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Varieties of topological groups Il

Sidney A. Morris

This paper is a sequel to one entitled "Varieties of topological
groups". The variety V of topological groups is said to be
full if it contains every group which is algebraically

isomorphic to a group in ¥V . For any Tychonoff space X , the
free group F of ¥ on X exists, is Hausdorff and
disconnected, and has X as a closed subset. Any subgroup of F
vhich is algebraically fully invariant is a closed subset of F .
If X is a compact Hausdorff space, then F 1is normal. Let V
be a full Schreier variety and X a Tychonoff space, then all

finitely generated subgroups of F are free in V .

A B-variety ¥V is one for which the free group of Y on each
compact Hausdorff space exists and is Hausdorff. For any
B-variety ¥ and Tychonoff space X , the free group of ¥
exists, is Hausdorff and has X as a closed subset. A necessary

and sufficient condition for ¥V to be a B-variety is given.

The concept of a projective (topological) group of a variety Yy
is introduced. The projective groups of ¥V are shown to be
precisely the summands of the free groups of V . A finitely
generated Hausdorff projective group of a Schreier variety V is

free in ¥V .

We will use the notation and terminology of [§]. Further by abelian
(Schreier) variety we will mean a variety of topological groups for which

the underlying variety of abstract groups is abelian (Schreier).
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1. Full varieties
DEFINITION. The group F is said to be moderately free on the space
X , and will be denoted by EM(X? , if,
(i) F is a relatively free abstract group with X as a free
generating set,

(ii) the topology of F is the finest group topology (on F)

which will induce the same topology on X .

The first theorem is a generalization of Theorems 4 and 22 of [7] and

Theorem 4.5 of [§].

THEOREM 1.1. ret F(X) e moderately free on the Hausdorff space
X , then FM(X) 18 Hausdorff and has X as a closed subset.

Proof. By p. 32 of [1], X 1is a completely regular space. The main

theorem of [10] then implies that there exists a Hausdorff group topology

on FM(X) which induces the given topology on X and has X as a closed
subset. It then follows immediately from the definition of moderately

free that FM(X) is Hausdorff and has X as a closed subset.

DEFINITION. The variety
G 1is any group such that G ¢

is said to be a full variety if whenever

A
V,then G€YV .

Clearly the varieties of Example 2.4 (a), (b) and (c¢) of [8] are full
varieties. Note that if F is a free group of a full variety on any

space X , then F 1is moderately free on X .

THEOREM 1.2. If Y <8 a full variety, then for any Tychonoff space
X, F(x, V) exists.

Proof. This follows from the main theorem of [10] together with
Theorem 2.6 of [§].

We omit the proof of the next theorem because it is similar to that
of Theorem 4.4 of [§].

THEOREM 1.3. Let FM(X) be modérately free on the space X . If
A is a proper subgroup of Fh(X) such that A 4s algebraically fully

invariant, then FM(X)/A ig moderately free.
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The following lemma is a corollary to the proof of Theorem 3.3 of

[&].

LEMMA 1.4, Let FM(X) be moderately free on the space X and ¥
the intersection of all full varieties containing FM(X) . Then ¥ 1is a
full variety and FM(X) is F(X, V) .

Markov [7] showed that if F is a Hausdorff free group then its
derived group is a closed subset of F . 1In a conversation with the
author, i.D. Macdonald conjectured that subgroups of F which are

algebraically fully invariant are closed subsets of F . Theorem 1.5

shows that this is indeed the case even when F is moderately free.
THEOREM 1.5. Let Fy(X) be moderately free on the Hausdorff space

X . If A 1is a proper subgroup of FM(X) such that A 1is a fully

invariant abstract subgroup, then A 1is a closed subset of FM(X) .

Further FM(X)/A i8 moderately free on X .

Proof. Let f ©be the natural mapping of FM(X) onto FM(X)/A .

Then f maps X one to one onto f(X} = X' . (See Theorem L.h of [§].)

Define a topology T on X" as follows: 0 is open in T if and only

if f’l(O) N X is open in X . By the main result of [10], there exists
a Hausdorf{f group topology T; on FM(X)/A which induces the topology T

on X .

