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1. Introduction

Let A be a commutative Banach algebra with identity 1 over the complex field C,
and let d0 be a character on A. We recall that a (higher) point derivation of order q on
A at d0 is a sequence d1,..., dq of linear functional on A such that the identities

i=o
hold for each choice of / and g in A and k in { 1 , . . . , q}. A point derivation of infinite
order is an infinite sequence {dk} of linear functional such that (1.1) holds for all k. A
point derivation is continuous if each dk is continuous, totally discontinuous if dk is
discontinuous for each fcSl, and degenerate if d1 = 0.

Some of the terminology given in the previous paragraph was introduced in our
earlier paper (3), where we began a study of the continuity properties of point
derivations on commutative Banach algebras. In particular, we asked whether, for a
given algebra A, there is a function q •-» p(q) on the set N of natural numbers such
that, whenever du ..., dp(<,) is a point derivation on A, the "initial segment" du ..., dq

of order q is necessarily continuous. By algebraic methods, we obtained partial results
for a number of algebras (see Theorem 2.3 and Examples 2.5 to 2.8 of (3)), and found
for the algebra C<n) of n -times continuously differentiate functions on a compact
interval a complete description of the point derivations, including a determination of
the function p(cj). In a second paper (4), we continued the study by giving a construction
which showed that, in general, the function p(q) need not exist: a consequence of the
existence of p(q) is that every point derivation of infinite order is continuous, and we
constructed algebras of various types with totally discontinuous point derivations of
infinite order.

The aim of the present note is to improve the partial results given in (3) for some
particular algebras. In Section 2, we complete the description of the point derivations
on the algebra Lip X of bounded Lipschitz functions on a metric space X. In Example
2.8 of (3) we showed that a nondegenerate point derivation at a point t0 of X has order
at most two. In the present article, we show that there are nondegenerate point
derivations of order two on Lip X, and that, if du d2 is such a derivation, then dx is
necessarily continuous. These facts follow from a precise characterisation of those point
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derivations d1 which can belong to higher order point derivations. The study of the
continuous point derivations on Lipschitz algebras was begun by Sherbert in (8), and
further results concerning continuous point derivations on Lip X when X is a compact
plane set are given by O'Farrell in (7).

In Section 3, we consider algebras D"(X) of functions n-times continuously differen-
tiable on a compact set XczC. In Example 2.6 of (3), we showed that, with X the
closed unit disc, a nondegenerate point derivation on Dn(X) at a boundary point of X
has order at most In. It was observed that the result for the closed unit disc would hold
for a wider class of sets, the restrictions having to do with the smoothness of the
boundary of X. In Section 3 of this paper, we show that for such sets X, there are
analogues for D"(X) of the various technical results proved for CM in Section 3 of (3).
Thus, the structure of point derivations on D"(X) at a boundary point of X is formally
identical with the corresponding structure for C(n).

2. Lipschitz algebras

Let X be a metric space with metric m, and let Lip X denote the algebra of bounded
functions / such that ||/||m<°°, where ||/||m =sup{|/(.t)-/(s)|/m(t, s): t, seX, t£s}. With
pointwise operations and norm \\f\\ = H/IU+I1/1L. Lip X is a regular commutative Banach
algebra. Lip X was studied by Sherbert (8), who gave several characterisations of the
bounded point derivations of order one at points of X. Motivated by one of those
characterisations and by the known facts for algebras of continuously differentiable
functions, we shall give a description of those point derivations dl of order one at a
point f0 of X for which there exists a linear functional d2 such that du d2 is a point
derivation of order two at t0. (Recall that when such a d2 exists, we say that dx belongs
to a point derivation of order two.) As a consequence, we shall find that any dx which
belongs to a higher order point derivation is necessarily continuous. Again using
Sherbert's observations, we shall also show that for some metric spaces X (including
[0,1]), not every continuous point derivation dx belongs to a point derivation of order
two.

For t,seX with t£ s, write t/r(t, s) for the difference quotient which assigns to a
complex-valued function / on X the value tl/(t,s)(f) = (f(t)-f(s))lm(t,s), and write ¥
for the set of all such difference quotients. Observe that / e Lip X if and only if / is
bounded and {^>(f): i/r e ^} is bounded. Each ip(t,s) determines a continuous linear
functional on Lip X, with ||t/>(t, s)| |^ 1, and any weak-* limit point (in the dual of Lip X)
of ^ is again continuous, with norm at most 1. Sherbert (8, Theorem 9.3) showed that,
if t0G X and if {t,,} and {sn} are sequences in X, each converging to t0 with respect to the
metric m, and with ^ ^ sn for all n, then any weak-* limit point of the sequence
{tpitn, sn)} is a bounded point derivation at t0. Moreover, the linear span of all such
point derivations is weak-* dense in the space of all bounded point derivations of order
one on Lip X at t0. Our first result in this section is related to that description of point
derivations.

