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ON THE BRAUER GROUP OF ALGEBRAS HAVING A 
GRADING AND AN ACTION 

MORRIS ORZECH 

1. Introduction. Beginning with Wall's introduction [19] of Z2-graded 
central simple algebras over a field K, a number of related generalizations 
of the Brauer group have been proposed. In [16] the field K was replaced by 
a commutative ring R, building upon the theory developed in [1]. The concept 
of a G-graded central simple i^-algebra (G an abelian group) was first defined 
in [12]; this work and that of [16] was subsequently unified in [6] and [7] 
via the construction and computation of the graded Brauer group B4>{R, G) 
(</> a bilinear form from G X G to U(R), the units of R). In [13] Long recently 
introduced the Brauer group BD(R, G) of i^-algebras which have a com
patible G-action and G-grading, thus extending not only the previously men
tioned work, but the equivariant theory put forth in [8]. And in [14] Long 
constructed a generalization of BD(R, G), replacing G (or more precisely the 
Hopf algebra RG) by a Hopf algebra H to obtain BD(R, H). 

After defining the generalized Brauer groups in [13] and [14] the main 
thrust of Long's work was to compute these groups in special cases, the most 
important being that where G is cyclic of prime order p and R is a separably 
closed field; [13] treated the case where p 9e char(i^), [14] dealt with p = 
char(i^). The present paper has two related aims: 

1) To extend Long's computations by relaxing considerably the require
ment that R be an algebraically closed field and by unifying the distinct 
treatments in [13] and [14] ; and 

2) to develop some of the theory relating to the internal structure of the 
algebras comprising BD(RyG), a task accomplished in [7] and [16] for the 
algebras studied there, but not touched upon in Long's work for R other than 
a field. 

The second aim has been subjugated to the first, and the results derived in 
Sections 2 and 3 are generally those we need for our computations in Sections 
3 and 4. However, we have included some examples relating to BD(R, Z2 X Z2) 
as these can serve as test cases for extending our work to non-cyclic groups. 
We have avoided questions which require a Morita theory for G-dimodules 
(which is being developed by my student M. Beattie) in order to maintain 
our focus on the computation of BD(R, G), and some of our results in Sections 
2 and 3 could be improved with such a theory. Theorems 4.4 and 5.1 contain 
our main results. The methods of proof represent a slight reformulation of 
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Long's methods, one aiming to keep the presentat ion relevant to finite abelian 
groups G (rather than cyclic ones) wherever possible. 

Throughou t this paper R will denote a commuta t ive ring, G a finite abelian 
group. 

We would like to thank L. N . Childs for helpful suggestions and observa
tions regarding the material presented here. 

2. T h e c e n t e r of a G - A z u m a y a a lgebra . We recall some definitions and 
results from [5]: H f, g : S —> T are homomorphisms of commuta t ive rings, 
they are said to be strongly distinct if for every nonzero idempotent e of T, 
there exists 5 in S such t ha t f(s)e 9e g(s)e. Let G be a finite group of au to
morphisms of the commuta t ive ring S and let R = SG. T h e following condition 
may then be taken as defining S to be a Galois extension of R with group G: 
S is a separable i^-algebra and the elements of G are strongly distinct. I t 
follows t ha t 5 is a projective i^-module of finite type. If S is connected (has 
no nontrivial idempotents) then the condition t ha t the elements of G be 
strongly distinct may be removed. We begin by sharpening this observation, 
using an a rgument introduced in [10, Theorem 7]. 

2.1. LEMMA. Let R be connected, S a separable R-algebra which is a projective 
R-module of finite type. Let G be a finite group of R-algebra automorphisms of S 
such that SG = R. 

(a) S is a Galois extension of R with group G. 
(b) Assume G is abelian. Then there is a subgroup H of G, a set of idempotents 

{e^ir G G /H} in S satisfying aew = e~T for a in G, and an R-subalgebra T of S 
which is a Galois extension of R with group H and for which S = TI^^G/H Te*. 

(c) With the notation as in (b) , SH = TLT^G/H Rer. 

Proof, (a) Since 5* has a well-defined rank over R, it decomposes as a product 
of connected /^-algebras which are necessarily inseparab le [15, Corollary 4.5]: 

5 = n s^ 
z = l 

Let 1 = X ei with et in St. The et are the minimal idempotents of S, hence 
are permuted by the elements of G. Let E = {ei, . . . , ek\ and let Ei, . . . , Em 

be the orbits in E with respect to the action of G. Let ft be the sum of the 
elements of Eu i = 1, . . . , m. Clearly ft is in SG = R, and J2fi = 1- Since R 
is connected, we conclude t ha t there is only one orbit, i.e. G acts transit ively 
on E. Let H = {<r\aei — e\\ ; then H is the set of elements of G fixing et as 
well, for i — 1, . . . , k. There is a bijection G/H <^> E and we may write 

E = {ev\ir G G/H}, (TeT = e-w 

for a in G. 
T o show 5 is a Galois extension of R we need to show tha t any two elements 

of G are strongly distinct. Since any idempotent in 5 is a sum of certain of 
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the eT, it suffices to show tha t <r(s)ev = ser for all s in S implies a = 1. Replac
ing j by T - 1 ( S ) in the last equali ty, and applying r, yields se^K = a(s)e-T. 
Summing as r ranges over a set of coset representatives of H in G, we conclude 
t h a t s = as. 

(b) Let 1 = cri, . . . , <rk be a set of coset representatives of H in G. Wri te 
ei for eji and define 

T = j X) ^OO^sm SY . 

There is a well-defined action of H on T given by 77 (X) (Ti(s)e^) = J2 (Tiv(s)e{. 
T o show t h a t T is a Galois extension of R we must verify t ha t H is a group 
of automorphisms of T, and tha t TH = R. 

Suppose rj in H is the identi ty on T. Then r](s)ei = sei for all 5 in 5 , and 
77 = 1 since the elements of G are strongly distinct. 

Suppose x = X) °i(s)ei is m ^ - For 0- in G let a = akr], with 77 in iJ . Then 
x is in R since 

^ = lLi<Tk(Tiy(s)eF&ri = 2 ; o^CO^ = x. 

I t is clear t ha t 5 = YlT^G/H TeT. 
(c) Let x = J2 ^eT be in S H , with tr in T. Then 7 7 ^ ) ^ = ^ for all 77 in i J . 

Bu t / ^ = tT for ^ in T, and since 7 ^ = R, it follows tha t 5 ^ = I I ReT. 

