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SIMPLE MODULES IN THE AUSLANDER–REITEN
QUIVER OF PRINCIPAL BLOCKS WITH ABELIAN

DEFECT GROUPS

SHIGEO KOSHITANI and CAROLINE LASSUEUR

Abstract. Given an odd prime p, we investigate the position of simple

modules in the stable Auslander–Reiten quiver of the principal block of a finite

group with noncyclic abelian Sylow p-subgroups. In particular, we prove a

reduction to finite simple groups. In the case that the characteristic is 3, we

prove that simple modules in the principal block all lie at the end of their

components.

§1. Introduction

The position of simple modules in the stable Auslander–Reiten quiver of

the group algebra kG over a field k of characteristic p of a finite group G

of order divisible by p is a question that was partially investigated in the

1980s and the 1990s in a series of articles by different authors. We refer the

reader in particular to [4, 20–22] and the references therein. The aim of this

note is to come back to the following question:

Question A. Let B be a wild p-block of kG. Under which conditions

do all simple B-modules lie at the end of their connected components in the

stable Auslander–Reiten quiver of kG?

A main reason of interest in this question lies in the fact that a simple

kG-module lies at the end of its component if and only if the heart of its

projective cover is indecomposable.

In this article, we focus attention on the case in which the principal block

B0(kG) is of wild representation type with abelian defect groups and the

prime p is odd. We recall that a p-block is of wild representation type if and

only if its defect groups are neither cyclic, nor dihedral, nor semidihedral,

nor generalized quaternion (see [18, §8.9 Theorem]). Thus, when p is odd,
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this amounts to requiring that the p-rank of G is at least 2. Question A

in the case that p= 2 was treated by Kawata et al. in [21, Theorem 5].

We aim at extending their results and part of their methods to arbitrary

primes. Further, we note that the cases when B0(kG) is of finite or tame

representation type are well understood. In the former case, the distance of

a simple module to the rim of its connected component (which is a tube

of shape (Z/eZ)Am) is a function of its position in the Brauer tree of the

block, while in the latter case the position of the simple modules in their

connected components is given by Erdmann’s work on tame blocks [10].

Assuming the field k is algebraically closed we prove the following results:

Theorem B. Let G be a finite group and N EG a normal subgroup

such that G/N is solvable of p′-order. Let B and b be wild blocks of kG and

kN , respectively, such that 1B = 1b. If every simple b-module lies at the end

of its connected component in the stable Auslander–Reiten quiver of kN ,

then every simple B-module lies at the end of its connected component in

the stable Auslander–Reiten quiver of kG.

Theorem C. Let p be an odd prime. Let G be a finite group with

noncyclic abelian Sylow p-subgroups and Op′(G) = 1. Write Op′(G) =Q×
H1 × · · · ×Hm (m> 0), where Q is an abelian p-group and Hi is a

nonabelian finite simple group with nontrivial Sylow p-subgroups for each

16 i6m. Assume that one of the following conditions is satisfied:

(i) Q 6= 1; or

(ii) Q= 1 and m> 2; or

(iii) Q= 1, m= 1 and every simple B0(kH1)-module lies at the end of its

connected component in the stable Auslander–Reiten quiver of kH1.

Then every simple B0(kG)-module lies at the end of its connected

component in the stable Auslander–Reiten quiver of kG.

Corollary D. Let p be an odd prime. Assume that every simple

B0(kH)-module lies at the end of its connected component in the stable

Auslander–Reiten quiver of kH for every nonabelian finite simple group

H with noncyclic abelian Sylow p-subgroups. Then every simple B0(kG)-

module lies at the end of its connected component in the stable Auslander–

Reiten quiver of kG for any finite group G with noncyclic abelian Sylow

p-subgroups.
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60 S. KOSHITANI AND C. LASSUEUR

We note that if p= 2, then the analogues of Theorem C and Corollary D

were essentially proven by Kawata et al. [21], although not stated in these

terms. As a corollary, we also obtain the equivalent of [21, Theorem 5(a)]

for the prime 3.

Theorem E. Assume p= 3. Let G be a finite group with abelian Sylow

3-subgroups. If B0(kG) is a wild 3-block, then every simple B0(kG)-module

lies at the end of its connected component in the stable Auslander–Reiten

quiver of kG.

The paper is organized as follows: in Section 2, we set up the notation

and in Section 3 we recall the state of knowledge on the subject and

extend a result of Kawata’s [20, Theorem 1.5] to describe more precisely the

indecomposable summands of the heart of the projective cover of a simple

module not lying on the rim of its component. In Section 4, we consider

groups having a solvable quotient of p′-order and prove Theorem B. In

Sections 5 and 6, we proceed to a reduction of Question A for principal

blocks to the case of finite nonabelian simple groups and prove Theorem C

and Corollary D. Finally in Section 7 we deal with the case p= 3 and prove

Theorem E.

§2. Notation and preliminaries on module and block theory

Throughout this paper, unless otherwise stated, we adopt the following

notation and conventions. We assume that k is an algebraically closed field of

characteristic p > 0. All groups are assumed to be finite and we let G denote

a finite group of order divisible p. We let (K,O, k) be a splitting p-modular

system for G and its subgroups, namely O is a complete discrete vatulation

ring, K its quotient field of characteristic 0, k =O/J(O) its residue field of

characteristic p (where J(O) is the unique maximal ideal of O), and K and

k are both splitting fields for all subgroups of G.

For a p-block B, we write 1B for the corresponding block idempotent

and IBr(B) for the set of isomorphism classes of simple kB-modules.

Furthermore, unless otherwise specified, we assume that B0 =B0(kG), the

principal block of kG, is wild. Thus, when the defect groups of B are abelian,

we may therefore assume that a Sylow p-subgroup of G is noncyclic, or

equivalently that the p-rank of G is at least 2.

We write H 6G if H is a subgroup of G, N EG if N is a normal subgroup

of G, Op′(G) for the largest p′-normal subgroup of G, and Op′(G) for the

smallest normal subgroup of G with p′-index in G. All modules are assumed
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to be finitely generated right modules. We denote by kG the trivial kG-

module. If H 6G and X, Y are kG- and kH-modules, respectively, then

we write X↓H for the restriction of X to H, and Y ↑G = Y ⊗kH kG for the

induction of Y from H to G.