Lemma 2.1. Let toeX, and let {<M*y> s-,)} be a net °f difference quotients converging
weak-* to a non-zero linear functional 8. Then 8 is a point derivation at t0 if and only if
each of the nets {ty} and {sy} converges to t0 with respect to the metric on X.
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Proof. The sufficiency of the condition is proved in (8, Lemma 9.1). To prove the
necessity, observe that an argument of Detraz (5, page 81) shows that {̂ } and {sy}
converge to t0 with respect to the weak-* topology on X. Since the weak-* and metric
topologies agree on X (8, Proposition 2.1), the lemma follows.

Now, let t0 be a fixed point of X, and let du d2 be a point derivation of order two on
Lip X at t0. We are going to show that dx is continuous by showing that dj is a weak-*
limit of difference quotients of a special type. It will be convenient to write ^(fo) for the
subset of ^ consisting of difference quotients 4>{t, t0), with teX and tj= t0.

Theorem 2.2. Let dx be a point derivation of order one on Lip Xat t0, and suppose d1 ^ 0.
Then dl belongs to a point derivation of order two if and only if some non-zero scalar
multiple of dx is a weak-* limit point of

We shall isolate a number of the steps in the proof as lemmas. The methods are
based on the known facts for the algebra C(1) of continuously differentiable functions
on [0,1]. It will be convenient to use the symbol x for the function defined on X by
x(t) = m(t, t0). If the diameter of X is not finite, then we "truncate" x at one, as in (8,
page 243) to ensure that x is bounded. Then xeLipX. For /eLipX, fix denotes the
function defined on X by

l u \t — t0).

If /(fo) = 0, then fix is bounded on X. Finally, we write M for the maximal ideal
{/eLipX:/(ro) = 0}.

Lemma 2.3. M2 = xM.

Proof. Since xeM, we have JyP^xM. To establish the reverse inclusion, suppose
that fe M and g 6 M. Then it is easy to see that fg/x is bounded and continuous on X,
and we have to show that fg/x is Lipschitz. If t^t0, then \tp(t, to)(fg/x)\ S
|/(0g(0/x(t)2|s|l/l|||g||. Also, if t?s, t^t0, and si=t0, then

x(s)x(t)m(t, s)
g(t)\\f(t)-f(s)\
x(t) m(t, s)

, 1/(5)1 |g(t)| |x(s)-x(Q|| |/(s)||g(t)-g(5)l
x(s) x(f) m(t, s) x(s) m(t, s)

Thus, {ipifg/x): i/> e *P} is a bounded set of numbers, and the lemma is proved.

Lemma 2.4. Suppose / eLip X and f vanishes in a metric neighbourhood of t0. Then
fexnM for every positive integer n. In particular, / e x 2 M g M 3 .
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Proof. There exists r > 0 such that / vanishes off E = {t:x(t)^r}. Let h(t) =
dist (f,E). Then x + h e L i p X and x + h is invertible, so that fix = (x + h)"1/ belongs to
LipX. By induction, //x"eLipX2(neN)> and the result follows.

Lemma 2.5. Suppose that feM, and that {f(t)lx(t):t^t^ is bounded away from 0.
Then there exists g in M such that x2 = /g.

Proof. Define g = x2// on X by g(0 = x(t)2/f(t) if tf t0, and g(f0) = 0. The hypoth-
eses imply that g is bounded and continuous. The proof that g is Lipschitz is similar to
the argument in Lemma 2.3. For example, if t£s, ti= t0, and s^ to> then

x(t)2/(S)-x(s)2/(t)
«Kf,s)(g)=—. . . . . . .—

f(s)f(t)m(t, s)

= x(s)x(t)x(t)2f(s)-x(s)2f(t)
f(s) f(t) x(s)x(t)m(t, s) '

and the required boundedness follows from the hypotheses and estimates similar to
those in the proof of Lemma 2.3.