T h e objects of main interest to us will be G-Azumaya algebras, which we 
proceed to define, following the terminology of [13]. A G-dimodule algebra A 
is an i^-algebra which is graded by G {A = ®a^GAff1 with A„AT C AVT) 
and on which G acts as i^-algebra automorphisms (not necessarily faithfully) 
in such a way tha t aAT C A T for a, r in G. For A, B two G-dimodule algebras, 
their smash product A # B is defined to be the i^-module i 0 ^ given an 
i^-algebra s t ructure satisfying 

(afb){cjfd) = Z*a'(c)#bJ, 

and having diagonal G-action and the usual (codiagonal) G-grading. We shall 
abbreviate formulas such as the above to 

(a#b)(c#d) = abc#bd 

this sort of expression being interpreted as valid for homogeneous elements. 
T h e algebra Â is defined to be {â\a in A}, with multiplication ab — aba and 
natural G-action and grading. Maps 

n:A#Â->EndR(A), 77 : A # A - • E n d * ( 4 ) " 

are defined by M ( # # b)(x) = abxb and ri(â#b) = fop, where f(x) = xaxb. 
These maps are G-dimodule algebra homomorphisms, where E n d R ( A ) has 
G-action given by (ah)(x) = <j(h((j~lx)) (see [13] for more details) . 

The G-dimodule algebra A is said to be G-Azumaya if it is a faithful pro
jective i^-module of finite type and /x, 77 are isomorphisms. 
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2.2. P R O P O S I T I O N . Let A be a G-Azumaya R-algebra, Z its center, 

K = {ae G\a\z = 1}. 

(a) If aa = a for all a in A, then Zff C R. Hence ZG = R = Z\. 
(b) A is a separable R-algebra, and an Azumaya Z-algebra. 
(c) Assume R is connected. Then Z is a Galois extension of R with group 

G/K. In particular, Z is R-projective. 

Proof, (a) This follows by noting t ha t /x(l # z) = / x ( z # I ) (or rj(l#z) = 
rj(z # 1)) implies z is in R (see [13, Theorem 1.9]). 

(b) Let t in E n d * ( 4 ) satisfy t(Aa) = 0 for a ^ 1, / ( l ) = 1 [15, Corollary 
1.4]. Let e = Y^âiftbi in 1 # ,4 be such t h a t rj(e) = *°*. Then t(x) = 
E *a*x*<. For a in ,4 let/0?? , gop in EndB(A) be defined by fop = ry(E â â , # bt), 
gop = ^ Œ âi# bta). Then g(x) = / (x)a and 

/ ( # ) = Z xCLxai%bi = Z xat(x). 

But xat{%) = t(x)a since /(x) = 0 for x homogeneous of grade ^ 1. T h u s 
/ = g. Also, Z flf&< = 1. Since the map Â # A —> ,4 0 ^4op given by â (g) 6 —> 
a ® bop is an /^-module isomorphism, X} a* (g) 6* is a separabil i ty idempotent 
for A. Since A is 7^-separable it is also Z-separable. 

(c) Since A is inseparable , so is its center Z. Now A is an ^-projec t ive 
Z-module, hence A is Z-projective by separabil i ty of Z. Hence Z is a direct 
Z-summand of A, hence is ^-project ive . Moreover, ZG = R by (a) . I t follows 
from Lemma 2.1 t ha t Z is a Galois extension of R with group G/K. 

2.3. Remark. I t follows by looking a t the map / used above t h a t the "di -
module centers" of A are both R, i.e., 

{x G A\axa = ax for all a in A) = R, 

{x G ^4|xax = xa for all a in A} = R. 

2.4. P R O P O S I T I O N . Let A be a G-Azumaya R-algebra. Suppose I is a two-sided 
ideal which is either a G-submodule of A or a homogeneous ideal. Then I = I0A 
for I0 an ideal of R. 

Proof. If / is a C7-submodule (respectively, G-homogeneous) it is easy to 
see t ha t I # Â (respectively, Â # / ) is a two-sided ideal of A # Â (respectively, 
Â#A). Since EndR(A) and EndR(A)op are Azumaya i^-algebras, all their 
two-sided ideals are extensions of ideals of R. Thus , in the C7-module case, 
there is an ideal I0 of R such t ha t I # Â = I0A # Â and I0 = (I # Â) C\ R 
[15, Corollary 2.11]; the la t ter equali ty implies t ha t I0A Ç / , and since Â 
is faithfully flat, I0A = / . T h e other case is done similarly. 

2.5. COROLLARY. Let R be connected and A a G-Azumaya R-algebra with 
center Z. 

(a) If Za 9^ 0, then annA(Z ( T) , the annihilator of Za in A, is 0. 
(b) H = {<j\Za 9^ 0} is a subgroup of G. 
(c) Suppose Ris a domain and z is a nonzero element of Za. Then ann A (z) = 0. 
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Proof. Let I = [a £ A\Zaa = 0}. Then / = I0A for some ideal I0 of R, by 
Proposition 2.4. Hence ZaI0 = 0. But Za is ^-project ive by Proposition 2.2, 
and because i^ is connected, Z<, is i^-faithful [3, Proposition 4.6, p. 70]; hence 
I0 = 0 if Zff 9^ 0. This proves (a), from which (b) follows easily. If R is a 
domain each Za is torsion-free. Then (c) is proved by redefining / = annA(;s) 
and using the argument above. This completes the proof. 

L e t / : G X G —» £/(i?) be a 2-cocycle of G in the units of R, with G acting 
trivially on U(R). We shall say / is abelian if f(a, r ) = / ( r , c) for o-, r in G. 
T h e crossed product RGf is denned to be the i?-algebra which as an i^-module 
is freely generated by elements xa, a in G, the multiplication being determined 
by the requirement t ha t xaxT = f(a, T)xaT. The algebra RGf has a natural 
G-grading relative to the Rxff. 

If RGf is a G-dimodule algebra then the G-action must be given by axT — 
0(o-, T)XT. I t is easily checked tha t 0 is a bilinear map from G X G to U(R). 
We shall write RGf4, for this G-dimodule algebra. 

2.6. COROLLARY. Let R be a field, A a G-Azumaya R-algebra with center Z. 
Let H = {alZ, * 0}. 

(a) There exist an abelian cocycle f : H X H —-> U(R) and a bilinear map 
<j>: G X # -> U(R) for which 0(G, r ) = 1 implies r = 1, 5WcA /Aa* Z ^ i^77/ . 

(b) c h a r ^ | [ i J : 1]. 

Proof. This is proved in [12, Theorem 3.1], bu t we shall repeat this proof 
for later reference. For a in H let xa 9^ 0 be in Za and let o(a) be the order of a. 
By Corollary 2.5 x(r

0(cr) is nonzero, and is in R by Proposition 2.2. Thus Za = 
ZaX/^ Q Rxc and Za is one-dimensional. Since xaxT ^ O w e have t ha t xaxT = 
f(a, r)x<rT. The remarks preceding this discussion, together with Proposition 
2.2, complete the proof of (a). I t is shown in [9, Lemma 4] t ha t if RHf is 
^-separable then [H : 1] is a unit in R. Then (b) follows from separabili ty of 
A (Proposition 2.2), which implies t ha t of Z. 

2.7. COROLLARY. Let G be cyclic of prime order p. Let R be connected and p 
not a unit in R. Then any G-Azumaya R-algebra is R-Azumaya. 