We let J = J(kG) denote the Jacobson radical of kG. For a kG-module U ,

we define J(kG)0 = kG and for any nonnegative integer i> 0 we let

soci(U) = {u ∈ U | u J i = {0}}, then inductively for any i> 1, we write

Li(U) = U J i−1/U J i and Si(U) = soci(U)/soci−1(U)

for the ith Loewy layer and the ith socle layer of U , respectively. We

define soc(U) = soc0(U), that is called the socle of U (see [29, Chapter I,

Definition 8.1]). For an integer n> 1 and simple kG-modules S1, . . . , Sn
(possibly Si ∼= Sj for i 6= j) we denote by

U =

S1
S2
...
Sn

a uniserial kG-module of Loewy length n such that Li(U)∼= Si for every

16 i6 n. We also recall that the Loewy series does not determine modules

up to isomorphism. For instance if p= 2 and G= C2 × C2, then kG∼=
k[x, y]/(x2, y2) as k-algebras and there are obviously two nonisomorphic

uniserial kG-modules U and V of Loewy length 2 (dimk[Ext1kG(k, k)] = 2).

We will use throughout the following well-known properties without further

mention:

Lemma 2.1. Assume N EG of index prime to p.

(a) We have J = J̃ kG= kG J̃ where J̃ = J(kN).

(b) Let X be a kG-module and Y a kN -module, then for any i> 1 we have

Li(X)↓N = Li(X↓N ) and Si(X)↓N = Si(X↓N )

and

Li(Y )↑G = Li(Y ↑G) and Si(Y )↑G = Si(Y ↑G).

Proof. Part (a) is a well-known result of Villamayor [34] and part (b)

follows from (a).
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Given a normal subgroup H EG and b̃ a p-block of H, we will use the

group G[b̃] defined by Dade [7]. A more explicit description of G[b̃] can also

be found in [17, Lemma 3.2]. Roughly speaking G[b̃] is the stabilizer of b̃ as

k(H ×H)-module.

Lemma 2.2. (Dade) Let H EG such that p 6 | |G/H|, and let P be a

Sylow p-subgroup of H. Let b̃=B0(kH) and B =B0(kG) be the principal

blocks of kH and kG, respectively. Set N =H CG(P ). Then the following

hold:

(a) The block b̃ is G-invariant.

(b) N =G[b̃] and N EG.

(c) If b denotes the principal block of kN , then 1B = 1b.

Proof. (a) Obvious since b̃ is the principal block. (b) The first claim

follows from [7, Corollary 12.6] since b̃ is the principal block. Moreover, as

b̃ is G-invariant, the fact that G[b̃]EG follows from [7, Proposition 2.17].

(c) The main argument to prove (c) is given by [27, p. 303 line 10]. We

give here a full argument for completeness. As b̃ is G-invariant, 1b̃ is an

idempotent of Z(kG) and we can write

1b̃ = 1B + 1B1 + · · ·+ 1Bn

for an integer n> 0 and for distinct nonprincipal blocks B1, . . . , Bn of kG.

Thus, 1b̃ 1B = 1B. Namely,

1B ∈ 1b̃ Z(kG)⊆ 1b̃ CkG(H) =: C.

This implies 1B ∈ Z(C) since 1B ∈ Z(kG). Hence it follows from [26,

Corollary 4] and part (b) that

1B ∈ C[b̃] = Z(b̃) ∗G[b̃]

⊆ Z(kH) ∗N ⊆ kN,

where ∗ denotes the crossed product. Thus 1B ∈ Z(kN). On the other hand,

since b is the principal block of kN , we have 1b is G-invariant, so that

1b ∈ Z(kG). Hence, as above, we can write

1b = 1B + 1B′1 + · · ·+ 1B′t

where t> 0 is an integer and B′1, · · · , B′t are distinct nonprincipal blocks of

kG. Set ẽ= 1b − 1B ∈ Z(kN) (since 1B ∈ Z(kN)). Therefore 1b = 1B + ẽ is
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a decomposition of 1b into orthogonal idempotents of Z(kN). This implies

that ẽ= 0, and hence 1b = 1B.

Finally, we will need the following well-known properties of relative

projectivity and inflation in direct products. We recall that if N EG and

U is a k(G/N)-module, then we denote by InfGG/N (U) the inflation of U

from G/N to G, namely InfGG/N (U) = U as k-vector space and becomes a

kG-module via the action of G obtained by composition with the canonical

epimorphism G�G/N . Furthermore, if G=N ×H is the direct product

of two finite groups N and H, and U and V , are kN - and kH-modules,

respectively, then on the one hand X = U ⊗k V becomes a kG-module via

the action

(u⊗ v)(n, h) = un⊗ vh ∀u ∈ U, v ∈ V, n ∈N, h ∈H,

and on the other hand, setting U ′ = InfGG/H∼=N (U) and V ′ = InfGG/N∼=H(V ),

we have that U ′ ⊗k V
′ becomes a kG-module via the diagonal action

(u′ ⊗ v′) · g = u′g ⊗ v′g ∀u′ ∈ U ′, v′ ∈ V ′, g ∈G.

It is then easily seen that X ∼= U ′ ⊗k V
′ as kG-modules.

Lemma 2.3. Assume that G=N ×H is the direct product of two finite

groups N and H. Let U be a kN -module and V be a kH-module. Set X =

U ⊗k V , U ′ = InfGG/N (U) and V ′ = InfGG/N (V ). If U is projective as a kL-

module, then X is a relatively H-projective kG-module.

We give a short proof for completeness.

Proof. First, since U is a projective kN -module, it is projective rela-

tively to the trivial subgroup, or equivalently projective relatively to the

kN -module k{1}↑N , that is projective relatively to the k(G/H)-module

kH/H↑G/H by using the isomorphism N ∼=G/H. Therefore, by [30, Lemma

2.1.1(c)], it follows that the inflated kG-module U ′ = InfGG/H(U) is projective

relatively to the inflated kG-module

InfGG/H(kH/H↑G/H) = InfGG/H ◦ Ind
G/H
H/H(kG/H)

= IndG
H ◦ InfHH/H(kH/H) = kH↑G

(where Ind denotes the induction seen as a functor). Hence U ′ is projective

relatively to H. It follows directly that the tensor product X ∼= U ′ ⊗k V
′ is

H-projective, because one of the factors is (see e.g., [3, Corollary 3.6.7]).
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§3. Background results on the Auslander–Reiten quiver

We recall briefly basic facts concerning the stable Auslander–Reiten

quiver of a group algebra, which we will be using in the sequel. For a

complete introduction to Auslander–Reiten theory, we refer the reader to

the textbooks [2, Chapter IV] and [3, Chapter 4].