For each of the following three lemmas, we suppose that dlt d2 is a point derivation
at t0 with dj i= 0.

Lemma 2.6. dt(x) ^ 0.

Proof. By assumption, there is / in M with <*,(/) ̂  0. By Lemma 2.3, f*/x belongs to
M. Then, 0 + d,(f)2 = d2(f) = d^x)d,(f /x).

Because of Lemma 2.6, we can suppose that d^x) = 1. Also, whenever / satisfies the
hypotheses of Lemma 2.5, we can conclude that

Lemma 2.7. If fekeridjHM, then

Proof. dM)2 = d2(\f\
2) = <*i(f)di(7) = 0.

Lemma 2.8. Suppose / eke r (d,)DM. Then there is a non-zero point derivation S at
t0 such that 8 is a weak-* limit point of V(t0) and /eker (8).

Proof. Suppose there is no point derivation satisfying the assertions of the lemma.
Then Lemma 2.1 implies that there is no sequence {!„} converging to t0 in X, and such
that «Kk, to)(f) = f(tn)lx(tn)-*0 as n—»°°. Thus, there are a neighbourhood U of to in
X and a number r > 0 such that |/(t)|/x(r)§r for each tet/\{f0}. Let y(r) =
min{m(f, U), 1} for each t in X, and let g = |/ | + y. Then yeLipX, and y vanishes on
U, so that d1(y) = 0, by Lemma 2.4. Therefore di(g) = di(|/|) = 0, by Lemma 2.7 and
the assumption that / 6 ker (d^DM. Also, it is clear that g(f)^O if tj=t0. Finally, we
claim that {g(t)/x(t):t^t0} is bounded away from zero. To see this, let Ur =
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{feX:|/(f)|/x(r)<r/2}, and let rx = m(JJ, IA). Then, for tftQ,

g(0/x(0 = (1/(01 + y(t))ix(t)

so that the claim will be established if we can show that rl > 0. If that is not so, there
are sequences {*„} in U and {sn} in L^ such that m(ln, s,,)—»0 as n—»°°. Then

n, s j m(tn, sn)

2Lm(tn,sB) m(ln, sn)

Therefore x((B)/m(tB, sn)g2||/l|/r+||x||. Since m(tB, sn)-»0, it follows that t,, -» t0, and
then that sn —» t0. This contradicts the properties of U and LA, and so r^O.

Now we can apply Lemma 2.5 to g, and conclude that there is h in M such that
x2 = gfi. But then, using Lemma 2.6, 0 ^ d1(x)2 = d2(x

2) = d1(g)d1(h). Therefore
That is a contradiction, so the lemma is proved.

Proof of Theorem 2.2. First we prove the sufficiency. Thus, suppose that 5 is a
non-zero point derivation at t0, and that 8 is the weak-* limit of a net {<li(ty, t0)} from
ty(t0). From Lemma 2.1, we conclude that the net {t,} converges in X to t0. It follows
from this that 5(x) = linx,x(tY)/m(fT, to) = 1. To prove that 8 belongs to a point
derivation of order two, it is sufficient to find a linear functional A on M such that
^(/g) = 8(/)S(g) whenever / and g belong to M (see (3)). By Lemma 2.3, />->//x
defines a mapping from M2 to M. This mapping is clearly linear, and therefore there is
a linear functional A on M such that A(/) = 8(//x) whenever / e M 2 . Given / and g
belonging to M, we can write / = 8(f)x + F and g = 8(g)x + G, where F and G belong to
ker(8)DM So fg/x = 8(f)8(g)x + 8(f)G + 6(g)F+FG/x, and therefore A(/g) =
8(fglx) = 8(f)8(g), provided that 5(FG/x) = 0. But, since {t,} converges to t0 in X, we
have x(ty) = m(ty, t0) for "large" y, and therefore 8(FG/x) = linx,F(ty)G(ty)lx(ty)

2 = 0,
since 0 = 8(F) = lirrL,F(t,)/x(t,), and similarly for G.

