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On some theorems of Tarafdar

S.A. Husain and V.M. Sehgal

In a recent paper (Bull. Austral. Math. Soe. 13 (1975), 2h1-245),
Tarafdar has considered nonexpansive self mappings on a subset X
of a locally convex vector space E and proved an extension to

E of a theorem of Gohde. The purpose of this paper is to show
that the condition f : X » X, in Gohde-Tarafdar's Theorem in the
above paper, may be weakened to f : X » E with f(3X)< X . As
a consequence, it is further shown that an extension to £ of a
well-known common fixed point theorem of Belluce and Kirk due to
Tarafdar remains true on domains that are not necessarily bounded

or quasi-complete.

Introduction

Let X be a subset of a locally convex vector space E . In a recent
paper [7], Tarafdar considered nonexpansive mappings f : X *» X and proved
extensions of certain results of Gohde [4], Taylor [8], and Belluce and
Kirk [2]. The purpose of this paper is to show that the condition
f : X > X in Gohde-Tarafdar's Theorem ([7], Lemma 2.1) may be weakened to
f:X~>FE with f(3X) € X . As a consequence, it is shown that Theorem
2.1, [7], remains true on domains that are not necessarily bounded or

quasi-complete.

1.

Throughout this paper, let E Dbe a locally convex, Hausdorff
topological vector space, X a nonempty subset of E , and U a
neiéhborhood base of the origin consisting of absolutely convex subsets of

E . For each U € U , let py, de the Minkowski's functional of U in

Received 21 April 1976.
213

https://doi.org/10.1017/50004972700022589 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700022589

214 S.A. Husain and V.M. Sehgal

E . DMNote that, since for any finite family {Ui 1= 1, 2, ..., n} cu,

there is a V € U with Vc ﬂ{l/i :1=1, 2, ..., n} , therefore (see
[(51),
(1) pUiEpV for each 7 =1,2, ..., 7n .

For x,y € E , let
(x, y) = {2 € E: 2 = ax+(1-a)y, 0 < a < 1} ,

and [x, y) = {z} v (x, y) . For any subset A of E , let co(4) denote
the convex hull of A , cl(4) the closure of A , and 34 the boundary
of A in E .

A mapping f : X »E 1is & P-contraction (see [3]) iff for each
p € P, there exists a cxp <1 such that p(flx)-fly)) = upp(x—y) for all

z, Yy € X . If this inequality holds with ap =1 for each p € P, then

f is called a P-nonexpansive mapping (see [6], [7]). Note that a

P-contraction or a P-nonexpansive mapping is continuous.
The following result is proved in [6] and is used in this paper.

LEMMA 1. Let X be a closed subset of E . If x €X and y ¢ X,
then there exists a z € [x, y) N 3X ; that ie &z = (1-A)x + Ay € 3X for
some X € [0, 1) .

Now let X be a closed subset of E and f : X + E be a mapping.

An orbit O(x, f) of any x € X 1is a sequence {xn tnel,z =zlcCX

0

defined inductively as follows: let Ty = x and for each n € I , if

f(xn) €X , set x

] f(xn) and if f(xn] ¢ X , then let = be any

n+l

element of [xn, f(xn)) n 9X (such a x4 exists by Lemma l].

It follows from the above definition that for each n € I , there is a

Y, € [0, 1] such that

)

Note that if f(:rn) f X, then z . €0X . Therefore, if f(3X) CX then

(2). x

w1l - Tnn T (l-Yn)f (=

n

f(:cn) § X implies f(xn+l) € X . Also, note that a point may have many
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orbits. However, if f : X > X , then for any x € X ,

0
o(z, f) = {f(x) : n €I, f(z)=x}
The following lemma simplifies the proof of the next theorem.

LEMMA 2, Let X be a closed subset of E and let f : X ~E be a
mapping such that f(3x) < x . If

(a) f is P-nonexpansive mapping then for any p € P and orbit
O(ac,f)E{xn:nEI,x0=m‘} of x € X, then

p(xn_f(xn) = p(x—f(x)) for each n € I , and if

(b) f is a P-contraction,

then for each p € P and € > 0, there exists a z € X such that
ple-flz)) <e.