To finish setting up our notation, given a kG-module M , we denote by

Ωn(M) (n ∈ Z) its nth Heller translate of M . Given a simple kG-module S,

we denote by P (S) its projective cover and by H(P (S)) the heart of P (S),

that is H(P (S)) = P (S)J/soc (P (S)).

Let M be an indecomposable kG-module. By definition, an Auslander–

Reiten sequence (or AR-sequence) terminating at M is a nonsplit short

exact sequence

A(M) : 0−→N
f−−−→XM

g−−−→M −→ 0

satisfying the following conditions: first N is indecomposable, and second

for each kG-homomorphism h :X →M which is not a split epimorphism,

there exists a kG-homomorphism h′ :X → E such that h= gh′. Given an

indecomposable nonprojective kG-module M , there exists always an AR-

sequence terminating at M , and it is unique up to isomorphism of short

exact sequences. Moreover, since kG is a finite-dimensional symmetric

Algebra, we have N ∼= Ω2(M) (see [3, 4.12.8]). In similar fashion, there

exists an AR-sequence starting at M , unique up to isomorphism of short

exact sequences, with end term isomorphic to Ω−2(M). For a nonprojective

simple kG-module S, the Auslander–Reiten sequence terminating at Ω−1(S)

is of the form

A(Ω−1(S)) : 0→ Ω(S)→H(P (S))⊕ P (S)→ Ω−1(S)→ 0

and is called the standard sequence associated to S. This is the unique AR-

sequence in which the PIM P (S) occurs.

The Auslander–Reiten quiver (or AR-quiver) of kG (resp. of a p-block

B of kG) is the directed graph Γ(kG) (resp. Γ(B)) whose vertices are

the isomorphism classes of indecomposable kG-modules (resp. B-modules),

and the number of arrows between two indecomposable modules M and N

corresponds to the dimension of the space of irreducible maps between M

and N . We refer the reader to [2, Chapter IV] for a precise definition. Then

the stable Auslander–Reiten quiver of kG (resp. of B) is obtained from

Γ(kG) (resp. Γ(B)) by removing the vertices corresponding to projective
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modules and all arrows attached to these vertices; it is denoted by Γs(kG)

(resp. Γs(B)). By convention, we use the terminology AR-component to

refer to a connected component of Γs(kG), and we denote by Γs(M) the

connected component of Γs(kG) containing a given indecomposable kG-

module M .

Erdmann [11] proved that all components of the stable Auslander–Reiten

quiver belonging to a wild block have tree class A∞, that is of the form ZA∞
or infinite tubes ZA∞/〈τa〉 of rank a, where τ = Ω2 is the Auslander–Reiten

shift. In a component with tree class A∞ an indecomposable nonprojective

kG-module M is said to lie at the end (or on the rim) of its AR-component

if the projective-free part of the middle term XM of the Auslander–Reiten

sequence

A(M) : 0→ Ω2(M)→XM →M → 0

terminating at M is indecomposable. In this setup, clearly a simple module

S lies at the end of its component if and only if H(P (S)) is indecomposable,

and S lies in a tube if and only if S is periodic (i.e., Ω-periodic). We also

recall that for a selfinjective algebra the shape of the components of the

stable Auslander–Reiten quiver is an invariant of its Morita equivalence

class. By the above, the property of lying on the rim of its AR-component

for a nonprojective simple module is also invariant under Morita equivalence.

Simple kG-modules are known to lie on the rim of their AR-components

in the following cases:

Theorem 3.1. Let B be a wild p-block of kG. Then every simple B-

module lies at the end of its AR-component in all of the following cases:

(a) G has a nontrivial normal p-subgroup [20, Theorem 2.1];

(b) G is p-solvable [20, Corollary 2.2];

(c) G is a perfect finite group of Lie type in the defining characteristic and

B has full defect [22, Theorem];

(d) G has an abelian Sylow 2-subgroup and B is the principal 2-block [21,

Theorem 5];

(e) G is a symmetric group or an alternating group [4, Theorems 5.3 and

5.5];

(f) p= 2 and G is a Schur cover of a symmetric group or of an alternating

group [4, Theorems 5.3 and 5.5];

(g) p 6= 2 and G is a Schur cover of a symmetric group or of an alternating

group such that the defect of B is at least 3 [4, Theorems 5.3 and 5.5].
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Moreover, we will use the following computational criterion throughout:

Theorem 3.2. (Kawata’s Criterion on Cartan matrices [20, Theorem

1.5]) Let B be a wild p-block of kG. Suppose that there exists a simple

B-module S lying on the nth row from the end of Γs(S), where n> 2 is

minimal with this property. Then there exist pairwise nonisomorphic simple

B-modules S2, . . . , Sn with the following properties:

(a) for each 26 i6 n, we have that Si ∼= Ω2(i−2)(S2) and Si lies at the end

of Γs(Ω(S));

(b) the projective covers of P (Si) of the simple modules Si (26 i6 n) are

uniserial of length n+ 1 with the following Loewy structure:

P (S2) =

S2
S3
...
Sn
S
S2

, P (S3) =

S3
...
Sn
S
S2
S3

, . . . , P (Sn) =

Sn
S
S2

...
Sn−1
Sn

.

The Cartan matrix of B is given by

2 1 · · · · · · 1 0 · · · 0

1 2
. . .

...
...

...
...

. . .
. . .

. . .
...

...
...

...
. . . 2 1 0 · · · 0

1 · · · · · · 1 ∗ · · · · · · ∗

0 · · · · · · 0
...

...
...

...
...

...
0 · · · · · · 0 ∗ · · · · · · ∗


,

where the columns are labeled by Sn, . . . , S2, S, . . . in this order.

Remark 3.3.

(a) If the Cartan matrix of a block has the shape of Theorem 3.2(b) above

with n= 2, then the simple module S corresponding to the second

column lies on the 2nd row of its AR-component. Indeed in this case
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P (S2) =
S2
S
S2

and the standard sequence associated to S2 is

0→ Ω(S2)→ S ⊕ P (S2)→ Ω−1(S2)→ 0,

so that S2 lies at the end of its AR-component and S on the 2nd row

of its AR-component.

