathsf{A} \end{array} \text{ Define a partial order } \leq \text{ in } \mathsf{A} \text{ by } S_1 \leq S_2 \text{ iff } S_2 \subseteq S_1 \end{array} \\ \text{We show that each chain in } \mathsf{A} \text{ has an upper bound in } \mathsf{A} \text{ . Let} \\ \{S_\alpha : \alpha \in \Delta\} \text{ be a chain in } \mathsf{A} \text{ . Let } A = \bigcap\{S_\alpha : \alpha \in \Delta\} \text{ . We show that} \\ \mathsf{A} \neq \emptyset \text{ . For each } \alpha \in \Delta \text{ , set } L_\alpha = S_\alpha \cap L \text{ . Since } S_\alpha \text{ is closed and} \\ g(S_\alpha) \subseteq S_\alpha \text{ , it follows from (14) (ii) that } L_\alpha \text{ is a nonempty compact} \end{array}$

218

(15)
$$F_{\alpha} = \{x \in S_{\alpha} : g(x) = x\}$$

is a nonempty compact subset of S_{α} . Since $\{F_{\alpha} : \alpha \in \Delta\}$ is a chain of compact subsets of X, therefore $F = \bigcap\{F_{\alpha} : \alpha \in \Delta\} \neq \emptyset$ and $F \subseteq A$. Thus $A \neq \emptyset$. Now it is easy to verify that $A \in A$ and that A is an upper bound of the chain $\{S_{\alpha} : \alpha \in \Delta\}$. Therefore, by Zorn's Lemma, there exists a maximal element $S_{\alpha} \in A$. Let

$$F = \{x \in S_{\Omega} : g(x) = x\}$$

Then, by the similar arguments used above, it follows that F is a nonempty compact subset of S_0 . Further, since for any $f \in \Gamma$ and $x \in F$,

$$f(x) = f(g(x)) = g(f(x))$$

it follows that $f(F) \subseteq F$ for each $f \in \Gamma$. Let

 $B = \{C \subseteq S_0 : C \text{ is nonempty, compact, and } f(C) \subseteq C \text{ for each } f \in \Gamma\} .$

Then $F \in \mathcal{B}$. Define the same partial order in \mathcal{B} as in \mathcal{A} . Then it follows by Zorn's Lemma that there is a maximal element $M \in \mathcal{B}$. Clearly

$$(16) \qquad M \subseteq S_0$$

Also the maximality of M in \mathcal{B} implies that

$$(17) f(M) \equiv M$$

for each $f \in \Gamma$, for if $f_0(M) = M_1 \subseteq M$ for some $f_0 \in \Gamma$, then for each $f \in \Gamma$, $f(M_1) = f(f_0(M_1)) = f_0(f(M_1)) \subseteq f_0(M) \subseteq M_1$, contradicting the maximality of M in B. We show that M consists of a single element. Suppose not. Then, since E is Hausdorff, there exists a $p \in P$ satisfying

(18)
$$d_p = \sup\{p(x-y) : x, y \in M\} > 0$$
,

and hence by Lemma 3, there exists a $u \in co(M)$ such that

220 S.A. Husain and V.M. Sehgal

(19)
$$r = \sup\{p(x-u) : x \in M\} < d_p$$

Since S_0 is convex, therefore, by (15), $u \in S_0$. Let for each $x \in M$,

(20)
$$V(x) = \{z \in E : p(x-z) \le r\}.$$

Then V(x) is a closed and convex subset of E and, by (19), $u \in V(x)$ for each $x \in M$. Set

(21)
$$V = \bigcap \{V(x) : x \in M\} \text{ and } S = S_0 \cap V.$$

Clearly S is a closed and convex subset of X and $u \in S$. We shall show that $f(S) \subseteq S$ for each $f \in \Gamma$. Since $f(S_0) \subseteq S_0$ for each $f \in \Gamma$, it suffices to show that $f(V) \subseteq V$ for each $f \in \Gamma$. Let $z \in V$ and $f \in \Gamma$. Then, by (20),

$$(22) p(x-z) \leq r$$

for each $x \in M$. Now by (17), for each $x \in M$, there is a $y = y(x) \in M$ such that f(y) = x and hence, by (22),

$$p(f(z)-x) = p(f(z)-f(y)) \le p(z-y) \le r ,$$

for each $x \in M$. The last inequality implies that $f(z) \in V(x)$ for each $x \in M$; that is $f(V) \subseteq V$ and consequently $f(S) \subseteq S$ for each $f \in \Gamma$. Thus $S \in A$. However, by (21), $S_0 \leq S$ and since S_0 is maximal in A,

$$(23) S_0 = S {.}$$

Now p being continuous and M compact, there are elements $x, y \in M$ such that $p(x-y) = d_p$. Since $r < d_p$, the last equality implies that $y \notin V(x)$ and hence $y \notin S$. However, since $M \subseteq S_0$, $y \in S_0$. This contradicts (23). Thus $M = \{x\}$ for some $x \in X$. This implies that f(x) = x for each $f \in \Gamma$.

References

- [1] A. Bakhtin, "Existence of common fixed points for commutative sets of nonlinear operators", Functional Anal. Appl. 4 (1970), 76-77.
- [2] L.P. Belluce and W.A. Kirk, "Fixed-point theorems for families of contraction mappings", Pacific J. Math. 18 (1966), 213-217.

- [3] G.L. Cain, Jr. and M.Z. Nashed, "Fixed points and stability for a sum of two operators in locally convex spaces", *Pacific J. Math.* 39 (1971), 581-592.
- [4] Dietrich Göhde, "Über Fixpunkte bei stetigen Selbstabbildugen mit kompakten Iterierten", Math. Nachr. 28 (1964/65), 45-55.
- [5] A.P. Robertson and Wendy Robertson, Topological vector spaces
 (Cambridge Tracts in Mathematics and Mathematical Physics, 53.
 Cambridge University press, Cambridge, 1964; reprinted, 1966).
- [6] C.H. Su, V.M. Sehgal, "Some fixed point theorems for nonexpansive mappings in locally convex spaces", Boll. Un. Mat. Ital. (4) 10 (1974), 598-601.
- [7] E. Tarafdar, "Some fixed-point theorems on locally convex linear topological spaces", Bull. Austral. Math. Soc. 13 (1975), 241-245.
- [8] W.W. Taylor, "Fixed-point theorems for nonexpansive mappings in linear topological spaces", J. Math. Anal. Appl. 40 (1972), 164-173.

Department of Mathematics, University of Wyoming, Laramie, Wyoming, USA.