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Abstract

Some geometric properties of V spaces are studied which shed light on the prediction of infinite variance
processes. In particular, a Pythagorean theorem for V is derived. Improved growth rates for the moving
average parameters are obtained.
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1. Introduction

A discrete-time process {X,} with X,eLp(Q, &, P) is said to be p-stationary if for
all integers n > 1, t\,... , tn,h and scalars c\,.'.. , cn,

E i+A
r

Thus, 2-stationary processes are, indeed, the familiar and well-developed second-
order stationary processes. However, when 1 < p < 2, p-stationary processes do
not even have a well-defined notion of covariance or spectrum, so that neither the
spectral-domain nor the time-domain techniques are as effective as they have been
for 2-stationary processes [1,2,5,6]. The innovation process {e,} of {X,} is defined
by e, = X, — /*//,_,X,, where PH.^^I stands for the metric projection of X, onto
//,_, =sp{X,_,,Xr,_2, . . . } in the norm of U(Sl,&, P).
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It is known, [5], that any nondeterministic p-stationary process can be written as

(1.1) X, = ct + J^akX,_k + Eun = e,

for any n > 1, where {ak} and {bk} are unique sequences of scalars called the autore-
gressive (AR) and moving average (MA) parameters of {X,}, and Vln, EtneHt_n_x.
The second representation in (1.1) is called a finite Wold decomposition of {X,}. If
the success of characterization of regularity of 2-stationary processes is any clue, then
the norm-convergence of Yl"k=\ bke,-k as n —> oo, should play a central role in the
study of regularity of p -stationary processes. This question of convergence is, in turn,
related to the growth of the MA coefficients (bk}\ it is known, [5], that bk = 0(2*).
An improved bound is obtained in the present work for the p -stationary case, using
geometric properties specific to Lp (/i) spaces. Among these is a Pythagorean theorem
for Lp, derived using elementary means.

2. The geometry of Lp(n)

The notion of Birkhoff orthogonality in a normed linear space is central to this work.
Let x and y be elements of a Banach space 3£'. We write xL^y if II* + ay || > ||JC ||
for all scalars a. Note that the relation L% is generally not symmetric or linear. If
3E = Z/(/z), we will write xJ-py for xL^y.

A Banach space 3C is said to be uniformly convex if for any e e (0, 2] there exists
a Se > 0 such that the conditions ||* || < 1, \\y\\ < 1, and ||JC — y || > e together imply
that ||* + y ||/2 < 1 — S(. Here is a useful criterion for uniform convexity.

PROPOSITION 2.1. A Banach space 5£ is uniformly convex if and only if the con-
ditions \\xn\\ < 1, | | y j | < 1 and l i m , , ^ \\{xn + yn)/2| | = 1 together imply that
limn_>oo||xn-;y(,|| = 0 .

It is known that for 1 < p < oo, the spaces Lp (/x) are uniformly convex. For these
results and additional information on Banach spaces see [3, page 353].

Suppose that M is a closed subspace of a Banach space SC'. For i 6 f consider
the problem of minimizing ||JC — y || over y e M. When SC is uniformly convex, then
the extremal vector y is uniquely determined by x and M. In that situation the metric
projection mapping y = PMx is characterized by

(2.1) PMx e M and x - PMx±arM.

If PM is the metric projection mapping, then

(2-2) II PA,* II < 2||*||
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for all x e %. This is because

\\PMA\ = \\PMx-x+x\\ < ||* - PMx\\ + \\x\\ < 2\\x\\.

We shall see that this bound, derived from general norm properties, can be sharpened
when SC = Lp(/x). Furthermore, from (1.1) and repeated application of (2.2) it
follows that

(2.3) Ifr-I^TTT
II e l l

for all m. This bound will also be sharpened when using properties special to
spaces.

Uniform convexity interacts with metric projection in the following way.

LEMMA 2.2. Suppose that the Banach space 3£ is uniformly convex, M is a closed
subspaceof^,andx±arM. Ifym e M, and Mm \\x+ym\\ = \\x\\, then Urn \\ym\\ = 0.

PROOF. The assertion is trivial if x = 0. Otherwise, put Xm = x/\\x + ym\\ and
Ym = (* + ym)/\\x + ym\\. Note that | |XJ | < 1, since xLxym, and ||ym|| = 1.
Furthermore,

By assumption, lim ||X||/||JC +ym\\ — 1, which then forces lim ||(Xm + Ym)/2\\ = 1.
Now Proposition 2.1 gives

ym\\) = \\x\\ lim(||Xm - Ym\\) = 0 . •

It is known that the metric projection onto a subspace is norm continuous in a
strictly convex, locally compact Banach space [3, page 344]. Here is the result for a
uniformly convex space.