Clearly ?&7?77Z with the topology T, belongs to every full
variety containing FM(X) . Thus by Lemma 1.4 the map f , from FM(X)
onto i;?§772 with the topology T; , is continuous. Therefore the
quotient topology of FM(X)/A is Hausdorff and induces the topology T
on X' . Consequently A 1is a closed subset of FM(X) . Noting that X'
with the topology T is homeomorphic to X , it follows from Theorem 1.3

that FM(X) is moderately free on X .

DEFINITION. Let F be an abstract group with generating set X .
Then a € F 1is said to be of length n with respect to X if =n 1is the
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€] €
least integer N such that a = x; s Ty u , where € = 1 and

xi € X for 7 =1, ..., N . The set of all elements in F of length not

greater than m will be denoted by Fm .

Clearly F; =X u x1 ana F . m>1, is the product in F of m

copies of {X u x 1 Ue), where e is the identity of F .

The following lemma can be proved in a similar manner to Theorems L
and 5 of [2].

LEMMA 1.6. Let F be a Hausdorff group with a compact subspace X
which generates F algebratcally. Further, let the topology of F be
the finest group topology (on F) which induces the same topology on
X . Then the set V is open in F if and only if V n F 18 open in.

the induced topology of Fn for each n=1,2, ... . Further, F 1is a
normal space.

THEOREM 1.7. Let F be moderately free on the compact Hausdorff
space X . Then F 1is a normal space and V <is an open set in F <if

and only if V n F, 1is open in the induced topology of F, for each
n=1, 2,
Proof. This follows immediately from Lemma 1.6 and Theorem 1.l.

THEOREM 1.8. Let F be a Hausdorff group with a compact subspace
X which generates F algebraically. If the topology of F has the
property that V is open in F if and only if V n F, i8 open in F,

for each n =1, 2, ... , then the topology of F <is the finest group
topology (on F) which will induce the same topology on X . In
particular, if F is algebraically relatively free on X , then F 1is

moderately free on X .

Proof. It is readily seen that every Hausdorff group topology on F

which induces the given topology on X induces the same topology on fn s
n=1,2, ... . The theorem then follows from Lemma 1.6.

DEFINITION. Let the set X be a free basis for the relatively free
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abstract group F . The subset Y of F 1is said to be regularly

situated with respect to X if in the subgroup FY , generated

algebraically by Y , it is impossible to find a sequence of elements with
the following properties: the lengths of the elements with respect to Y
exceed all bounds and their lengths with respect to X have & uniform

bound.

Theorem 1.9 generalizes Theorem 10 of [2] and it can be proved

similarly.

THEOREM 1.9. Let ¥ be a full variety, X a compact Hausdorff

space and Y a compact subset of F(X, V) . Then the subgroup Fy

generated algebraically by Y 1s a closed subset of F(X, ¥) and the
topology of Fy 18 the finest group topology (on f&) which induces the

given topology on Y 1<if and only if Y 1is regularly situated with

respect to X .

THEOREM 1.10. Let YV be a full variety, X a Tychonoff space and

Y a compact subset of F(X, ¥) . If Y <is regularly situated with

respect to X , then the subgroup Fy algebraically generated by Y 1is a

closed subset of F(X, ¥) and the topology of F

v 18 the finest group

topology (on f}) which induces the given topology on Y . In

particular if ¥V 1is a Schreier variety [9] and Y 1is a free algebraic

basis of FY s then FY is F(Y, V) .

Proof. Let R(X) be the Stone—Eech compactification of X [5].
Then, by Theorems 1.1 and 1.2, F(B(X), gj exists and is Hausdorff. Let
¢ be the imbedding map of X in RB(X) . Then ¢ is a continuous map of
X inte F(B(X), XJ . Therefore there exists a continuous homomorphism ¢
of F(X, V) into F(B(X), V) such that &|X = ¢ . Clearly ¢ is an
algebraic isomorphism of F(X, V) onto @(F(X, XJ) . Further, &(Y) Iis
regularly situated in F[B(X), XJ and is homeomorphic to Y . Therefore,
by Theorem 1.9, the subgroup F; of F(B(X), ;Q generated algebraically
by &(Y) 1is a closed subset of F(B(X), ¥} and the induced topology of
F; is the finest group topology (on F;) which induces the given

topology on ®(Y) . Thus, since ¢ 1is continuous and ¢-1(F1) = Fy R Fy
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has the required properties. The remainder of the theorem follows

immediately.