Now we prove the converse. Let du d2 be a point derivation of order two at t0, with
dx T^O. By Lemma 2.6, we can suppose that d,(x) = 1. It will be sufficient to show that
each weak-* neighbourhood of dx contains a weak-* limit point of W(t0). Suppose that
finitely many functions fu ..., fn from Lip X are given. For i = 1 , . . . , n, we can write
fi=fi(to)l + dl(fi)x + Fi, where Fjeker(d1)nM By Lemma 2.7, 2f |FS|€ker(dt)DM.
By Lemma 2.8, there is 8, a non-zero point derivation at t0 and a weak-* limit point of
*(r0), such that 8(2( |Fi|) = 0. It is clear that for such a 8, feM and /SO imply that
8(/) s 0. Therefore, 8(|Fj|) = 0, and hence 8(Ff) = 0 for i = 1 , . . . , n. From the definition
of 8 and the fact that m(tY, to) = x(ty) for large y, we have 8(1) = 0 and 8(x) = l.
Therefore 8(ft) = di(/;) for i = 1 , . . . , n. So, 8 belongs to the weak-* neighbourhood of
dx determined by fu . . . , / „ and any positive constant, and that proves the theorem.

Since ^(f0) is norm-bounded in (LipX)', the following corollary is an immediate
consequence of Theorem 2.2.
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Corollary 2.9. If dx, d2 is a point derivation of order two on Lip X at a point t0 of X,
then d t is continuous.

As we remarked earlier, there are metric spaces X and continuous point derivations
of order one on Lip X which belong to no point derivation of order two. For X the
closed unit interval [0,1], that is implied by our Theorem 2.2 and the remark on page
266 of (8) that the weak-* limit points of ^(0) do not generate all the bounded point
derivations at 0. In fact, in the general setting, there will exist continuous point
derivations of order one belonging to no point derivation of order two as long as the
range of the function t>-»x(r) contains an interval [0, r] for some r>0 , for then
examination of the function t >-» x(t)2 sin (l/x(f)) shows that there are continuous point
derivations at f0 which are not (multiples of) weak-* limit points of ^(t0). Recall that
the situation is different for the algebra C(1): by (3), Theorem 3.4, a point derivation of
order one on C(1) belongs to a point derivation of order two if and only if it is
continuous.

3. Differentiable functions on plane sets

In this section, we discuss an algebra, D"(X), of differentiable functions introduced
in (2).

Let X be a perfect, compact plane set. A complex-valued function / on X is
differentiable at a point Co of X if

f'iCo) - lim

exists, and / is differentiable on X if it is differentiable at each point of X. If n e N, let
D"(X) denote the set of functions with continuous nth derivative on X.

The set X is regular if it is connected by rectifiable arcs and if the geodesic metric on
X is equivalent to the Euclidean metric on C. In this case, for each Co in X, there exists
a constant C& such that each point £ of X can be joined to Co by an arc lying in X of
length at most Q,, |£ — Co\- The proof of Theorem 1.6 of (2) shows that, if X is regular,
then Dn(X) is a Banach algebra with respect to pointwise algebraic operations and the
norm

11/11= I h\fkM (/eD"(X)).
k = O

We wish to investigate for more general sets X the questions which were answered in
(3) in the special case X = [0, 1]. Thus, we take X to be a regular plane set. In
particular, we have in mind the case when X = A, the closed unit disc.

Clearly, everything is straightforward at interior points of X: functions of Dn(X) are
analytic on the interior of X, and so it is easy to see that all point derivations are
continuous and are, up to certain algebraic transformations, ordinary derivatives at the
point in question. Thus, we now assume that we are investigating point derivations at a
point, say 0, of the boundary of X.
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Using an analogous notation to that of (3), we set, for k = 0 , . . . , n,

and
MnM = {fe D"(X):f >(0) = 0 (/ = 0 , . . . , k)}.

Also, we write z for the coordinate functional on X.
An examination of §3 of (3) shows that, in addition to general algebraic facts about

point derivations, the technicalities required for the proofs can be arranged in four
groups:

(i) the use of l'Hopital's rule and Taylor expansions in Lemma 3.2 and the easy
parts of Theorem 3.1 of (3);

(ii) the density of polynomials in the algebra, so that, in Theorems 3.3 and 3.4, a
continuous linear functional is determined by its values on polynomials;

(iii) the ability, in Theorem 3.3, to replace a given function / by another function,
say h, so that h vanishes only at 0 and so that certain point derivations take the
same values at / and h;

(iv) the harder part of Theorem 3.1(i), namely, the inclusion z"Mnn cM^ n .
We shall now consider hypotheses on the set X which will guarantee that the analogous
computations can be carried out in D"(X).