PROPOSITION 2.3. Let M be a closed subspace of a uniformly convex Banach space
X. Ifx € X, xm e X, and lim \\xm - x || = 0, then lim || PMxm - PMx || = 0.

PROOF. Observe that

Ik - PMX\\ < ||* - PMxm\\ < \\x-xm\\ + IK, - PMxm\\

< | |* - * J | + \\xm - PMx\\ < | |* - JCJI + | |*m - * | | + | |* - PMx\\

= 2\\x-xm\\ + \\x-PMx\\.

It follows that lim ||* - PMxm|| = ||* — PMx \\. Applying Lemma 2.2, and using the
orthogonality condition (x — PMx)LxM, we get lim || PMxm — PMx || = 0. •
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The following inequalities constitute a parallelogram law for Z/(/z).

PROPOSITION 2.4. If2<p < oo, then for any f and g in Lp{n)

(2.4) 2 ( | | / ||" + \\g\\") < \\{f + g)\\" + \\(f - g)\\"

(2.5) <2"-'(||/| |" + ||,g||").

If 1 < p < 2, then for any f and g in LP(/J,)

(2.6) 2 ' - ' ( | | / ||" + \\g\\") < \\(f + g)\\" + \\(f - g)V

(2.7)

Equality holds in (2.4) and (2.7), if and only if f g = 0 a.e.\ equality holds in (2.5)
and (2.6) if and only iff = ±g a.e.

PROOF. For p > 2, see [3, page 55ff]. For 1 < p < 2, consider the parameter
r = A/p, and apply the previous result. •

Note that as p tends to 2 in either direction the Hilbert space case results; the :
inequalities are sharp in this limited sense. From the parallelogram law, we get a
Pythagorean theorem for Lp(fj,). Again, there are two cases.

PROPOSITION 2.5. Suppose that X, Y e Lp(fx), X±PY, and X = (2""1 - I)"17".
Then,

(2.8) | | X | | " + A " | m | " <\\X + YV, if2<p<<x>,

(2.9) \\X + Y\\" < \ \ X \ \ p + X p \ \ Y \ \ " , i f \ < p < 2 .

PROOF. We apply (2.4) in the form

(2.10) \W+g)\" + \\W -8)\\" < 5(11/11" + 11*11").

Now taking / = X and g = X + Y in (2.10) we get

\\X + \Y\\» + \\\Y\\» < i||X||" + i||X + I T .

Apply (2.10) repeatedly, taking / = X and g = X + (1/2") Y, n - 1, 2, 3, . . . , N,
will result in

2N || X + (1/2"+') K||" +2N || ( l /2" + 1 ) Y\\" + • • • + 211| (1/21+1) Y\\p

< (2*-1 + • • • + 21 + 2° + 2-1)||X||" + \\X + Y\\p/2.
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Simplifying, taking N to infinity, and using \\X + ( 1 / 2 " ) Y\\ > | | * ||, we finally get

(2.11)

Note that the condition XLP Y implies that the quantity \\X + a Y\\ is critical when

a = 0. It follows that l imw^0 O2A ' ( | |X + (l/2N)Y\\p - | |X| | P ) = 0, and the estimate

leading to (2.8) is asymptotically sharp.

In the case 1 < p < 2, we turn to (2.7), with f = X and g = X + Y. This yields

(2.12) ±||X||" + I | | * + Y\\» < \\X + \Y\\" + \\\Y\\".

Repeating this argument with / = X and g = X + (1/2") Y, n = 1, 2, 3, . . . , N

results in

(2N - D l l X f + ||AT + Y\\" < 2N\\X + ( 1 / 2 " ) I T + ^_]_ ^ \\ Y\\p.

Rearranging, we find that

\\X + Y\\" < \\X\\" + ^ - i - j - H K l l " + 2" w

As N tends to infinity, the last term vanishes, because XLPY. •

Note that (2.9) can be sharper than the triangle inequality. There is a pleasing

symmetry in Proposition 2.5; also, it yields the familiar Hilbert space case as p tends

to 2 in either direction.

The constant X = (2""1 - I ) " 1 7 " appearing in (2.8) and (2.9) might not be optimal,

however, since the estimates in the proof are generally not sharp. One might wonder

whether the value X = 1 is always possible. The following example shows that it is

not.

Let SC = / 3({1, 2}), and c o n s i d e r / = (1 /4 , 1) and g = ( - 1 , 1/16) in SC. Then

f±3g, and | | / | | 3 = 65 /64 , | |^| |3 = 4097/4096, | | / + g\\3 = 6641/4096. In order

that | | / ||3 + A.3||g||3 < | | / + g | | \ it is necessary that X3 < 2481/4097.

The Pythagorean inequalities give rise to improved bounds on the coefficient growth

in the finite Wold decomposition (1.1). As before, we write X = (2P~1 — l ) " 1 / p .