THEOREM 1.11. Let X be a Tychonoff space and Y a full variety.
If Y 1is a finite subset of F(X, N) , then the induced topology on the
subgroup H , algebraically generated by Y , is discrete. Also H 1is a
closed subset of F(X, V) . Further, if V¥ is a Schreier variety and Y
is a free basis of F, , then H is F(Y, v .

Proof. Since Y is finite, Y ¢ K , for some subgroup KX of
F(X, ¥) algebraically generated by a finite subset 2 of X . Clearly
Z 1is regularly situated with respect to X and thus by Theorems 1.10 and
1.1, K has the discrete topology. Consequently H , which is a subgroup
of K , has the discrete topology. Then by Theorem 5.10 of [4] and
Theorem 1.1, H 1is a closed subset of F(X, i) . The remaining part of

the theorem is now an immediate consequence.

We point out that Theorem 1.11 appears to be new even in the case

that V is the variety of all (all abelian) groups.

The next theorem is in the spirit of Theorems 1.9, 1.10 and 1.11 and
follows immediately from 87 of [6] together with Theorems 1.1 and 1.2 and

Lemma 1.k.

THEOREM 1.12. Let F\(X) be moderately free on the Hausdorff space
X . If Y is a closed subset of X , then the subgroup generated
algebraically by Y <8 a closed subset of FM(X) .

THEOREM 1.13. If F\(X) is a Hausdorff (non-trivial) moderately
free group then it is disconnected.

Proof. Let
FM(X) . By Lemma

¥V Dbe the intersection of all full varieties containing
1.4, FM(X) is F(Xx, ¥) . Let H be any (non-trivial)
group in ¥V with the discrete topology. Define the mapping ¢ of X

into H by ¢(x) = a for all x in X , where a 1is any element of H
other than the identity. Clearly ¢ 1is continuous and thus there exists

a continuous homomorphism ¢ of [-'M(X) into H such that ®|X = ¢ .

Then Q-l{a} is an open and closed proper subset of FM(X) , and the
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proof is complete.

2. B-Varieties
In analogy with [6] we introduce the following definition.

DEFINITION. The variety V 1is said to be a B-variety if for every

compact Hausdorff space X , F(X, V) exists and is Hausdorff.
THEOREM 2.1. Every full variety is a B-variety.
Proof. This follows immediately from Theorems 1.1 and 1.2.

THEOREM 2.2. If ¥V <s a B-variety, then for any Tychonoff space
X, F(X, V) exists. Further, X is a closed subset of F(X, ¥) and
F(X, ¥) tis Hausdorff.

Proof. Let Y be the Stone-Cech compactification of X . Then
F(Y, ¥) exists and is Hausdorff. Thus X is a subspace of F(Y, V)
which, by Theorem 2.6 of [§], implies F(X, V) exists.

Let ¢ be the imbedding mapping of X in Y . Then ¢ 1is a
continuous map of X into F(Y, V) and therefore there exists a

continuous homomorphism ¢ of F(X, V) into F(Y, V) such that

9|x = ¢ . Since Y 1is a closed subset of F(Y, V) , o Y(y) = x isa
closed subset of F(X, V) . It follows immediately that F(X, V) is
Hausdorff.

We will now give a characterization of PB-varieties and in so doing

give an alternative proof of Theorem 2.2

THEOREM 2.3. Let X be the set of non-negative reals not greater
than one, with the usual topology. Then YV is a B-variety if and only
if F(X, ¥) exists and is Hausdorff.

Proof. Clearly if ¥V is a B-variety then F(X, V) exists and is
Hausdorff. Conversely we will show that if F(X, V) exists and is
Hausdorff then for every Tychonoff space Y , F(Y, V) exists and has Y

as a closed subset.

By Theorem 7, Chapter L, of [5], Y can be imbedded in a cartesian
product of copies of X . Consequently Y can be imbedded in a cartesian
product of copies of F(X, ¥) . Thus by Theorem 2.6 of [§], F(Y, ¥)
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exists.

