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On some theorems of Tarafdar

S.A. Husain and V.M. Sehgal

In a recent paper {Bull. Austral. Math. Soc. 13 (1975), 21*1-21+5),

Tarafdar has considered nonexpansive self mappings on a subset X

of a locally convex vector space E and proved an extension to

E of a theorem of Gohde. The purpose of this paper is to show

that the condition / : X •* X , in Gohde-Taraf dar's Theorem in the

above paper, may be weakened to / : X •*• E with /"(9X) c X . As

a consequence, it is further shown that an extension to E of a

well-known common fixed point theorem of Bel luce and Kirk due to

Tarafdar remains true on domains that are not necessarily bounded

or quasi-complete.

Introduction

Let X be a subset of a locally convex vector space E . In a recent

paper [7], Tarafdar considered nonexpansive mappings f : X •*• X and proved

extensions of certain results of Gohde [4], Taylor [S], and Bel luce and

Kirk [2], The purpose of this paper is to show that the condition

/ : X •*• X in Gohde-Taraf dar's Theorem ([71, Lemma 2.1) may be weakened to

f : X ->• E with /(3JT) c X . As a consequence, it is shown that Theorem

2.1, [7], remains true on domains that are not necessarily bounded or

quasi-complete.

1 .

Throughout this paper, let E be a locally convex, Hausdorff

topological vector space, X a nonempty subset of E , and U a

neighborhood base of the origin consisting of absolutely convex subsets of

E . For each U € U , let p be the Minkowski's functional of U in
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2 1 4 S . A . H u s a i n a n d V . M . S e h g a I

E . Note t h a t , since for any f in i te family {[/. : i = 1, 2, . . . , n) c U ,

there is a V € U with V c (\{u. : i = 1, 2, ..., n) , therefore (see

[ 5 ] ) ,

(1) Pjj 5 pv for each i = 1, 2, . . . , n .

tr

For x, y £ E , l e t

(a;, i/) = {s € £• : s = ax+(l-a)y, 0 < a < 1} ,

and [x, y) = {as} u (x, y) . For any subset A of E , l e t co(4) denote

the convex hul l of A , cl(4) the closure of A , and &4 the boundary

of A in E .

A mapping f : X •+ E i s a P-contraction (see [3]) i f f for each

p d V , there exis ts a a < 1 such that p [f(x)-f(y)) 5 av(x-y) for a l l

x, y € X . If t h i s inequali ty holds with a = 1 for each p £ V , then

/ i s called a P-nonexpansive mapping (see 16], [7]) . Note that a

P-contraction or a P-nonexpansive mapping i s continuous.

The following resu l t i s proved in [6] and is used in th is paper.

LEMMA 1. Let X be a closed subset of E . If x € X and y £ X ,

then there exists a z € [x, y) n 5X j that is z = (l-X)x + \y 6 dx for

some X € [0, 1) .

Now l e t X be a closed subset of E and f : X •*• E be a mapping.

An orbi t 0(x, f) of any x € X i s a sequence {x : n € I, X- = x} c X

defined inductively as follows: l e t x. = x and for each w € J , i f

f{xn) € X , set xn+1 = f{xn) and if f{xj { X , then l e t xn+1 be any

element of [x , f[x ) ) n 3X (such a x e x i s t s by Lemma l ) .

I t fol lows from t h e above d e f i n i t i o n t h a t for each n i l , t h e r e i s a

yn € [0 , 1] such t h a t

Note t h a t i f f[x ) $ X , then x € 2X . Therefore , i f f(dX) c X then

f[x J ^ X impl ies f[x ) € X . Also , no te t h a t a po in t may have many
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orb i t s . However, i f f : X •*• X , then for any x € X ,

OU, / ) = {fix) m i l , f°(x) = x} .

The following lemma simplifies the proof of the next theorem.

LEMMA 2. Let X be a closed subset of E and let f : X -»• E be a

mapping such that /Otf) E * • If

(a) f is V-nonexpansive mapping then for any p € P and orbit

0{x, f) E {x : n i I, x = x) of x € X , then

p[x -f[xn)) 2 p(x-/(x)) for each n € I , and if

(b) f is a V-contraction,

then for each p € P and e > 0 , there exists a x (. X such that

p{x-f{x)) < e .

Proot. Let 0(x, f) = {x : n € I, x = x) be an orbit of x d X

and l e t p i ? . Then by (2) ,

(3) x , - x = (l-Y ] [fix )-x ) and x . - f[x 1 = y fi -f[x )) .n + 1 n K ' n J w *• n> n> n+1 J K n> *nK n J K n "

S i n c e f o r e a c h n i l ,

therefore, in either case (a) or (b), it follows by (3) that

This proves fa). To prove (b) , it suffices to show that p (x -/(x )) -»• 0 .