3. Application

The geometric results of Section 2 are applied to prediction of a Lp stationary

process {X,}. We obtain norm convergence of the finite prediction, improved bounds

on the MA coefficients and improved bounds on the norm of the metric projection.

Let X be the projection of Xo based on the infinite past {... , X_3, X_2, X_i}, and

X(m) be the projection of Xo based on the finite past (X_ m , . . . , X_3, X_2, * _ i } .
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THEOREM 3.1. If [X,)fL_O0 is a p-stationary process, then the finite predictors

X(m) ofX0 converge in norm to its infinite predictor X.

PROOF. Let {Ym}^=_oo be a sequence such that Ym e sp{X_m,... , X_3, X_2, X_j}
and lim || Ym — X\\ = 0; such a sequence exists since X 6 sp{... , X_3, X_2, X_i}.
With the above definitions we have

I|XO - *ll < ll*o - X(m)\\ < ||X0 - Ym\\ <

From this we see that lim ||X0 - X(m)|| = ||X0 — X||. Applying Lemma 2.2, we get
l i m | | X ( m ) - X | | = 0 . D

THEOREM 3.2. Suppose that {X,}~_0O is a p-stationary process with nontrivial

innovation process {^,}%_oo, and finite Wold decomposition (1.1). If 2 < p < oo,
then\\a,X.bi,X.2b2,...)\\lf <

PROOF. By applying (2.8) repeatedly to the finite Wold decomposition (1.1), we
get the bound

for all A'. Now drop the nonnegative term Â H VO.AT||p, and let A' increase without
bound. •

Observe that this improves on the bound (2.2). The case 1 < p < 2 is more
delicate, since the estimate (2.9) is not similarly useful. However, the following can
be said.

PROPOSITION 3.3. Let 1 < p < 2, and suppose that Xlp Y. If K is a constant
satisfying 0 < K < (2P~X — 1), then for any positive integer N satisfying

-p—[l0Si 2f-»-2 J '
||X||" + ( l -2 - ' y ' ) | | y | | ' ' < \\X + Y\\".

PROOF. We start with (2.7), using / = X and g = X + Y to get

Repeat this estimate using/ = X and g = X 4- (1/2") Y, 1 < n < N, with the result

2<p-w\\x + (1/2")y||" + Q + 1 + . . . + -L) || yy

Y\\p + ( 1 + 2 p ~ l + • • • +
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Rearranging, and using XLP Y, we deduce that

2(p-l)N - 2P_1_1 I 11*11' + (1 - 2 - w ) | | Y\\» < \\X + Y\\».

The constant enclosed in the square brackets is at most the value (2p~l — 1). For K

satisfying 0 < K < (2P'1 - 1), we have

^ - p - W ] ' whenever ^ ^ i i o 4 V - 2 ]• D

The values K = (2p'i — 1) and N — 1 can always be used, corresponding to the
crudebound(2' '-1-l) | |A' | | p + | | | y f < \\X + Y\\p. The coefficient growth estimate
that results from Proposition 3.3 is the following.

COROLLARY 3.4. Suppose that {Xt}^l_oo is a p-stationary process with nontrivial
innovation process {f(}^_00, and finite Wold decomposition (1.1). If 1 < p < 2,

e notation of Proposition 3.3,

When p is close to 2 (greater than about 1.695), then N is greater than 1, and this
is a sharper bound on the coefficient growth than (2.3).

These Pythagorean inequalities also give improved bounds on the norm of the
metric projection, compared with the crude result (2.2).

COROLLARY 3.5. Let M be a closed subspace off (//.). Then

\\PMf II < ( 2 ' - 1 - l ) l / p | l / II, ifl<p<™.

\\PMf\\ < ( l - 2 - / v ) - 1 / p | | / | | , ifl<p<2.

where N is any positive integer satisfying N < —{p — I)"1 Iog2(2 — 2p~l).

Again, note that when 1 < p < 2 we can always choose N = I, which gives

WPufW <2i/p 11/ II.
still an improvement over (2.2). Furthermore, Corollary 3.5 is sharp in the limiting
sense that as p tends to 2 in either direction, we get || PMf || < | | / ||, which is the
correct statement when p — 2.

Seeing Corollary 3.5, one might wonder whether || PMx || can actually exceed ||JC ||.
The following example shows that it can. Here, let SC = /P({1, 2}) with p = 1.1.
Consider/ = (2, 1) and# = ( - 2 , 2P). Then f±pg. Takex =f +gandM = sp{g).
Clearly, PMx = g. We now compute

11*11" = (l + 2 ' ) ' w 3 . 5 2 . . . , \\Pux\\ = 2" + 2 ^ w 4.45 . . . .

For more information on the norm of metric projections, see [4].
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