Proot. Let O(z, f) = {xn :n €I,z =x} be an orbit of x € X

0
and let p € P . Then by (2),

(3) =z, - = (l-yn] (f(=,) —acn] and z o - flz) = Yn(xn—f(xn]]
Since for each n € I ,

ol Fle,,)) = ple,-F)) + p(Fle)-r(e,,)) >
therefore, in either case (a) or (b), it follows by (3) that
W) play,-fle,)) = pla,flz)) = ... = plarlz) = ple-Fia)
This proves (a). To prove (b), it suffices to show that p(x -f(z,)) + 0 .
Now, by (4), {p(x,-f(z )]} is a nonincreasing sequence of nonnegative
reals and hence there is r = 0 such that p(z -f(z, )] >+ r . We show that
r=0. Suppose r >0 . Choose an € >0 and a n, € I such that

0

0" Now choose a

me€I, m=zny,suchthat x . =f(g) . (et m=n, if f(:cno] €X

ap(r+e) <r and p(z-flz)) <r+e forall nzn

and if f(xn) §X,let m=n_+1. Note ff: € X , see the remark
0

0 xno+l)
before Lemma 2.) Then for this m € I ,

r=ple, . ~flz ) = app(xm-f(zm]) < ap(rﬂ-e) <r,
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which contradicts that r > 0. Thus p(xn—f(xn)) >0.

A subset X of E 1is called starshaped if there exists a ¢q € X
such that for each x € X and vy € [0, 1] , yg + (1-y)x € X . The

element q 1is called a star center of X .

The following result improves a result of Gohde [4] and also Lemma 2.1
in [7].

THEOREM 1. Let X be a closed, starshaped subset of E and let
f+ X+ E be a P-nonexpansive mapping such that f(3X) € X . Suppose the
set f(X) bounded and f satisfies the condition:

(5) there exists a compact subset L € X such that for each x € X ,
there ig an orbit O(zx, f) with c1(0(x, f)) nL # ¢ .

Then {x € X : f(x) = x} <& a nonempty compact subset of L .

Proot, Let P be a fixed element of P . First, we show that for

each € > 0 , there exists an x € L such that

(6) p(x-f(ac)) <eg .,

Let g be a star center of X . Since, by hypothesis, f(X) is a bounded

subset of E , therefore there exists an N € I such that

(1) 2 suplp(¢-f(a) : = € x} < £ .

Define a mapping g : X > E by

(8) glx) =%q + [1 - %]f(x)

Then g is a P-contraction (ap =1 - % for each p € P ) and since

F(3x) € X , it follows by (8) that ¢g(8X) € X . Thus, by Lemma 2 (bJ,

there is a y € X satisfying p(y—g(y)) S—E— and hence, by (7) and (8),

(9)  ply-f@) = ply-g()) + plgy)-r)) =E+3ple-r») =5 -

For this y € X , let Oy, f) = {y :n€I,y0=y} be an orbit of y

n
such that c1(0(y, f)) nL #@ . This implies that there is a
y, € O(y, f) and an z € L such that
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(10) p(x-yn) < % .

Since f if P-nonexpansive, it follows, by Lemma 2 (a), (9), and (10),
that

p(a-f(2) = ple-y,) + ply,~rl,)) *+ p(Fly,)-F®) =5+ pl-f)) < ¢ .

This proves (6). It now follows by (6) that for each n €¢I, n=1,

there is an xn € L such that

() ple,Fle)) <L

Since L is compact, there is a subnet {x;} of the net

{xn :n €I, n=1} and an x, € I such that {xé} >z, , and it follows,
by (11}, that

(12) plzy-flzy)) =0 .

Thus, for each p € P , there exists an 1? € L such that

13 - =0 .

(13) p(z,~f(=)))

Let, for each p € P, Ap ={x €L : p(z-f(x)) = 0} ana

F = {Ap :p € Pt . Then, by (12), Ap is a nonempty, closed subset of L

for each p € P . Further, since for any finite subset

{pi :41=1,2, ..., n} € P, there exists a p € P with p; Sp for each
7 (see the first paragraph of Section 1); therefore

Apgﬂ{Api t1i=1,2, ..., n} .

Since, by (12), Ap # @ , it follows that the family F has a finite

intersection property. Consequently F = ﬂ{Ap :p € P} is a nonempty

compact subset of L . Clearly Fc {z € X : f(x) = xz} . Also, if for
some x € X, flx)==x , then cl(O(x, f)) = {z} and hence, by (5),

x €L , and since p(z—f(x)) =0 for each p € P , it follows that

x €F. Thus F={x €X: flx) =z} .

REMARK. It may be remarked that Theorem 1 extends Lemma 2.1 in [7],
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where boundedness of X is crucial in the construction of norm || ”B for

the proof. Our proof does not require such a construction of the norm and

appears simpler even in this more genersal case.