Now, by (k), {p(x -f[x ))} is a nonincreasing sequence of nonnegative

reals and hence there is r 5 0 such that p(x -f[x )) •*• r . We show that

r = 0 . Suppose r > 0 . Choose an e > 0 and a nQ € I such that

a (r+e) < r and p (x -f[x )) < r + e for all n > n. . Now choose a

mil, m > nQJ such that x?n+1 = /(xj . (Let m = nQ if /(x^ ) € X

and if /(x ) £ X , let m = n + 1 . Note f[x + ) € ̂r , see the remark

before Lemma 2.) Then for this mil,
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2 1 6 S . A . H u s a i n a n d V . M . S e h g a l

which contradicts that r > 0 . Thus p[x -f[x )) -»• 0 .

A subset X of E is called starshaped if there exists a q € X

such that for each x 6 X and y € [0, 1] , yq + (l-v)a: € X . The

element q is called a star center of X .

The following result improves a result of Gohde [4] and also Lemma 2.1

in [7].

THEOREM 1. Let X be a closed, starshaped subset of E and let

f : X •+ E be a V-nonexpansive mapping such that f{ dX) c x . Suppose the

set f(X) bounded and f satisfies the condition:

(5) there exists a compact subset L c x such that for each x (. X >

there is an orbit 0(x, f) with cl(0(x, /)) n L t 0 .

Then {x £ X : f(x) = x} is a nonempty compact subset of L .

Proof. Let p be a fixed element of P . First, we show that for

each E > 0 , there exists an x € L such that

(6) p[x-f(x)) < £ .

Let q be a star center of X . Since, by hypothesis, f(X) is a bounded

subset of E , therefore there exists an N € I such that

(7) isup{p(q-/(x)) : X € X) < J .

Define a mapping g : X -*• E by

(8) g(x) = | ,

Then g is a P-contraction [a E 1 - — for each P $• ? ) and since

f{ZX) c X , it follows by (8) that ^O*) c X . Thus, by Lemma 2 (b) ,

there is a y (. X satisfying p[y-g{y)) - j~ and hence, by (7) and (8),

(9) pb-fty)) zp{y-g(y)) + p{g(y)-f{y)) = f + | p(q-/(!/)) S § .

For this 1/ € * , le t 0(j/, f) = {yn : n I I, yQ = y) be an orbit of y

such that cl(O(j/, / )) n L # 0 . This implies that there is a

y € O(y, f) and an x € L such that
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Since / i f P-nonexpansive, i t fo l lows , by Lemma 2 (a), ( 9 ) , and ( 1 0 ) ,

t h a t

p[x-flx)) ±p{x-yn) +p{yn-f[yn)) + p{f[hn)-fM) < | + p(y-/(»)) < e .

This proves (6). It now follows by (6) that for each n € J , n 2 1 ,

there is an x £ L such thatn

(11) p[x -f[x )) < - .

Since L is compact, there is a subnet {a;1} of the net

{x : n € I, n 2 l} and an x. € L such that {x1} -»• x , and it follows,

by (11), that

(12) p(xo-/(xQ)) = 0 .

Thus, for each p £ P , there exists an x (. L such that

(13) P{xp-f{*p)) = 0 .

Let, for each p Z V , A = {x € L : p(x-/(x)) = o} and

F = {A : p € P} . Then, by (12), A is a nonempty, closed subset of L

for each pi.?. Further, since for any finite subset

{p. : i = 1, 2, , n] c p , there exists a p € P with p. £ p for each

i (see the first paragraph of Section 1); therefore

A
D E

nK, : i = 1, 2, .-.,«} -

Since, by (12), A f 0 , it follows that the family F has a finite

intersection property. Consequently F = f){A • p ̂  ?} is a nonempty

compact subset of L . Clearly F c {x € X : /(x) = x} . Also, if for

some x Z X , fix) = x , then cl(0(x, /)) = {x} and hence, by (5),

x € L , and since p(x-/(x)) = 0 for each p € P , it follows that

x € F . Thus F = {x € X : /(x) = x} .

REMARK. It may be remarked that Theorem 1 extends Lemma 2.1 in [7],
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where boundedness of X i s crucial in the construction of norm || || for
D

the proof. Our proof does not require such a construction of the norm and

appears simpler even in this more general case.