Proof. Let A be G-Azumaya, with center Z. Then A is ^-separable by 
Proposition 2.2. Let m be a maximal ideal in R containing p. Then ^4/w^4 is 
a G-Azumaya i^/m-algebra with center Z/mZ [13, Theorem 1.7; 15, Proposi
tion 2.3]. Because of (b) of Corollary 2.6 and the fact t ha t G has order p we 
have tha t Z/mZ = R/m. By Proposition 2.2 Z is ^-project ive and R is a 
direct summand of Z with complementary summand S = ©ff^i Za. Then 
mS = S, so S is annihilated by some element 1 — r, r in m [15, Lemma 1.2]. 
By Corollary 2.5 5 must be 0, thus Z = R. This generalizes [14, Proposition 
5.2]. 

Apropos of the last result, we may inquire when an algebra of the form 
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RGf* is G-Azumaya. A ra ther precise criterion may be given, allowing some 
explicit constructions of G-Azumaya i^-algebras. 

Let A = RGf*, f a cocycle (not necessarily abelian) in Z2(G, U(R)), 
<t> : G X G —» U(R) a bilinear map . T o verify t h a t A is G-Azumaya it is suffi
cient in this s i tuat ion to check t ha t 

M : A #Â->EndR(A) and y : A # A -> EndR(A)op 

are isomorphisms, or even epimorphisms since we are dealing with free R-
modules. A further simplification is possible. T h e left A -s t ructure on A 
induces left and right A -s tructures on End R(A). There are also such s t ructures 
on A # Â making /z an (A, ^4)-bimodule map , viz. 

a(x#y) = ax#y; (x # y)b = xvb # y. 

Using the right A -s tructure on A, a similar s t a tement may be made for 77. 
Now to show jit, 77 are onto, it suffices to show t h a t for each a, T in G there 

exists afftT in A # Â (respectively, ba>T in Â $ A) such t ha t 

li(afftT)(xy) = ô7>ffxr = rj(bv tT)(Xy). 

By applying the remarks immediately above, it is easy to check t ha t fi, for 
example, is onto if and only if there exists an a in A # Â such t ha t n(a) (xy) = 
<5ii7. These considerations may be applied to yield: 

2.8. P R O P O S I T I O N . Let A = RG/*. Then A is G-Azumaya if and only if each 
of the following two matrices is invertible: 

(4>(a, P)ca,p), (0(0, o r 1 ) ^ . * ) , ca3 = / ( o r 1 , $)f{arxfi, a). 

If f is abelian, then A is G-Azumaya if and only if the matrix (<£(«, 13)) is in
vertible. This implies 4> is non-degenerate, and is equivalent to it in case R is 
connected and [G : 1] is a unit in R. 

Proof. The first s t a tement is a straightforward consequence of the discussion 
above — /x, 77 are onto if there exist (ra^), (sa,p) such t ha t 

/M X) ra,0Xa-i#Xa)(Xy) = ôifj8 = A X Sa,$xa-i # xa) (xy). 

If / is abelian then 

ca3 = / ( f t a-^fifte-1, a) = f((3, l)f(a~\ a). 

Since the diagonal matrices d i ag ( / ( /3 , 1)) , d i a g ( / ( a _ 1 , a ) ) are invertible, the 
matr ix (0(a, (3)) being invertible is equivalent to the two matrices above 
being invertible. 

By saying <j> is non-degenerate we mean t h a t the two induced maps 
G—»Hom(G, U(R)) are one-one. I t is clear t ha t if <£(«, G) = 1 = 0 ( 1 , G), 
with a 9^ I, then (<£(<*, 0)) is not invertible. Now if i? is connected and 
n = [G : 1] is a uni t in i?, the number of w-th roots of uni ty in i? is a t most 
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n [11, Corollary 2.5]. Then the classical orthogonality relations hold for 
homomorphisms x, *A •' G —> U(R): 

no-'x.*» 

(see, for example [18, § 126]). By applying this formula to 0(1, ), <t>(a, ), 
we obtain the last statement. 

2.9. Remarks, (a) Note that if [G : 1] is a unit and R is connected, then 
G —> Horn (G, U(R)) being one-one implies it is onto as well. Thus if 0(<r, G) = 
1 implies a = 1, it follows that 0(G, r) = 1 implies r = 1. Thus, non-de
generacy of 4> need be checked in only one variable. 

(b) Let A = RGf* and suppose 0, viewed as a cocycle in Z2(G, U(R)), 
is a coboundary. Let ĉ  be chosen so that cacr = car<b(G, T) for o- in G. Then the 
correspondence establishes an isomorphism 4̂ = 4̂ of G-dimodule 
algebras. 

2.10. Examples. Let G = C2 X C2, the Klein four-group; write G = 
{1, 0-, r, OT}. Suppose 2 is a unit in R, and define bilinear maps 0, i/' by the 
tables below: 

1 a r err 

1 1 1 1 1 

a 1 - 1 - 1 1 

T 1 1 1 1 

GT 1 - 1 - 1 1 

1 cr T (TT 

1 1 1 1 1 

a 1 - 1 1 - 1 

T 1 - 1 - 1 1 

(TT 1 1 - 1 - 1 

0 

The matrix (^(a-1, fi)\p(a~lfi, a)) is easily seen to be invertible. Hence, by 
Proposition 2.8, RG+1 is G-Azumaya. This shows that if/ is not abelian, RG^ 
may be G-Azumaya even if <j> is degenerate. 

The algebra RG^ may be given another explicit interpretation. Identify 
1, xff, xT, xar with the following matrices 

1 = [o i j ' x' = L-i oj' XT = \_O - i j ' XffT = [i oj-
Then RGJ = M2(R), the ring of 2 X 2 matrices over R; the action of G 

is seen to be determined by requiring that 

[a bl [ a -bl [a bl Yd cl 
\c d] l-c d]1 \c d\ " lb a] 
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It is easily checked that RG/ = RG+fo*, where f°(a, 13) = f(P,a). From 
this it is easy to see that RG<j? is commutative for 0, \p as above. Thus we 
have a situation where a G-Azumaya i^-algebra A is central, but Â is com
mutative. This makes concrete the observation [13, p. 250] that if G is not 
cyclic, then BAz(R, G), the set of i^-central G-Azumaya i^-algebras, need 
not yield a subgroup of BD(R, G). 

2.11. PROPOSITION. Let R be connected, A a G-Azumaya R-algebra with center 
Z. Let 

K = {a G G\az = z for all z in Z], H = {a G G\Za ^ 0}. 

Then 
(a) Za has rank one and as an element of Pic(R) is annihilated by the order 

of o-, hence by exp(if). 
(b) [H : I] is a unit in R. 
(c) [G:K] = [H: 1]; if H H K = {1} then G = H X K. 
(d) The multiplication map Za <8> Zr —» Zor is an isomorphism for <r, r in H. 
(e) Let m = exp(H) and suppose Picm(R), the m-torsion subgroup of Pic (R), 

is zero. Then Z = RH^ with f abelian. If H C\ K = {1} then </> w non-degenerate 
and Z is G-Azumaya. 