2.

The purpose of this section is to show that the conditions on X

being bounded and quasi-complete in Theorem 2.1 in [7] are unnecessary.

The following lemma, whose proof is given in ([7], Lemma 2.2), is

stated here for completeness.
LEMMA 3. Let L be a compact subset of E . If for some p € P,

dp = suplp{z~y) : =z, y € L} >0 .

Then there exists u € co(L) such that
r = sup{p(x-u) : © € L} < dp .
The proof of the following result is similar to the argument in
Bakhtin [T11].

THEOREM 2. Let X be a nonempty, closed, and convex subset of E
and T a commutative family of P-nonexpansive self mappings of X
satisfying the condition:
(1) there exists a g € T and a compact set L € X such that

(i) g(X) 4is bounded and

(ii) for each = € X, cl{gx) :n €I} nL #¢.
Then the family T has a common fixed point in L .

Proof. Let
A={ScX.: S is nonempty, closed, convex, and f(S) € S for each f € I'} .
Then X € A . Define a partial order =< in A by Sl = S2 iff 52 _C_Sl .
We show that each chain in A has an upper bound in A . Let
{Sa : o €Al beachainin A. Let 4= ﬂ{Sa : o € A} . We show that

A # @ . For each a € A, set La = Sa nL . Since Sa is closed and

g(Sa) €S, » it follows from (1%) (<Z) that L, is a nonempty compact
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subset of Sa and for any x € Sa s cl{gn(s) :n € I} n La # @ . Since

g(Sa) is bounded, it follows by Theorem 1, that for each a € A ,
= . Y =
(15) Fy={z €5, : gla) = «}

is a nonempty compact subset of Su . Since {Fa o € A} is a chain of
compact subsets of X , therefore F = ﬂ{Fa r o € A} #9 and FC4 .

Thus A # $ . Now it is easy to verify that 4 € A and that A is an

upper bound of the chain {Sa :a € A} . Therefore, by Zorn's Lemma, there

exists a maximal element SO € A. Let

F={x ¢ 5, : glx) = z}
Then, by the similar arguments used above, it follows that F is a
nonempty compact subset of So . Further, since for any f €T and
x €F,

flz) = flg(=)) = g(f(=)) ,
it follows that f(F) € F for each f €T . Let

B={c S'SO : ¢ is nonempty, compact, and f(C) € C for each f € T}

Then F € B . Define the same partial order in B as in A . Then it

follows by Zorn's Lemma that there is a maximal element M € B . Clearly
C

(16) Mcs, .

Also the maximality of M in B implies that

(17) M) =M

for each f € T' |, for if fb(M) = Mi C M for some fo € T , then for each
fer, fln) =rlry@)) = 5y(r)) < £o() < i, , contragicting the

maximality of M in B . We show that M consists of a single element.
Suppose not. Then, since F 1is Hausdorff, there exists a p ¢ P
satisfying

(18) dp = sup{p(x-y) : =, y ¢ M} >0,

and hence by Lemma 3, there exists a u € co(M) such that
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(19) r = sup{p(x-u) : x € M} < dp .

Since SO is convex, therefore, by (15), u € S Let for each x € M ,

0 -
(20) V(z) = {2z € E : p{z-3) = r} .

Then V(x) is a closed and convex subset of E and, by (19), u € V(x)
for each x € M . Set

(21) V=>0{Vx) :xz €M and S=85.nV.

0

Clearly S 1is a closed and convex subset of X and u € S . We shall
show that f(S) €S for each f € I . Since f(so) c S, for each

f €T , it suffices to show that f(V) CV for each f €T . Let z €V
and f € T . Then, by (20),
(22) pla-z) = »r

for each x € M . Now by (17), for each =z € M , there is a y = y{z) ¢ M
such that f(y) = x and hence, by (22),

p(flz)-x) = p(fl2)-f(y)) = pla-y) =7,
for each x € M . The last inequality implies that f(z) € V(x) for each
x € M ; that is f(V) C V and consequently f(S5) €S for each f €T .

Thus S € A . However, by (21}, Sy = S and since S, is maximal in A ,

0
(23) S.=5.

Now p being continuous and ¥ compact, there are elements x, y € M
such that p(x-y) = dp . Since r < dp , the last equality implies that
y t V(x) and hence y ¢ S . However, since Mc5,, y €5, . This
contradicts (23). Thus M = {z} for some x € X . This implies that
flx) =x for each f €T .
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