A converse to Kawata’s Criterion need not be true in general for an

n> 3.

(b) The above was used to produce two counterexamples of simple modules

not lying at the end of their AR-components. Namely, the group F4(2)

for p= 5 has a simple module in the principal block of dimension 875823

lying on the 2nd row of its AR-component, and the group 2.Ru for p= 3

has a faithful simple module also lying on the 2nd row. See [22, §4]. Both

counterexamples are obtained thanks to the decomposition matrices of

these groups computed by Hiß.

We can now improve Kawata’s result by describing more accurately the

structure of the heart of the projective cover of the simple module S lying

on the nth row of its AR-component.

Corollary 3.4. With the assumptions and the notation of

Theorem 3.2, we have that the heart of the projective cover of the

simple module S is decomposable and has a uniserial indecomposable

summand of length n− 1. More precisely

H(P (S)) =

S2
S3
...
Sn

⊕ V,

where V is an indecomposable kG-module.

Proof. First, since by assumption the module S does not lie at the end

of its AR-component, which is of tree class A∞, it is clear that the heart

of the projective cover of S must be the direct sum of two indecomposable

direct summands, say

H(P (S))∼= U ⊕ V.
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Using [20, Proposition 1.4], we have that the part of the component Γs(S)

below S is as follows:

S � o

��

S
S2

?? ??

� q

""

Sn
S � q

""
. . .

<< <<

. . .

<< <<

. . .

Therefore, using the fact that the Heller operator Ω induces a graph

isomorphism from Γs(S) to Γs(Ω(S)), we have that in Γs(Ω(S)) the diamond

corresponding to the standard sequence associated to S is as follows:

V

))
Ω(S)

55

''

Ω−1(S)

Ω
(

Sn
S

)
= U

66

Hence it suffices to compute Ω
(

Sn
S

)
.

Since the top of the uniserial module Sn
S

is Sn, the projective cover of

Sn
S

must be P (Sn). Hence taking the kernel of the canonical surjection

P (Sn)� Sn
S

, we obtain from the Loewy series of the PIM P (Sn) in

Theorem 3.2(c) that U has the following Loewy series

U = Ω
(

Sn
S

)
=

S2
S3

...
Sn

.

§4. Groups having a solvable quotient of p′-order

Throughout this section, we will assume that the following hypotheses

hold:
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Hypothesis 4.1. Assume that:

(a) G is a finite group of order divisible by p and N EG is a normal

subgroup such that |G/N |=: q is a prime number with q 6= p, and we

set G/N =: 〈gN〉 for an element g ∈G\N .

(b) B and b are wild blocks of kG and kN , respectively, such that 1B = 1b.

Lemma 4.2. Assume Hypothesis 4.1 holds. Let ζ ∈ k× be a primitive

qth root of unity in k, and for each 16 j 6 q let Zj be the one-dimensional

k(G/N)-module defined by Zj = 〈αj〉k and αj ·gN = ζj−1αj, so that in

particular Z1 = kG/N . The following holds:

(a) If S ∈ IBr(B) is such that S↓N is not simple, then for each 16 j 6 q,

S ⊗k Zj
∼= S

as kG-modules, where we see Zj as a kG-module via inflation.

(b) There are integers m> 1 and `> 0 such that

IBr(B) = {Sij | 16 i6m; 16 j 6 q}
⊔
{Si |m+ 16 i6m+ `} and

IBr(b) = {Ti | 16 i6m}
⊔
{Tij |m+ 16 i6m+ `, 16 j 6 q},

where for each 16 i6m and each 16 j 6 q,

Sij↓N = Ti and Ti↑G = Si1 ⊕ · · · ⊕ Siq,

and for each m+ 16 i6m+ ` and each 16 j 6 q,

Si↓N = Ti1 ⊕ Ti2 ⊕ · · · ⊕ Tiq and Tij↑G = Si

where we may assume that Tij = Ti1g
j−1

.

Moreover, we can assume that for each 16 j 6 q,

Sij = Si1 ⊗k Zj .

Proof. (a) Let 16 j 6 q. By assumption and Clifford’s theory we have

that

(S ⊗k Zj)↓N = S↓N ⊗k kN ∼= S↓N .

= T ⊕ T g ⊕ · · · ⊕ T gq−1

for some T ∈ IBr(b). Hence T ↑G ∼= S, and T ↑G ∼= S ⊗k Zj for each 16 j 6 q.
(b) As by Hypothesis 4.1 the quotient G/N is cyclic, the claim follows

from the result of Schur and Clifford [31, Chapter 3, Corollary 5.9 and

Problem 11(i)].
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Lemma 4.3. Assume Hypothesis 4.1 holds. Let S ∈ IBr(B).

(a) If S↓N =: T is simple, then P (S)↓N ∼= P (T ) and H(P (S))↓N ∼=
H(P (T )).

(b) If S↓N is not simple, then we can write S↓N = T1 ⊕ T2 ⊕ · · · ⊕ Tq with

Tj = T1g
j−1

for each 16 j 6 q and we have that

P (S)↓N ∼= P (T1)⊕ · · · ⊕ P (Tq) and H(P (S))↓N ∼=
q⊕

j=1

H(P (Tj)).

Proof. (a) Obviously

T = S↓N = (P (S)/P (S)J)↓N = P (S)↓N/(P (S)J)↓N
= P (S)↓N/(P (S) kGJ̃) by Lemma 2.1

= P (S)↓N/P (S)↓N J̃ .

Hence the top of P (S)↓N is T , which implies that P (S)↓N ∼= P (T ).

Therefore,

H(P (S))↓N = (P (S) J/S)↓N =H(P (T )).

(b) Similar to (a).

Proposition 4.4. Assume Hypothesis 4.1 holds. If every simple module

T ∈ IBr(b) lies at the end of its AR-component, then every simple module

S ∈ IBr(B) lies at the end of its AR-component.

Proof. Let S ∈ IBr(B) be a simple module. First assume that S↓N =:

T ∈ IBr(b) is simple. Then by Lemma 4.3(a)

H(P (S))↓N ∼=H(P (T )).

But by assumption H(P (T )) is indecomposable, therefore so is H(P (S)).