Proof. Because R is connected, Z has a well-defined rank over i?, say n. 
Let £> be a maximal ideal of i?; we have R/p — RP/pRv. Then Rv ® R Z = RP

n, 
hence Z/pZ has dimension n over R/p. By Proposition 2.2 A is separable 
over R, hence by [15, Proposition 2.5] and [13, Theorem 1.7], A/pA is a 
G-Azumaya i^/^-algebra with center Z/pZ. Also ZalpZa T^ 0 for a in H; for 
otherwise there would exist an element 1 — a, a in pf annihilating Zff [15, 
Lemma 1.2], contradicting Corollary 2.5. We conclude from Corollary 2.6 
that Za/pZa has dimension one over R/p, hence each Za has rank one. More
over, [H : 1] is a unit in R/p for each p, hence is a unit in R. This proves (b) 
and part of (a). 

We showed in Proposition 2.2 that Z is a Galois extension of R with group 
G/K. Thus Z has rank [G/K : 1], so that [G : K] = [H : 1]. Thus (c) follows. 

To show that m^^ : Za ® ZT —» Z ^ is an isomorphism it suffices to show 
it is onto, since all modules involved are projective of rank one. This can be 
done by showing that mfftT is onto modulo each maximal ideal p of R. Details 
may be found in [7, Proof of Theorem 4.3, p. 319]. This proves (d) and inciden
tally shows that Za is annihilated by the order of a as an element of Pic(i^), 
since Z\ = R by Proposition 2.2. Hence (a) is also proved. 

If Picm(i?) = 0 for m = exp(H) then by (a) Za is free of rank one for each 
a in H. The proof of Corollary 2.6, aided by (d), shows that Z ~ RHf*. Then 
Proposition 2.8 and (c) above prove the rest of (e). 

2.12. Remarks. The facts deduced above may be applied to strengthen a 
result of Knus, who in [12, Theorem 3.1] obtains a structure theorem for 
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G-graded central simple algebras A over a field R, where char R \ d im^ A. 
These algebras may be given a G-action by defining aa = X) 0((7> f)#r, where 
<j> : G X G -+ U(R) is a given bilinear form relative to which all constructions 
in [12] are carried out. Then a G-graded Azumaya i?-algebra becomes a 
G-Azumaya algebra. Knus obtains tha t H X H' ÇZ G, assuming tha t 0 is 
symmetric , and non-degenerate on every subgroup of G ; H is as in 2.11 and 
Hf = {cr|0((r, H) = 1}. I t is easily seen t ha t H' = K and H H X" = {1} by 
non-degeneracy of 0. Then (c) implies t ha t H X H' is actually equal to G. 

3. S t r u c t u r e of specia l G-Azumaya a lgebras . We begin with a descrip
tion of how a G-Azumaya i^-algebra decomposes when its center is particularly 
nice. 

3.1. PROPOSITION. Let R be connected and A a G-Azumaya R-algebra with 
center Z. Assume G acts faithfully on Z, so that Z is a Galois extension of R with 
group G (see Proposition 2.2). 

(a) Suppose Z is the trivial Galois extension, i.e. Z = YYaç.G Rev with the ea 

pairwise orthogonal idempotents of sum 1 and aeT = ea7. Then A == AG # Z as 
G-dimodule algebras. Moreover AG = Aei as R-algebras and each is an Azumaya 
R-algebra. 

(b) Suppose Za = Rua with uaua-\ = 1 for a in G. Then A = Z # Ai as 
G-dimodule algebras and A\ is an Azumaya R-algebra. 

(c) If the hypotheses of (a) and (b) hold then [AG] = [Ai] in B(R), the 
Brauer group of R. 

Proof. Given an element a in A let t(a) = ^ (<Ta)eff. Then tA = A °. Any 
element a in A can be expressed as J2 a(a)ea with a (a) in A G by taking a (a) = 
t(a~1a); such an expression is unique, for if z = ^x(a)e„ = ^,y{<r)eff then 
XIT (rz)eyT = x(y) for y in G, hence x(y) = y(y). Define h : AG # Z —> A by 
h(x # z) — xz. Then h is an isomorphism of jR-algebras which preserves the 
action and grading by G. 

R is embedded in Aei via r —> re\, since rei = 0 implies rea = 0 and r = 0. 
Define j : ^4#i —•» A G by j(ae\) = £(a). If aei = 0, then (aa)ea = 0, so j is 
well-defined. I t is clear t ha t j is an .R-algebra isomorphism. AG # Z and 
4̂ G ® Z are isomorphic since G acts trivially on A G. By Proposition 2.2 and 

[2, Proposition 2.18, p . 98] we know tha t A and Z are inseparable (with 
center Z) hence A G is inseparable with center i?. 

(b) Define 5 : A —> Ai by sa = J2 &au<r-\. Then ŝ 4 = A\. By taking 
x(o-) = s(a„) one can show easily tha t each element x of A can be expressed 
as X)x(°")^<r w i t h x(o-) in Ai. Suppose z = X}x(o-)^, = ^y{^)ua. Then 
zT = x(r)uT = y(r)uT and x ( r ) = y(r). Thus the x(cr) are unique. Define 
h : Z # Ai —* A by h(z § x) = zx. This is an isomorphism of dimodule algebras. 
T h a t A i is i^-Azumaya follows by the same kind of a rgument used in (a) to 
show tha t A G is i^-Azumaya. 

(c) If the hypotheses of (a) and (b) hold we have an isomorphism of R-
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algebras Z ® AX^AG ® Z which is the identity on Z. Thus [Z ® A{\ = 
[Z ® AG] in B(Z). But the map R->Z splits, so B(R) ->B(Z) is a mono-
morphism, hence [A{\ — [AG]. 

The Brauer group BD(R, G) of G-Azumaya P-algebras is defined as follows. 
Let P be a projective P-module of finite type having a G-grading P = ® Pa 

and a G-action satisfying o-PT = PT. Then End#(P) inherits a G-grading and 
a G-action ([c/](x) = vf (<r~lx)), and is G-Azumaya P-algebra; such a G-
Azumaya P-algebra will be said to be trivial. We say that the G-Azumaya 
P-algebras A and B are equivalent if A # EndR(P) ^ B # EndR(Q) with 
End#(P) and Endi2((2) trivial. This is an equivalence relation and the equiv
alence classes form a group BD(R, G). The multiplication in BD(R, G) is 
via [A][B] = [A#E\\ [Â] is the inverse of [A], Details may be found in [13]. 

Let BD0(R, G) denote the subset of BD(R, G) consisting of equivalence 
classes of G-Azumaya P-algebras among whose representatives is an P-
Azumaya algebra, i.e. a central P-algebra (since separability follows from 
Proposition 2.2). Long uses the notation J5Az(P, G) for this set; he also 
states the following result for R a separably closed field of characteristic 
T^p, G a cyclic group of prime order p and A = EndR(M) [13, Lemma 2.2]. 
T h e proof below is a rewording of t h a t in [13] in our context . 

3.2. LEMMA. Assume H2(G, U(R)) = 0, where G acts trivially on R. Let 
A, B be G-Azumaya R-algebras. Assume A has center R and that G acts as inner 
automorphisms of A. Then A # B = A ® B as G-module algebras. 