€1 €
Suppose there is a limit point y, cee Yy " of Y not in Y

2
where Y; €Y and €; is a non-zero integer for each < . Let

by, ..., b, be the distinct y; - Choose distinct elements a;, ..., a

r r
of X . By Theorem 3.6 of [4], there exists a continuous map ¢ of Y

into X such that q;(bi) =a;,, =1, ...,r . Then ¢ isa

continuous map of Y into F(X, V) , which implies that there exists a
continuous homomorphism ¢ of F(Y, V) into F(X, ¥) such that

€1 €, €1 €,
¢|y = ¢ . Thus ¢[y1 e Yy, } =z ...z, , vhere ai, ..., a,

are the distinct z, .

Since ¢ is continuous, ®(Y) € X , and X is closed in F(X, ¥ ,

€ £
€1 n 1

>
we must have z; ...z, = €X . Thus x; ...&Z ne-l o

" ey , where €;

is the identity of F(X, ¥) and t € X . This implies, using Theorem 2.8

€] €

of [8], that for at least one <1 , &) ven X, nxi_l = e . Therefore
€1 En -1 —_—
x coe @, TXy is an algebraic law in F(X, V) . Using Theorem 2.8 of
€] &,
[8] again, we see that ¥y, cer Yy, Yy = e, , where €; 1is the
€ En
identity of F(Y, V) . Thus y; ... y, €Y, which is a

contradiction. Consequently Y is a closed subset of F(Y, V) and

therefore F(Y, V) 1is Hausdorff.

LEMMA 2.4. Let ¥V be an abelian B-variety and X be the closed
interval [a, b] of reals with the usual topology. Then the subgroup A
of F(X, ¥ , algebraically generated by {al} , is a closed subset of
F(x, ¥) .

Proof. Suppose there exists a limit point ¢ of A4 which is not in

A . Define the continuous mapping ¢ of X into F(X, V) by

d(x) = a_lx for each x in X . Then there exists a continuous

endomorphism ¢ of F(X, V) such that &|X = ¢ . Clearly @¢(4) =e ,
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the identity of F(X, ¥) , and since {e} 1is a closed set, &(c) = e .

€ €
1 n

However if ¢ = x) Lo X s X

" ;€ X and €, & non-zero integer for

€; - This implies ¢ 1is in
1

each 7 , then &f(e) = a e shere m =

Ne~R

7
A , which is a contradiction.
THEQOREM 2.5. Let V be an abelian B-variety and 2 a Tychonoff

space. If Y 1is a (non-empty) closed subset of 2 , then the subgroup

Fy of F(z, V) algebraically generated by Y is a closed subset of

F(z, ¥) . (cf. Theorem 1.12).

€ €
1 n

Proof. Buppose ¢ = x) cee X, is a limit point of FY which is

not in F

y s where the x; are distinct elements of Z and the ei are

non-zero integers. Without loss of generality we can assume «x; 1is not

in Y .

Let the symbols X, a, b and A be as in Lemma 2.4. Now

Yu {xz, ey xn} is a closed subset of Z . Therefore there exists a
continuous mapping ¢ of Z into X such that ¢[Y ¥] {xz, e xn} =a
and ¢(xy) = b . Then there exists a continuous homomorphism ¢ of

F(Z, ¥) into F(X, ¥) such that ¢|Z = ¢ . Clearly ¢(FY) = A and

Elm
®(e) =b a , where m =
7

€, - By Lemma 2.4, A 1is a closed subset of
2

S

€1
F(X, ¥) and thus &(¢c) € A . This implies b is in A which is

clearly a contradiction.

3. Projective groups

Hal! [3] introduced the notion of a projective group for the category
of Hausdorff abelian groups based upon the requirement that the class of
projective groups contains the class of (Hausdorff) free abelian groups.

We extend this notion to that of projective in a variety.

We omit all proofs in this section since they are similar to the

proofs of the corresponding results in [3].
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DEFINITION. A sequence of the form f : A + B + 0 is said to be
exact if A and B are groups and f 1is a continuous homomorphism of A

onto B .

DEFINITION. A group G is projective relative to a family € of

exact sequences of the form

f
(1) A=+B=+0

if for each (1) in € and each continuous homomorphism g from G to B
there exists a continuous homomorphism % from G to 4 such that
fh=g.