We assume now for the rest of the proof that S↓N is not simple. If S lies

at the end of its AR-component, then there is nothing to do. Therefore we

now also assume that S lies on the nth row from the bottom of Γs(S) for

an integer n> 2, minimal (as in Kawata’s Criterion on Cartan matrices).

By Lemma 4.2(b),

S↓N = T11 ⊕ · · · ⊕ T1q and T1j↑G = S for each 16 j 6 q,

where T1j = T11
gj−1

for 16 j 6 q are nonisomorphic simple modules in

IBr(b). We also set T1 = T11.

Let S2, . . . , Sn be the simple modules given by Theorem 3.2.
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Claim 1. If the modules S2↓N , . . . , Sn↓N are all nonsimple, then we

have a contradiction.

Proof of Claim 1. By assumption and Lemma 4.2, we can write

Si↓N = Ti1 ⊕ Ti2 ⊕ · · · ⊕ Tiq.

For each 26 i6 n we define Ti ∈ IBr(b) by Tij = Ti
gj−1

, where 16 j 6 q. We

claim that

P (T2) =

T2
T3
...
Tn
T1
T2

, P (T3) =

T3
...
Tn
T1
T2
T3

, . . . , P (Tn) =

Tn
T1
T2
...
Tn−1
Tn

.

Indeed, we know by Theorem 3.2(b) and Lemma 4.3(b) that

P (T2)⊕ P (T2)
g ⊕ · · · ⊕ P (T2)

gq−1
= P (S2)↓N

=

S2
S3
...
Sn
S
S2

↓N =

T2 T2
g · · · T2g

q−1

T3 T3
g · · · T3g

q−1

· · ·
Tn Tn

g · · · Tng
q−1

T1 T1
g · · · T1g

q−1

T2 T2
g · · · T2g

q−1

,

where the boxes mean the Loewy and socle series of the kN -modules.

Since the left-hand side is a direct sum of exactly q indecomposable kN -

modules that are 〈g〉-conjugate to each other, by interchanging the indices of

T3, . . . , Tn, T1 desired, we may assume that the PIM P (T2) has the desired

structure. Then automatically the structures of P (T3), . . . , P (Tn) are as

claimed.

https://doi.org/10.1017/nmj.2017.45 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2017.45


72 S. KOSHITANI AND C. LASSUEUR

Now, using a similar argument as above, we also obtain

P (T1)⊕ P (T1)
g ⊕ · · · ⊕ P (T1)

gq−1
= P (S)↓N =

T1 ⊕ T1g ⊕ · · · ⊕ T1g
q−1

S2
S3
...
Sn

↓N
⊕

V ↓N

T1 ⊕ T1g ⊕ · · · ⊕ T1g
q−1

,

for a kG-module V where the last equality holds by Corollary 3.4. Hence

we have

H(P (T1))⊕H(P (T1))
g ⊕ · · · ⊕ H(P (T1))

gq−1

=

T2 ⊕ T2g ⊕ · · · ⊕ T2g
q−1

T3 ⊕ T3g ⊕ · · · ⊕ T3g
q−1

...

Tn ⊕ Tng ⊕ · · · ⊕ Tng
q−1

⊕ V ↓N

=


T2
T3
...
Tn

⊕

T2
T3
...
Tn

g

⊕ · · · ⊕

T2
T3
...
Tn

gq−1 ⊕ V ↓N

since P (T2), . . . , P (Tn) are uniserial by the above.

But we are assuming that T2, . . . , Tn lie at the end of their AR-

components, so that H(P (T2)), . . . ,H(P (Tn)) are indecomposable. Further

H(P (T1)) is also indecomposable since T1 lies at the end of its AR-connected

component. Therefore the right-hand side term in the latter equation has

exactly q indecomposable direct summands. This implies that V = {0},
hence a contradiction.
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Claim 2. If the modules S2↓N , . . . , Sn↓N are all simple, then we have

a contradiction.

Proof of Claim 2. Set Ti = Si↓N for 26 i6 n. We have

S↓N = T1 ⊕ T1g ⊕ · · · ⊕ T1g
q−1
.

By the assumption and Lemma 4.2, for each 26 i6 n we can write Ti↑G=

Si1 ⊕ · · · ⊕ Siq with Sij = Si1 ⊗k Zj for 16 j 6 q. In particular Si1 = Si for

each 26 i6 n. By Theorem 3.2(b)

P (S2) =

S2
S3
...
Sn
S
S2

,

so Lemma 4.2(a) implies that

P (S2j) = P (S2)⊗k Zj =

S2j
S3j

...
Snj
S
S2j

for 16 j 6 q.

These yield that P (S) has q distinct uniserial submodules

W1 =

S2
S3
...
Sn
S

, Wj =

S2j
S3j

...
Snj
S

of Loewy length n for j = 2, · · · , q.

Set W =W1 +W2 + · · ·+Wq ⊆ P (S). Then soc(W ) = S, and the Loewy

and socle structure of W is as follows:
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W =

S2
S3
...
Sn

⊕

S22
S32

...
Sn2

⊕ · · · ⊕

S2q
S3q

...
Snq

S

with simple socle isomorphic to S. Therefore W/S has a proper uniserial

submodule

U =

S2
S3
...
Sn

.

Now by Corollary 3.4, U |H(P (S)), so that by Lemma 4.2(a)

S2j
S3j

...
Snj

=

S2
S3
...
Sn

⊗k Zj

= (U ⊗k Zj) | (H(P (S))⊗k Zj)∼=H(P (S ⊗k Zj))∼=H(P (S))

for each 16 j 6 q. Therefore q = 2 since H(P (S)) has exactly two nonpro-

jective indecomposable direct summands by the assumption that S does

not lie at the end of its AR-component. Notice that this already provides a

contradiction in case the characteristic of k is 2, since we assume q 6= p. So

we now assume that p> 3. Then, the Loewy and socle structures of PIMs

P (S), P (Si) and P (Si2) for 26 i6 n are:

S

S2
S3
...
Sn

S22
S32

...
Sn2

S

,

S2
S3
...
Sn
S
S2

,

S22
S32

...
Sn2
S
S22

,

S3
...
Sn
S
S2
S3

,

S32
...
Sn2
S
S22
S32

, . . . ,

Sn
S
S2
...
Sn−1
Sn

,

Sn2
S
S22

...
Sn−1,2
Sn,2

.

https://doi.org/10.1017/nmj.2017.45 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2017.45