Proof. Let ua be such that u^au^1 = aa for a in A, with U\ — 1. Then 
f(a, T) = UaUrUar"1 is in the center of A, hence defines a 2-cocycle / : G X 
G —> U(R). T h e n / is a coboundary ôg with g normalized (g(l) = 1). Thus ua 

may be replaced by uag(<i)~l so we may assume uaur = uaT. Then 

j : A # B -> A ® B, 

defined by j(a #b) = aua ® b for b homogeneous of grade a-, is an isomor
phism of P-algebras and of G-modules. 

3.3. COROLLARY. Assume H2(G, U(R)) = 0. Then BD0(R, G) is the subset 
of BD(R, G) consisting of those classes of G-Azumaya R-algebras every repre
sentative of which is R-Azumaya. 

Proof. This follows from the definition of BD(R, G), using the facts that 
Endfl(P) is P-Azumaya and that if A ® B is P-Azumaya, so is A [15, Exercise 
2.15]. 

3.4. PROPOSITION. Suppose one of the following sets of conditions holds: 
(i) Picm(P) = 0 where m = exp(G), and H*(G, U(R)) = 0. 

(ii) G is a cyclic group. 
Then BD0(R, G) is a subgroup of BD(R, G). 
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Proof. First assume G is cyclic. Let A, B be G-Azumaya i^-algebras which 
are i?-Azumaya as well. We shall show tha t ii C = A # B or C = Â then C is 
also i^-Azumaya. T o do this it suffices to prove tha t C/pC is i?//>-Azumaya 
for each maximal ideal p of R [2, Theorem 4.1, p. 104]. Since C/pC = 
A/pA # R/pB/mB and À/mÂ = A/mA, we may assume R is a field, which we 
now do. Let K be the algebraic closure of R. If K ® # C is i£-Azumaya then C 
is i^-Azumaya [15, Lemma 4.6]. We may thus assume R is algebraically closed. 
Then H2(G} U(R)) = 0 since for a cyclic group G of order n acting trivially 
on R, H*(G, U(R)) = U(R)/U(R)n_[4, p. 251]_. By Lemma 3.2 we conclude 
t h a t A # B is i^-Azumaya. Now A #A ^ A ® A, again by Lemma 3.2. Hence 
A ® Â ~ EndR(A), which is i^-Azumaya, from which it follows tha t À is 
i^-Azumaya [15, Exercise 2.15]. This completes the proof for the case where 
(ii) holds. If (i) holds we have tha t every element of G must act as an inner 
automorphism on A, since Picm(R) = 0 [12, Corollary 4.6, p. 108]. The 
hypotheses of Lemma 3.2 hold, and the conclusion we desire now follows. 

3.5. Remark. T h e example given in 2.10, where A is i?-central bu t Â is 
commuta t ive shows tha t some hypothesis is needed for BD0(R, G) to be a 
subgroup of BD(R, G). 

4. T h e i s o m o r p h i s m BD0(R, G) ^ B(R) X Aut(G). Proposition 4.2 below 
is a key result in computat ions we shall carry out generalizing and unifying 
two examples of Long [13, Theorem 2.5; 14, Theorem 5.8]. We shall mention 
its connection with work of Long and Sweedler following the proof, bu t first 
we require some preliminary remarks which will be useful in avoiding digres
sions within the proof. 

4.1 . Remarks, (a) Let A be a G-graded i^-algebra containing R and for which 
Ai is an i^-module of finite type. Let u be in A. To check tha t u is homogeneous 
it suffices to check tha t u + pA is homogeneous in A/pA for each maximal 
ideal p of R: for suppose this is the case and assume u^ ^ 0, a ^ r. Since ua 

and uT define multiplication maps from Ax to Aa and AT, and since 1 is in Au 

ua + pA is nonzero for all p. Thus uT + pA is zero for all p. Let / be the image 
of the map uT : Ai —> AT. We have / = pi, hence (1 — ap)I = 0 for some ap 

in p [15, Lemma 1.2]. Thus the annihilator of / is not contained in any maxi
mal ideal of R, and 1 = 0. 

(b) Let G be a finite abelian group. Let GR denote (RG)*, the i^-dual of 
the group algebra RG. We may identify GR with the set of functions from 
G to R. For a in G let ea be the function in GR given by ^ ( r ) = b„tT for all r 
in G. T h e formula (OV){T) = v(a~lr) defines a G-action on GR; then aeT = eaT. 
T h e multiplication m : RG ® RG induces a comultiplication 

A:GR->GR® GR 

since (RG ® RG)* and GR ® GR are isomorphic. I t is straightforward to 
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verify that A satisfies 

(*) A(i>) = E . e. ® <rh) = £ , (T-'V ® e9. 

Now let A be a G-graded i?-algebra, with A = © Aa. We define an action 
of GR on 4̂ by constructing it on homogeneous elements of A and extending 
linearly: 

va = E<r ^(o-)^, where a = J^ff a, and aa 6 -4*. 

Using the relation (ab)ff = E r a^r-i^ and manipulating sums, it is straight
forward to verify that: 

(**) v(ab) = Z.a f f(c7-^)(6) = £ . (cr-1z;)(a)^. 

4.2. PROPOSITION. L ^ G be a finite abelian group, A a G-graded R-algebra 
with center R. Assume A\ is a finitely generated R-module. Let u be a unit in A 
such that the inner automorphism u( )u~l preserves the grading on G. Then u is 
homogeneous. 

Proof. By the remark of 4.1 (a) we may assume R is a field. Let the G-grading 
on A induce a Gi?-action in the manner described in (b) of 4.1, so that for 
v in GR and x in Aa, vx = v(a)x. It is straightforward to verify that 

Aa = {x £ A\vx = v(<r)x for v in GR}. 

We shall make use of this characterization to show u is homogeneous. We 
continue to assume R is a field. 

Suppose x is a homogeneous element of A whose grade is r. By assumption, 
uxu~l is also in AT. Let w be in GR and apply the equalities (**) of Remark 
4.1(b), the first with a = uxu~x, b = u, the second with a = u, b = x; for v 
take TW. Then 

v(ux) = uxu~lw(u) = w(u)x. 

Since x is an arbitrary homogeneous element, it follows that u~lw{u) is in 
the center of A, i.e. in R, for any w in GR. Let w(u) = ru, with r in R. Write 
u = Yl u<n with w, in ^4 .̂ Then 

and w(o-) = r whenever ua ^ 0, since R is a field. In particular, w(u) = w(a)u 
for a chosen so that ua =̂  0. The characterization of Aa displayed above shows 
that u is homogeneous. 