DEFINITION. Let Y be a variety and €(V) be the family of all
exact sequences of the form (1), with 4 and B in YV , such that all
free groups of V are projective relative to €(¥) . Then a group G in
Y 1is said to be projective in ¥ 1if it is projective relative to e(¥) .

Clearly every free group of a variety ¥V 1is projective in ¥ .

LEMMA 3.1. The sequence (1) is in e(V) <if and only if A and B
are itn ¥ and there is a continuous function g from B into A such

that fg tis the identity function on B .
Consequently for every B € V , the sequence

a
F(B,Y) > B + 0

where 0« is the natural homomorphism, is in €(¥) .

THEOREM 3.2. If the group G <is a summand [3] of a projective
group of V , then G 1is a projective group of ¥ .

THEQOREM 3.3. 4 growp is projective in a variety N <if and only if
it is a swmmand of a free group of IV .

COROLLARY 3.4. If P 4is projective in N then P is a projective
abstract group of V . (See [9).) Further, if V is a Schreier variety

then P is free in Z .

The next theorem is a generalization of Theorem 2 of [3]. We point
out, however, that Theorem 2 of [3] could be deduced from Theorems 3.3 and
1.11, whilst the theorem below could not.
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THEOREM 3.5. Let P be a Hausdorff finitely generated projective
group of the Schreter variety YV . Then P 1is a free group of ¥ .

THEOREM 3.6. Let Py, ..., P, be projective groups of the abelian

variety V¥ . Then the direct product group of the P, is projective in

fl<

4. Other results

THEOREM 4.1. Let G be a relatively free group with free
generating space X . Then G 1is a continuous algebraic isomorphic image
of a quotient group F/A of the free group F on X , where F/A has

generating space X and A 1is a fully imvariant subgroup of F .

Proof. Noting Lemma 4.3 of [§] we only have to show 4 is a fully
invariant subgroup of F . Clearly it is sufficient to show that for
every continuous endomorphism § of F there exists a continuous
endomorphism £ of G such that &5 = £ , where & is the natural

homomorphism of F onto G .

Let § be a continuous endomorphism of F . Then 6|X is a
continuous mapping of X into F and ¢6|X is a continuous mapping of
X into G . Since G 1is relatively free on X , there exists a
continuous endomorphism & of G such that EIX = ¢6|X . It is readily
verified that ¢§ = £9 .

Neumann has various equivalents of '"the free abstract group of an
algebraic variety", namely 13.11, 13.21, 13.22 and 13.23 of [9]. In §5 of
(8] the relationships between topological analogues of these properties
were examined. In particular it was shown that these analogues are not
equivalent. Here we modify the topological analogues and show that the

modified ones indeed are equivalent.

(4.2) G is relatively free with generating space X and the
topology of G 1is the finest group topology (on G) which induces the

same topology on X .

(4.3) G has a generating space X such that every relator of X
is a law in G and the topology of G is the finest group topology

(on G) which induces the same topology on X .
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(4.4) G hnas a representation G = F/A as the quotient group of the
free group F on X by a fully invariant subgroup 4 of F and the
natural homomorphism ¢ of F onto G maps X homeomorphically onto

o(x)

(4.5) ¢ nas a representation G 3 F/R , such that every continuous
endomorphism of the free group F on X induces the natural endomorphism
of F , and the natural homomorphism ¢ of F onto G maps X

homeomorphically onto &(X)
THEOREM 4.6. The properties (4.2), (4.3), (4.4) and (L.5) are

equivalent.

Proof. Clearly (L.k) and (4.5) are equivalent. By Theorems 5.8 and
5.11 of [8], (4.2) and (h.3) are equivalent. Also, by Theorem 4.1,
property (L.2) implies (4.4). Using Theorem 5.8 of [§] we see that
property (4.4) implies (4.2). The proof of the theorem is complete.

We leave the proof of the final theorem to the reader.
THEOREM 4.7. Let Fy, ..., Fh be free groups of the abelian
variety V . Then the direct product of the F% 18 a free group of ¥ .

It is not trué, in general, that the direct product of an arbitrary

set of free groups of V is a free group of YV . (see Example 2 of [3].]
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