SIMPLE MODULES IN THE AUSLANDER–REITEN QUIVER OF PRINCIPAL BLOCKS 75

Now considering the restrictions S↓N and Si↓N for 26 i6 n, we obtain by

Lemma 4.3 that the Loewy and socle structures of the PIMs P (T1), P (T g
1 )

and P (Ti) for each 2 6 i 6 n are

T1
T2
T3
...
Tn
T1

,

T1
g

T2
T3
...
Tn
T1

g

,

T2
T3
...
Tn

T1 ⊕ T1g
T2

,

T3
...
Tn

T1 ⊕ T1g
T2
T3

, . . . ,

Tn
T1 ⊕ T1g

T2
T3
...
Tn

since T1 6∼= T1
g. Now, as the dimension of any PIM for kN is divisible by

|N |p =: pa for an integer a> 1, and since dim T1 = dim T1
g, we have for

each 26 i6 n

0≡ dim P (Ti)− dim P (T1) = dim Ti(mod pa),

so that

0 ≡ dim P (T1)

≡ dim P (T1)− (dim T2 + dim T3 + · · ·+ dim Tn) = 2 · dim T1(mod pa).

This implies that

dim T1 ≡ 0(mod pa)

since p 6= 2 (since q = 2). Thus, dim Ti ≡ 0 (mod pa) for any

16 i6 n. Now, looking at the composition factors of the

PIMs P (T1), P (T1
g), P (T2), . . . , P (Tn), we know that IBr(b) =

{T1, T1g, T2, . . . , Tn}, which implies that pa | dim T for any T ∈ IBr(b).

Now it follows from Brauer’s result [31, Chapter 3 Theorem 6.25] that

there is a simple T ∈ IBr(b) such that νp(dim T ) = a− d(b) (where d(b) is

the defect of b). Hence we have a contradiction since b is a wild block, i.e.,

of positive defect.

Claim 3.

(a) If there is an integer 26m6 n− 1 such that S2↓N , . . . , Sm↓N are not

simple and Sm+1↓N is simple, then we have a contradiction.

(b) If there is an integer 26m6 n− 1 such that S2↓N , . . . , Sm↓N are

simple and Sm+1↓N is not simple, then we have a contradiction.
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Proof of Claim 3. (a) Set Tm+1 = Sm+1↓N . By Lemma 4.2 there exists a

simple module Tm ∈ IBr(b) with Sm↓N = Tm ⊕ Tmg ⊕ · · · ⊕ Tmgq−1
. Then,

by Lemma 4.2,

Tm+1↑G = Sm+1 ⊕ Sm+1,2 ⊕ · · · ⊕ Sm+1,q

where Sm+1,j = Sm+1 ⊗k Zj for each 16 j 6 q and Tm↑G = Sm. By the

structure of P (S), we have that Ext1kG(Sm, Sm+1) 6= 0. Therefore by

Eckmann–Shapiro’s lemma we have that Ext1kN (Tm, Tm+1) 6= 0. Thus there

exists a kN -module with Loewy structure

Tm
Tm+1

.

So it follows from Lemma 2.1 that

Tm
Tm+1

↑G =
Sm

Sm+1 ⊕ Sm+1,2 ⊕ · · · ⊕ Sm+1,q

where the right-hand side box is the Loewy and socle series. But P (Sm) is

uniserial by Theorem 3.2(b), so applying again Lemma 2.1, we must have

q = 1, which contradicts the assumption that q is a prime.

(b) follows in a similar fashion using a dual argument.

Altogether, Claims 1–3 prove that the simple modules S2, . . . , Sn cannot

exist, therefore S must lie at the end of its AR-component.

As a consequence of the above discussion we obtain Theorem B of the

Introduction.

Proof of Theorem B. Because G/N is solvable of order prime to p, it

follows by induction on |G/N |, that we may assume that |G/N | is a prime

distinct from p. Then Proposition 4.4 yields the result.

§5. The principal block of Op′(G)

From now on, we assume that p> 3 and G is a finite group with nontrivial

abelian Sylow p-subgroups. Because we consider the principal block only,

we assume that Op′(G) = 1 since B0(kG)∼=B0 ( k(G/Op′(G)) as k-algebras.

The structure of Op′(G) can be obtained using the classification of finite

simple groups and a result of Fong and Harris [12, 5A–5C].
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Lemma 5.1. [9, Theorem 1.7] Let p be an odd prime. Let G be a finite

group with a nontrivial abelian Sylow p-subgroup. Then

Op′(G/Op′(G))∼=Q×H1 × · · · ×Hm,

where m is a nonnegative integer (i.e., possibly Op′(G/Op′(G))∼=Q),Q is

an abelian p-group, and for each 16 i6m, Hi is a nonabelian simple group

with nontrivial Sylow p-subgroups.

Therefore, we fix the notation Op′(G) =Q×H1 × · · · ×Hm, where Q is

an abelian p-group, and H1, . . . , Hm are nonabelian simple groups with

nontrivial Sylow p-subgroups as given by Lemma 5.1.

5.1 Simple modules in infinite tubes ZA∞/〈τa〉
Lemma 5.2. ([21, Lemma 5.2] generalized version) Let H = H̃1 × · · · ×

H̃m (m> 1) be a finite group such that p | |H̃i| for each 16 i6m. If B0(kH)

is a wild block and contains a periodic simple module, then m= 1.

Proof. Let S be a simple periodic B0(kH)-module. Then we may write

S = S1 ⊗k · · · ⊗k Sm where Si is a simple B0(kH̃i)-module for each 16 i6
m. Then, by iterating [21, Lemma 2.2], there exists an index 16 i0 6m
such that Si0 is periodic and Sj is a projective kH̃j-module for each 16
j 6= i0 6m. But B0(kH̃j) cannot contain a simple projective module, since

we assume that p | |H̃i| for each 16 i6m. Hence this forces H = H̃i0 , i.e.,

m= 1.

As a consequence, the existence of simple periodic modules in the

principal block lying in tubes drastically restricts the possible structure

of Op′(G).

Corollary 5.3. If B0(kG) contains a periodic simple module, then

Op′(G) =H1 is a nonabelian finite simple group with noncyclic abelian Sylow

p-subgroups.