4.3. Remarks, (a) The proposition above generalizes special cases proved 
by Long, viz. for A a central simple algebra over an algebraically closed field 
K and G a group of prime order p; char(i£) ^ p is done in [13, § 2, pp. 244-
245], char(X) = p in [14, pp. 589-593]. Our formulation avoids use of the 
necessity of every .R-algebra automorphism (respectively, ^-derivation) being 
inner, a fact used in [13] (respectively [14]). 
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(b) The discussion in 4.1(b) may be given a more general framework. 
A grading of the i^-module amounts to a co-action of the Hopf algebra 
H = RG on A, i.e. an i^-module map a, 

a : A -> A ® H, 

making certain diagrams commutative [14, Section 2]. The condition 
AaAT C Aar is reflected in a being an algebra map (or equivalently, in the 
multiplication map A ® A —> A being an iï-comodule map. The i7-comodule 
action on A induces an iJ*-module action on A, 

0 : H* ® A -+A, 

defined by /3(v ® a) = (1 ® v)(aa). That 4̂ is an if*-module follows from 4̂ 
being an iJ-comodule. But the condition that a is an algebra map also has its 
effect. It implies that (/3, H*) is a measuring from A to 4̂ in the sense of 
Sweedler [17, p. 137ff]. It is this condition of being a measuring that is sum
marized by our formula (**) in 4.1. 

4.4. THEOREM. Let G have exponent m and assume Picm(R) = 0 and that 
R has a primitive m-th root of 1. There is then a map 

p:BD0(R,G)-+Kut(G). 

If H2(G, U(R)) = 0 then f$ is a homomorphism. The map 

y : BD0(R, G)-+B(R) X Aut(G) 

defined by y ([A]) = ([A], @[A]) is then an epimorphism. If in addition R is 
connected and either of the following sets of conditions holds, y is an isomorphism: 

(i) [G : 1] is a unit in R; 
(ii ) G is cyclic of prime order p and R is a separately closed ring of characteristic p. 

Proof. Let A be a G-Azumaya i^-algebra with center R. Because PicTO (R) = 0, 
every i^-algebra automorphism of A whose order divides m is inner [2, Corol
lary 4.6, p. 108]. For a in G let ua be chosen so that act, = u^au^1. By Proposi
tion 4.2, u„ is homogeneous, and because A has center R the grade of u„ 
depends only on a and not on u9. Define aA : G —> G by 

a A (o") = grade of ua. 

It is clear that u^UjU^^1 commutes with all elements of A, hence is in U(R). 
It follows that aA is a group homomorphism. We now define &A : G —> G by 

Then fiA is a group homomorphism and in fact an automorphism. For suppose 
PA(?) — 1- Then aA(r) = r so that /xT has grade 1. Recall from Section 1 
that the map /x : A # À —» E n d ^ ^ ) , given by n(a#b)(x) = abxb, is an 
isomorphism. Because uT has grade r, it follows that n(l # ûr) = /*(wT#ï). 
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Thus uT is in R and its grade, r, must be 1. Thus f$A has trivial kernel and since 
G is finite fiA is onto as well. 

We proceed to show that fiA depends on the equivalence class of A in 
BD(R, G) rather than on A itself. Suppose [A] = [B] in BD(R, G), with A 
and B both i^-central. Then 

A#EndR(P) = B#EndR(Q) 

as dimodule algebras, for G-dimodules P and Q which are faithfully projective 
i^-modules. But 

A#EndR(P)9ÉA ® End*(P), 

and similarly for B, EndR(Q) by [13, Theorem 1.3]. The action of G on 
EndR(P) is defined by (<rf )(x) = af(a~lx), so that <rf = afa'1, elements of G 
being viewed as lying in EndR(P) by their given action on P. But G acts as 
grading-preserving maps on P, hence a has grade 1 as an element of EndR(P). 
Now with u„ inducing the action of G on A, ua ® a may be chosen to induce 
the G-action on A ® EndR(P). Since w, ® a has the same grade as uff, the 
desired conclusion follows and we have a well-defined map 

(3 : BD0(R,G) ->Aut(G) 

given by 0([A]) = fiA. 
Now assume H2(G, U(R)) = 0. Under this additional hypothesis BD0(R, G) 

is a subgroup of BD(R, G) (see Proposition 3.4). The ua which define the 
action of G on A may be chosen so that 

UffUj — uffT, U\ — 1, cruT = uT. 

It is a straightforward matter to verify from these equations that if ua are 
so chosen in A, vff in B and p = (3B(a), then up # va induces the action of a on 
C = A # B. But up # va has degree ctA(p)aB{a) and thus 

0C (cr) = dada)-1 = aaB (<r)-laA (p)"1 = M e O û ^ G M * ) ) 

= M/W)). 
This shows that 0^#i5 = @A o 05 . 

Now define y as in the statement of the current theorem. Under our hy
potheses that H2(G, U(R)) = 0 and Picm(i?) = 0 we know that A #B ^ 
A ® B (see Lemma 3.2) and it is clear that 7 is a homomorphism. We shall 
show that 7 maps onto B(R) X Aut(G). Let [A] in B(R) and j in Aut(G) 
be given. Let a: (or) = <rj((r)~l. Let P be a free i^-module on the basis xa, a in G, 
graded by Pa = Rxa. Define a G-action on P by TXff = xa(T)(r.LetB = End/jj(P), 
with induced grading and action. The induced G-action on B is such that 
acting by a is just conjugation by the element a viewed as lying in B. Let uff 

be a viewed as an element of B. Then ua has grade a (a). Let C = A ® B 
with the G-action and grading induced by the ones constructed on B, relative 
to the trivial ones on A. If C is G-Azumaya it is clear that y([C]) = ([A],j). 
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To prove that C is G-Azumaya one may use the following facts; the proof of 
the first of these is readily adapted from [14]: 

(1) There is an algebra map t : EndR(P) —> EndR(P)op given by / ( / ) (x) = 
(af)(x) for x in Pa. If j(a) = aa(a)~l defines an automorphism of G then t 
is an isomorphism [14, Lemma 5.6]. 

(2) To show /x : A # Â —> EndR(A) is an isomorphism it suffices to do this 
for R/p as p ranges over the maximal ideals of R (similarly for 

r,:Â#A-+Ends(A)°>). 

After thus reducing to R being a field, the argument in [14, Proposition 5.7] 
shows that A is G-Azumaya. This completes the proof that y is onto. 

Suppose now that y ([A]) = 0. This implies that as an P-algebra A ~ 
EndR(P) with P a faithfully projective P-module. If we can give P the 
structure of a G-dimodule such that the induced structure on A agrees with the 
one we started with, then [A] will be the trivial element of BD0(R, G). 

First we define the G-action on P. Choose uff in A such that ax = uaxu<rl 

for x in A, U\ = 1, uauT = uaT. Define ax = uff(x), giving a well-defined 
G-action on P (relative to the choice of the ua). 

Let H = RG, H* = GR} the dual Hopf algebra to RG. Having a G-grading 
on P is equivalent to making P into an PG-comodule, i.e. defining a co-action 
P —> P 0 H (cf. 4.3(b)). Because H is a projective P-module of finite type, 
Hom(P, P 0 H) is naturally isomorphic to Hom(iY* 0 P, P). Thus obtain
ing a G-grading on P is equivalent to making P into an i7*-module. 