2.

The purpose of t h i s section i s to show that the conditions on X

being bounded and quasi-complete in Theorem 2.1 in [7] are unnecessary.

The following lemma, whose proof i s given in ( [7 ] , Lemma 2.2) , i s

s ta ted here for completeness.

LEMMA 3 . Let L be a compact subset of E . If for some p £ V ,

d = sup{pU-z/) : x, y € L) > 0 .

Then there exists u € co(L) such that

r = swpip(x-u) : x (. L) < d

The proof of the following result is similar to the argument in

Bakhtin [ / ] .

THEOREM 2. Let X be a nonempty, closed, and convex subset of E

and V a commutative family of V-nonexpansive self mappings of X

satisfying the condition:

(lU) there exists a g € r and a compact set L c x such that

(i) g{X) is bounded and

(ii) for each x £ X , cl{gn(x) : n € j } n L * 0 .

Then the family T has a common fixed point in L .

Proof. Let

A = {S c X •: S is nonempty, closed, convex, and f(S) c S for each f ( F} .

Then X € A . Define a partial order < in A by S. 5 5p iff S. c 5.

We show that each chain in A has an upper bound in A . Let

{5 : a € A} be a chain in A . Let A = D{s : a € A} . We show that

A + $ . For each a € A , set L - S n L . Since S is closed and

g[S ) c S , it follows from (lit) (ii) that L is a nonempty compact
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subset of 5 and for any x £ S , cl{gn(s) : n £ i] n L # 0 . Since

£?(S ) i s bounded, i t follows by Theorem 1, that for each a € A ,

(15) Fa = {x € Sa : ff(a0 = a:}

is a nonempty compact subset of S . Since {F : a € A} is a chain of

compact subsets of X , therefore F = (\{F : a € A} ?* 0 and F c A .

Thus A # 0 . Now it is easy to verify that A € A and that A is an

upper bound of the chain \S : a € A} . Therefore, by Zorn's Lemma, there

exists a maximal element S € A . Let

F = {x € 5 Q : ffU) = a;} .

Then, by the similar arguments used above, it follows that F is a

nonemptj

x I F ,

nonempty compact subset of S . Further, since for any f t T and

/(*) = /(?(*)) = g[fW) ,

it follows that f(F) <=F for each / 6 T . Let

B = {c c S : C is nonempty, compact, and /(C) c C for each / € I"} .

Then F £ B . Define the same partial order in B as in A . Then it

follows by Zorn's Lemma that there is a maximal element M € B . Clearly

(16) W E S
O *

Also the maximality of M in B implies that

(17) f(M) = M

for each f f T , for if fQ(W) = « , E " for some / € T , then for each

f € T , /(AtJ = /(fjtf^) = /jjCf^)) c/o(«) <zMx , contradicting the

maximality of M in B . We show that M consists of a single element.

Suppose not. Then, since E is Hausdorff, there exists a p £ P

satisfying

(18) d = snp{p(x-y) : x, y I M) > 0 ,

and hence by Lemma 3, there exists a u (. co(Af) such that
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(19) r = sup{p(x-w) : x (. M} < d .

Since S is convex, therefore, by (15), u € SQ . Let for each x (. M ,

(20) V(x) = {3 € E : p(x-z) 5 r} .

Then V{x) is a closed and convex subset of E and, by (19), u € V{x)

for each x € M . Set

(21) V = n{K(x) : x e A/} and S = SQ n V .

Clearly S is a closed and convex subset of X and u £ S . We shall

show that f(S) cS for each / € T . Since /(S.) S. SQ
 f o r e a c h

/ € T , it suffices to show that f(V) cv for each f i T . Let a € F

and f £ T . Then, by (20),

(22) p(x-z) 5 r

for each x (. M . Now by (17), for each x £ M , there is a z/ = i/(x) € W

such that f(y) = a; and hence, by (22),

p{fU)-x) = p(f(z)-f(y)) <p(z-y) 5 r ,

for each x £ M . The last inequality implies that f{z) £ V(x) for each

x € M ; that is /(F) CV and consequently /(S) c 5 for each / € F .

Thus 5 € A . However, by (21), SQ S S and since 5. is maximal in A ,

(23) SQ = S .

Now p being continuous and M compact, there are elements x, y € M

such that p(x-y) = d . Since r < d , the last equality implies that

y £ V{x) and hence y ^ S . However, since M<=_SQ , y € S . This

contradicts (23). Thus M = {x} for some x £ X . This implies that

fix) = x for each f £ T .
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