Proof. By Lemma 5.2, either Op′(G) =Q or Op′(G) =H1. But the

former cannot happen. Indeed, the indecomposable direct summands of the

restriction to Op′(G) of a simple periodic kG-module are all simple periodic

modules, however the unique simple kQ-module is the trivial module, which

is not periodic since we assume that B0(kG) is wild, and hence Q is

noncyclic. This leaves only the possibility Op′(G) =H1, and the p-rank of

H1 must be at least 2 again because we assume that B0(kG) is wild.
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This immediately leads to the following reduction to nonabelian simple

groups:

Corollary 5.4. Assume that every periodic simple B0(kH)-module lies

at the end of its AR-component for every nonabelian finite simple group

H with noncyclic abelian Sylow p-subgroups. Then every simple periodic

B0(kO
p′(G))-module lies at the end of its AR-component for any finite group

G with Op′(G) = 1 and noncyclic abelian Sylow p-subgroups.

5.2 Simple modules in ZA∞-components

Lemma 5.5. Let H = H̃1 × · · · × H̃m (m> 1) be a finite group with

abelian Sylow p-subgroups such that p | |H̃i| for each 16 i6m. If B0(kH)

is a wild block containing a nonperiodic simple module S not lying at the

end of its AR-component, then m= 1.

This lemma and its proof below generalize parts of the proof of [21,

Theorem 5(i)].

Proof. Assume that m> 2. Then by Theorem 3.2(b), there exists a

simple B0(kH)-module T lying at the end of Γs(Ω(S)). By Knörr’s Theorem

[23, 3.7 Corollary], we know that the vertices of the simple modules in

B0(kH) are the Sylow p-subgroups of H, because they are abelian. Now

by assumption Γs(S)∼= ZA∞ by [11], which implies that all the modules in

Γs(S) and Γs(Ω(S)) have the Sylow p-subgroups as their vertices by [32,

Theorem]. So all the modules in Γs(S) and Γs(Ω(S)) are not projective

relatively to the subgroup N = H̃1 × · · · × H̃m−1 as it does not contain a

Sylow p-subgroup of H. Thus, as p 6= 2, all the simple direct summands of

S↓N belong to blocks of defect zero by [21, Lemma 1.4]. But

B0(kH) =B0(kN)⊗k B0(kH̃m)

and hence there exist a simple B0(kN)-module S0 and a simple B0(kH̃m)-

module Sm such that

S = InfH
N×H̃m/1×H̃m

(S0)⊗k InfH
N×H̃m/N×1(Sm).

Because S↓N ∼= (dimk Sm)S0, the module S0 is a projective kN -module

by the above. Hence by Lemma 2.3 S is relatively H̃m-projective. This

contradicts the fact that the vertices of S are the Sylow p-subgroups of

H. Thus we conclude that S must lie at the end of Γs(S).
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Proposition 5.6. Let G be a finite group with Op′(G) = 1 and noncyclic

abelian Sylow p-subgroups. Assume moreover that one of Conditions (i),

(ii), or (iii) of Theorem C is satisfied. Then every nonperiodic simple

B0(kO
p′(G))-module lies at the end of its AR-component.

Proof. We have Op′(G) =Q or Op′(G) =Q×H1 × · · · ×Hm, where Q is

an abelian p-group and Hi is a nonabelian finite simple group with nontrivial

Sylow p-subgroups for each 16 i6m.

If (i) holds, that is Q 6= 1, then by Theorem 3.1(a), all simple

B0(kO
p′(G))-modules lie at the end of their AR-components. Therefore,

we assume for the rest of the proof that Q= 1.

Next if (ii) holds, that is m> 2, the claim follows from Lemma 5.5.

Finally if (iii) holds, that is Op′(G) =H1, then H1 must have a noncyclic

Sylow p-subgroup, therefore all simple B0(kO
p′(G))-modules lie at the end

of their AR-components by assumption.

§6. Reduction to Op′(G)

We continue assuming that G is a finite group with noncyclic abelian

Sylow p-subgroups such that Op′(G) = 1, unless otherwise stated. We now

prove that an answer to Question A is detected by restriction to the normal

subgroup Op′(G) of G.

We set H =Op′(G), let P ∈ Sylp(H) be a Sylow p-subgroup, and set N =

HCG(P ). Moreover we set B =B0(kG), b=B0(kN) and b̃=B0(kH). Then

N is Dade’s Group G[b̃] and N EG, see Lemma 2.2.

First of all Question A has an affirmative answer for the group N if and

only if it has an affirmative answer for the group H.

Lemma 6.1. With the above notation, every simple b-module lies at the

end of its AR-component if and only if every simple b̃-module lies at the end

of its AR-component.

Proof. By the Alperin–Dade theorem [8, Theorem] (see [1]), the blocks b

and b̃ are isomorphic as k-algebras, hence Morita equivalent. But for a simple

module, lying at the end of its AR-component is a property preserved by

Morita equivalence.

Proposition 6.2. If every simple b̃-module lies at the end of its AR-

component, then every simple B-module lies at the end of its AR-component.

Proof. Let S be a simple B-module and let T be a simple direct summand

of S↓H . Then T is periodic if and only if S is. Therefore Γs(S)∼= ZA∞ if
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and only if Γs(T ) ∼= ZA∞, and Γs(S) is an infinite tube with tree class A∞
if and only if Γs(T ) is an infinite tube with tree class A∞.

In case Γs(S)∼= ZA∞, then S lies at the end of Γs(S) if and only if T lies

at the end of Γs(T ) by [21, Lemma 1.5].

In case Γs(S) is an infinite tube with tree class A∞, then by Corollary 5.3,

H is a nonabelian finite simple group with noncyclic abelian Sylow p-

subgroups. Now, by Schreier’s conjecture (now proven by the Classification

of Finite Simple Groups, see [15, Definition 2.1] and [16, Theorem 7.1.1]),

we know that G/H is a solvable p′-subgroup of Out(H). Now by Lemma 6.1,

we may assume H =N and by Lemma 2.2(c) we have 1B = 1b. Therefore

Theorem B implies that S lies at the end of Γs(S) because every simple

b-module lies at the end of its AR-component.

As a corollary, we obtain Theorem C of the Introduction.