Consider case (i) first. Let G = Gi X . . . X Gs, with G* cyclic. Let n = [G : 1], 
m = exp(G). Because #2(G, U(R)) = 0 it follows that H2(Gtj U(R)) = 0 
for i = 1, . . . , s [20, Theorem 2.1]. R contains a primitive ra-th root of 
unity and since n is a unit in R the dual group G* = Hom(G, U(R)) is iso
morphic to G and if* = PG*. Let TT : G* —> G be an isomorphism. The grading 
on 4̂ = E n d ^ P ) defines a G*-action by x(#) = EaGGX^K, and G* acts 
as P-algebra automorphisms of ^4. Thus for each % in G* there exists ux in 4̂ 
such that x(a) = uxaux-K Because H2(G*, [/(#)) ^H2(G, U(R)) = 0 it 
follows that we may choose the «x with U\ = 1, uxu$ = ux^ for %, 'A in G*. Now 
define an action of G* on P by x^ = ux{y) for y in P . This induces a G-grading 
as discussed above. 

The setting of (ii) is essentially that considered by Long in [14] ; the essential 
steps in Long's proof are his Propositions 5.1 and 5.3. The first of these (that 
the dual H* of the group algebra H = RG has basis 1*, d, d2, . . . , dp~1 where 
d satisfies dp = d and A(d) = 1* (8) d + d 0 1*) remains valid because R 
contains Fp. The second proposition hinges on the following two facts, whose 
validity in our setting holds by the indicated results: a derivation on an 
P-Azumaya algebra is inner [15, Proposition 4.11]; and Xv — X + r is a 
separable polynomial in R[X] for r in R (i.e. R[X]/(XP — X + r) is a separ
able extension of R) [11, Theorem 2.2]. We refer the reader to [14] for details. 
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5. T h e i s o m o r p h i s m BD(R, Cp) = B(R) X D2(p-i). Let p be a prime and 
G a cyclic group of order p. Assume R is connected and contains a p-th root 
for each of its elements, i.e. H2(G, U(R)) = 0. 

If p is not a uni t in R then every G-Azumaya i^-algebra is i?-Azumaya by 
Corollary 2.7. T h u s BD(R, G) = BD0(R, G) and by Theorem 4.4 we conclude 
t h a t BD(R, G) = B(R) X CP-i, where Cv-\ denotes a cyclic group of order 
p — 1. We shall concern ourselves with the case where p is a uni t in R. 

5.1. T H E O R E M . L ^ G &;y cyclic of prime order p. Let R be connected, with 
H2(G, U(R)) = 0, Pic„(i?) = 0 and pa unit in R. Then BD(R, G) ^B(R) X 
Z>2(p-i), where D2{P-D denotes a dihedral group with 2(p — 1) elements. 

Proof. T h e idea for this proof is taken from [13]. Because the set t ing there 
implies t h a t B(R) = 0 (R is a separably closed field) some unpleasant techni
calities are avoided which we shall find it necessary to deal with. We shall 
write 

D2{P-D = {1, 2, . . . , p — 1, ai , a2, . . . , ap-i) 

where the group multiplication is given by the following rules, each inter
preted mod p where necessary: 

a if = atj, 

idj = a,t-ij, 

ataj = i~lj. 

For A a G-Azumaya algebra, its center Z mus t be either R or else a Galois 
extension of R with group G, by Proposition 2.2. Following the terminology 
in [13] the two cases will be labelled as A being of type (i) and type (ii) 
respectively. 

Suppose A is of type (ii). By (e) of Proposition 2.11 we have t h a t Z = RG^ 
with / an abelian cocycle in Z2(G, U(R)). By hypothesis on R, f is cohomo-
logous to the trivial cocycle hence Z = RGi* as G-dimodule algebras. More
over <!> is nondegenerate, again by (e) of Proposition 2.11. T h e center of A 
is an invar iant of the class of A in BD(R, G), since 

A#EndR(P)^A (8) EndR(P) 

[13, Theorem 1.3] and Z(A <g> £ ) ^ Z(A) 0 Z(B) for A and B ^ - separab le 
[15, Proposition 2.3]. I t follows readily t h a t 0 is an invar iant of the class of A 
in BD(R, G), as the G-dimodule s t ruc ture on Z determines </>. 

T h e nondegeneracy of </> together with our hypotheses on R imply t h a t Z 
is the trivial Galois extension of R. For let Z = © Rxa (as in Proposition 2.8) 
and define 

|Cr . 1J T€G 

T h e nondegeneracy of <t> yields or thogonal i ty relations 

HOZG *(<r, T )0 (O" _ 1 , y) = [G : 1]3T>7 
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(cf. Proposition 2.8 and see [18, § 126]) which imply tha t the ea are pairwise 
orthogonal idempotents with sum 1. T h e relation auT = <£(cr, T)XT and the 
bilinearity of <t> yield t ha t creT = eaT. T h u s Z is the trivial Galois extension 
oîR. 

By Proposition 3.1 there are isomorphisms of G-dimodule algebras 

A ^ A 0 # Z ^ Z # A U 

furthermore both AG and A\ are inseparable , and [AG] = [A{\ in B(R). 
Write [A0] for the common value of these elements in B(R). 

We fix the following bits of notat ion: w is a generator of G, w a primitive 
p-th root of uni ty in R. We identify Aut (G) as a subgroup of D2(P-D by sending 
j8 to i, where P(T) — w\ 

Now define ^ : BD(R, G) ->B(R) X D2(p-i) by 

t(\A}\ = / 7 ( [ ^ ] ) f o r ^ o f t y p e (i), 
* U " l ( M 0 ] , a , ) f o r ^ o f t y p e ( i i ) , 

where y : BD0(R, G) -*B(R) X Aut(G) is defined as in Theorem 4.4, Aut (G) 
is embedded in D2(p-i) as mentioned above, A has center RG\* with #(71-, T) = co* 
and [^40] in B(R) is as given above. 

We know from Theorem 4.4 t ha t x// is well-defined on algebras of type (i). 
Suppose B = A#E with E = EndR(P) trivial in BD(R, G). Then 5 = A ® £ 
[13, Theorem 1.3]. We noted above t ha t A and B have the same center Z, 
and we know tha t Z = IT i ^ with ^^T = batTev, J2 e« — 1 a n d °"̂ T = ^ T -
Then £ e i = Aei ® £ and by (a) of Proposition 3.1 we have isomorphisms of 
i?-algebras Aei^AG, Bel^BG. Thus [AG] in B(R) depends only on the 
class of A in BD(R, G) and not on A itself. 

T o show \{/ is onto we first note t ha t \p is onto elements of the form ([A], i), 
0 < i < p, by Theorem 4.4. The element ([-4], at) is also the image of some
thing under \//, namely of A # RGi*, where 4>(ir, ir) = a>\ 

We shall show below tha t \p is a homomorphism. Assuming tha t we wish 
to show tha t \p is one-one. We know from Theorem 4.4 tha t ^([^4]) = 0 
with [A] in BD0(R, G) implies [A] = 0. But for A of type (ii) the second 
component of ^([-4]) is at for some i with 0 < i < p} so \p([A]) ^ 0. 

We know, also from Theorem 4.4, tha t \p(xy) = yp(x)\p{y) when x and y 
are in BD0(R, G). We shall check this next when x is in BD0(R, G) and 3/ in 
BD(R,G). Let ^ (x ) = ([-4]) , t ) where A is G-Azumaya and i^-Azumaya, 
era = uaaua~

l for a in A, ua has grade a 4((r) and PA M = o-aA(cr)-1 (see the 
proof of Theorem 4.4 for details) . Saying tha t \p(x) = ([A], i) means t ha t 
PA(TT) = ir*. Let k = i~l in Z}2(P-i), i.e. ki = 1 (mod £) and PA(^k) — n. Now 

let y = [B] where 5 has center RGS and 0(TT, TT) = <a*. T h u s B ^ BG § RGx+ 
and ^(3/) = p f f ] , a ; ) . By Lemma 3.2 there is an isomorphism of G-module 
algebras 

A #B ^A <g> B 
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under which a # b corresponds to aua ® b for b in Ba. Thus A # B has for its 
center the image of 1 ® RGi* under the inverse isomorphism, i.e. as a G-
module algebra the center of A # B is a free i^-module on the elements 
3><r = ua~

l ® #<r, where RG-fi = 0 i^x^. Now 3V has grade /SA(cr). Write d for 
i^A_1(cr)> i-e- PA (&) = °"- Then the element ^ = ^ has grade a and the center 
of A # 5 is a free i^-module on the z*. Because o-wT = ^T it follows that ayT = 
0((7, r))>T; then (7ZT = ay^ = 0(o-, f)sT. The second component in \p(\A # B]) 
is by definition determined as ah where TTZT = œlzv. But 71-̂  = 0(7r, T) and 
f = irk according to the definition above for k. Thus the second component of 
\p(xy) is (t>(w, ir)k = o)jk where we had \//([B]) — ([BG],a,j). Thus \p(xy) has 
ai-ij for its second component and as seen by consulting the very beginning 
of this proof, ia,j = a r i ^ so that ty{x)\p{y) = \^(xy) is valid insofar as the 
second components are concerned. But by Lemma 3.2 we have that A # BG 

and A ® 5 are isomorphic as G-module algebras hence 

A#BG# RGi* ^A ® BG# RGi* 

as i^-algebras and \p{xy) has [̂ 4 ® 2?°] for its first component, and yp{xy) = 
^(x)^(y). 

We remark next that if A is of type (ii) then ^([4]) = ^([A])"1. Let wa in 
A\ be chosen so that aa = w^aw^1 for a in Ai, W\ = 1, zevwT = zev,. (and 
hence aivT = wT) for o-, r in G; this is possible because PicP(R) = 0 implies 
that G acts as inner automorphisms of Ai, and H2(G, U(R)) = 0 does the 
rest (cf. Lemma 3.2). It is not difficult to compute that xawv is in the center 
of Â: to do this one uses that an element of Â is of the form ~x~& with a in A\ 
(by Proposition 3.1); that <rxT = <j>(a, r)xT and 4>(<ry r) = <£(r, a) (by cyclicity 
of G); and that w, is in A\. The element y, = x^ëv has grade o- in Â and 
07T = </>(<r,T)yT. Thus if ^([^4]) = ([A0], di), \[/([Â]) has a* for its second 
component. Since Â G ~ Â77 and the latter is easily seen to be isomorphic to 
(AG)op, we may conclude that ^([^4]) = ^([A])-1. 

It now follows that \p(yx) = ^{y)yp{x) for x of type (i) and y of type (ii), 
for we can write yx as (x~1y~1)~l and apply the above results. 

There remains to prove \p(xy) = yp(x)yp{y) for x and y of type (ii). Let 
x = [A], y = [B] with 

A ^AG# RGi+, B ^ RGie # J5i. 

Because ^4G (respectively, B\) has trivial G-action (respectively G-grading) 
we have that 

A#B^AG ® (RGSftRGi9) ® Bx 

as G-dimodule algebras. As a G-graded i?-algebra RG\e is isomorphic to RG\*, 
hence i?Gi* # JRGi' is isomorphic to RGJ> # RGJ> as a G-graded 2?-algebra. But 
RGS = RGi* because H2(G, U(R)) = 0 (Remark 2.9(b)) and we know RGi* 
is G-Azumaya; hence RGi* # RGi6 is isomorphic to End^CRG) as a G-graded 
i?-algebra. This allows us to conclude that the first component of >p{xy) is 
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[^4G]f^i] in B(R), which is [ 4 J [ 5 J or just the first component of ^{x)\p{y). 
To show equality of the relevant second components we must show that there 
is an element vT in A # B such that V^CVTT1 = ire for c in A # B and $A#B(TC) 

(as defined in Theorem 4.4) is the appropriate power of 7r; if \p(x) (respectively 
\f/(y)) has second component at (respectively a,]) this power is i~lj (by the 
rule for computing a^af). Write k for i~lj and C for A # B. Because (3C(TT) = 
wac (IT)-1 , where ac(7r) is the grade of vT, we must find a zv of grade irl~k. Let 
/ be chosen so that 0(TT, TT"') = 0(TT, TT) (where Z ( 4 ) = RGJ, Z(B) = RGi9), 
and let wa in 5 i be chosen so that Wabwa~

l = ab for b in J5I. Write RGi* = 
©ff ito,, RGie = ©<r i?3V. It is not hard to verify that with vT = xvi # yvwv we 
have v^w*"1 = ire for c in 5 (write c = a # ^r5i with &i in .Si). But this zv has 
grade irl+l. Finally, since <j>(j, TT) = co* and ^(7r, 7r) = œj the choice of / implies 
that œ~il = o)j or / = — i~lj = —k (mod ^>). This completes the proof of the 
theorem. 

5.2. THEOREM. Let G = G\ X . . . X Gm where d is cyclic of prime order pt 

and the pt are distinct. Let R be connected, with H2(G, U(R)) = 0. Let 
n = pi . . . pm and assume Picn(R) = 0 and that n is a unit in R. Then 
BD(R, G) ^ B(R) X Di X . . . X Dm where Dt is a dihedral group of order 
2{Pi - 1). 

Proof. The most natural proof of this result uses the previous theorem and 
results on the Morita theory for G-dimodule algebras referred to in the intro
duction. Besides this theory some of the crucial facts needed are: 1) For A 
a G-Azumaya i^-algebra, its center Z is a tensor product Z\ ® . . . 0 Zn 

where Z* = R or Z* is a Galois extension of R with group Gù 2) BD(R, Gt) 
is embedded in BD(R, G) and these subgroups of BD(R, G) commute; 3) 
The subgroup of BD(R, G) generated by the BD(R, Gt) is naturally embedded 
in B(R) X DiX ... X Dn and this subgroup is in fact BD(R, G). Details 
will appear elsewhere. 

The theorem above can be deduced by applying the exact sequence derived 
in [6]. The methods employed here are completely different from those of [6]. 
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