Proof of Theorem C. Let G be a finite group with noncyclic abelian

Sylow p-subgroups. As B0(kG)∼=B0(k G/Op′(G)) as k-algebras, we may

assume that Op′(G) = 1. Therefore, by Proposition 6.2, every simple

B0(kG)-module lies at the end of its AR-component if every simple

B0(k O
p′(G))-module lies at the end of its AR-component. Now if B0(kG)

contains a periodic simple module, then by Corollary 5.3 we must have

that Op′(G) =H1 is a nonabelian finite simple group with noncyclic abelian

Sylow p-subgroups, then the claim holds by Corollary 5.4. Therefore we may

assume that B0(kG), and hence B0(k O
p′(G)), contains no periodic simple

module. In this case, if one of Conditions (i), (ii), or (iii) holds, then the

claim follows from Proposition 5.6.

Now Corollary D is a direct consequence of Theorem C.

§7. Principal 3-blocks

We now fix p= 3, and continue assuming that G is a finite group with

noncyclic Sylow 3-subgroups, so that B0(kG) is wild. We may also assume

that O3′(G) = 1.

We start by investigating principal 3-blocks of nonabelian finite simple

groups with abelian defect group. To this aim, we recall that the list of

nonabelian finite simple groups with abelian Sylow 3-subgroups is known

by the classification of finite simple groups and was determined by Paul

Fong (in an unpublished manuscript).
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Proposition 7.1. [25, Proposition 4.3] If G is a nonabelian finite sim-

ple group with noncyclic abelian Sylow 3-subgroup, then G is one of:

(i) A7, A8, M11, M22, M23, HS, O′N ;

(ii) PSL3(q) for a prime power q such that 3||(q − 1);

(iii) PSU3(q
2) for a prime power q such that 3||(q + 1);

(iv) PSp4(q) for a prime power q such that 3|(q − 1);

(v) PSp4(q) for a prime power q such that q > 2 and 3|(q + 1);

(vi) PSL4(q) for a prime power q such that q > 2 and 3|(q + 1);

(vii) PSU4(q
2) for a prime power q such that 3|(q − 1);

(viii) PSL5(q) for a prime power q such that 3|(q + 1);

(ix) PSU5(q
2) for a prime power q such that 3|(q − 1); or

(x) PSL2(3
n) for an integer n> 2.

As a consequence we obtain:

Proposition 7.2. If G is a nonabelian finite simple group with non-

cyclic abelian Sylow 3-subgroups, then every simple B0(kG)-modules lies at

the end of its component in Γs(B0(kG)).

Proof. Let P ∈ Syl3(G), and set N =NG(P ) and B0 =B0(kG). We go

through the list of groups in Proposition 7.1.

In case (i), in all cases all simple B0-modules lie at the end of their

component in Γs(B0) by Theorem 3.2(b): indeed if G is one of A8, M22 or

O′N , then one checks from GAP [14] that the Cartan matrix of B0 has no

diagonal entry equal to 2. If G is one of A7, M11, M23, or HS, then one

checks from GAP [14] that the Cartan matrix of B0 does not have the shape

of Theorem 3.2(b) either.

In case (ii), then the Cartan matrix of B0 is computed in [28, Table 2]

and does not satisfy Theorem 3.2(b).

Next if G is one of the groups listed in Proposition 7.1(iii), (iv), (vii),

or (ix), then it is proven in [25, Lemma 3.7] that B0 is Puig equivalent

to B0(kN). But N has a nontrivial normal Sylow 3-subgroup, therefore all

simple B0(kN)-modules lie at the end of their components in Γs(B0(kN))

by Theorem 3.1(a), and therefore so do the simple B0-modules via the latter

Puig (Morita) equivalence.

In case (v), the decomposition numbers of B0 were computed by White

and Okuyama–Waki. If q is even then we read from [36, Table II] that each
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column of the decomposition matrix of B0 has at least 3 positive entries. If

q is odd, then the decomposition matrix of B0 is given in [35, Theorem 4.2]

up to two parameters α and β. But [33, Theorem 2.3] proves that α ∈ {1, 2}.
This is enough to see that each column of the decomposition matrix of B0

has at least 3 positive entries. Therefore in both cases all the diagonal entries

of the Cartan matrix of B0 are at least 3.

In cases (vi) and (viii), we proceed as follows. For n ∈ {4, 5} fixed, we may

regard B0(kPSLn(q)) as the principal block of SLn(q) as 3 - |Z(SLn(q))|.
Then we check that the Cartan matrix of B0(kGLn(q)) does not satisfy

Theorem 3.2(b). To this end we use the information on the decomposition

numbers of B0(kGLn(q)) provided in [19, Appendix I]. In both cases, it

is enough to consider only the square submatrix ∆n,0 of the decomposition

matrix of B0(kGLn(q)) whose rows are indexed by the unipotent characters.

Both in case n= 4 and n= 5, there are five modular characters in the

principal block (using [13]) and

∆4,0 =


(4) 1
(31) 1 1
(22) 1 1
(212) 1 1 1 1
(14) 1 1 1

 ∆5,0 =


(5) 1
(32) 1
(312) 1 1 1
(221) 1 1 1
(15) 1 1 1

.

(See e.g., [24, Propositions 3.1 and 4.1].) It follows that the Cartan integers

of B0(GLn(q)) have lower bounds given by the entries of the following

matrices:

T∆4,0∆4,0 =


4 2 1 2 1
2 3 2 1 0
1 2 2 1 0
2 1 1 2 1
1 0 0 1 1

 T∆5,0∆5,0 =


3 1 2 0 1
1 3 2 1 0
2 2 3 1 1
0 1 1 1 0
1 0 1 0 1


Therefore the Cartan matrix of B0(kGLn(q)) cannot satisfy Theorem 3.2(b),

and we conclude that all simple B0(kGLn(q))-modules lie at the end of their

AR-components. Now, from the known values of the unipotent characters of

GLn(q), we easily check using CHEVIE [6] that the dimensions of the simple

modules in B0(kGLn(q)) are prime to 3. Hence they cannot be periodic

by [5], as 3(a−1) must divide the dimension of any simple periodic module,

where a= the p-rank of the group, but in our case a> 2. Therefore every
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simple B0(kSLn(q))-module lies at the end of its AR-component by [21,

Lemma 1.5].

Finally, if G= PSL2(3
n) for some integer n> 2, then the claim follows

from Theorem 3.1(c) as G is a finite simple group of Lie type in defining

characteristic.

As a corollary we obtain Theorem E of the Introduction.

Proof of Theorem E. The claim now follows from Corollary D together

with Proposition 7.1.
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