First, we observe that the proof of Lemma 1.5 in (2) shows that, if X is regular, then
each / in D"(X) has an n-Taylor expansion at 0, so that / = Zk=o 8k(f)z

k + #„/, where
RJ(0 = o(|£|") as £—»0, £eX. This, in turn, guarantees that all the necessary
analogues of l'Hopital's rule are valid. Thus, the technicalities of group (i) will still
apply because of our assumption that X is regular.

Secondly, to ensure that polynomials are dense in D"(X), we assume that X does not
separate the plane. Then, given / in D"(X), Mergelyan's theorem shows that fn) can be
uniformly approximated on X by polynomials, and it follows from Lemma 1.50) of (2)
that suitably chosen nth antiderivatives of the polynomials approximating fn) will
approximate / in D"(X).

A specific problem of the type referred to in (iii) was solved in Example 2.6 of (3).
There, we showed that, if_/eDn(A) and /'CO 7^0, then f=gh, where g, heD"(A),
g(l) f 0, and h(Q + 0 if £e A\{1}. In the proof, we used Theorem 20 of (6). To be able
to invoke Nagel's theorem in our present discussion, we make the following assump-
tion:

(A) X = U, where U is an open set in C and the boundary of U is a finite union of
simple rectifiable arcs, each of which is (n + l)-times continuously differentiate with
respect to arc length.

It is not difficult to see that, if X satisfies condition (A), then X is regular. Using this
assumption, we can prove the following result, which can be used whenever a
manipulation of type (iii) is required.

Lemma 3.1. Let X be a compact plane set satisfying (A), and let 0 be a boundary
point of X. Take k e { 0 , 1 , . . . , n -1} and f in Mnk with 8k+1(f) i= 0. Then there are g and
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h in Dn(X) with f= gh, where g(0)^0, heMn,k, h(Q?O i / ^ X \ { 0 } , and 8k+1(h)j=0.
Moreover, if d is any first order point derivation at 0 on D"(X), then d(h) = 0 if and only
ifd(f) = O.

Proof. Since feM^k and X is regular, we have f = 8k+1(f)z
k+1 + o(\z\k+1), and so /

does not vanish on some deleted neighbourhood of 0 in X. As in Example 2.6 of (3),
there exist g, heD"(X) such that f=gh, g(0)^0, and ft(£)^O (£eX\{0». Since
/(0) = 0, h(0) = 0. The remaining assertions follow from the Leibnitz identities.

Note that assumption (A), together with the assumption that X does not separate the
plane, implies that a non-degenerate point derivation at 0 on D"(X) has order at most
In: compare (3), Example 2.6.

Finally, we consider the problem of showing that znMn%n clV^n. The constructive
proof given in the case of the unit interval cannot be adapted to the plane sets satisfying
(A) that we are now considering. However, a modification of an argument originally
due to P. C. Curtis does give the result. Set Xo = X\{0}, and write An for the set
{f/zn:feMnn} of functions on Xo. Calculations given in (1), Theorem 2.1, show that
fe An if and only if / has n continuous derivatives on Xo and Ckfk)(() —* 0 as £ —* 0 in
Xo (fc = 0 , . . . , n). Moreover, An is a commutative Banach algebra with respect to the
norm

k=O K!

The algebra An cannot have an identity, but, if it has a bounded approximate identity,
then we can conclude as in (1) and (3) that, given / e Mn m there exist g, h e Mnn such
that f/zn = (g/z")(h/z"), whence z"f=gh. Thus, if An has a bounded approximate
identity, we obtain the inclusion z"Mnn <=M ,̂n, and so the following lemma provides
the result that we require.

Lemma 3.2. Let X be a compact plane set satisfying condition (A) which does not
separate the plane. Then the algebra An has a bounded approximate identity.

Proof. The point 0 lies on either one or two arcs, each continuously differentiable
with respect to arc length. Thus, there is a continuous function h: [0, *>) —» C with
h(0) = 0, Ji([0,°o))nX = {0}, iMOl-*00 as t-»°o, and such that the argument of h(t),
measured continuously from 0, is bounded-say \6(t)\^^NTT for some NeN, where
0(t) = arg h(t). Write H for the cut of the plane from 0 to oo defined by h.

We define £ >-* £1/N as an analytic function on C\H taking values in the sector
S = {£: |arg£|S|ir}, and we set w(£) = r 1 / N for £eC\H. Note that we have w'(£) =
-w(0"+1/N. For m = 1, 2 , . . . , define

and define Fm by
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It is straightforward to show by induction on k that

(k = l,2,...,CeX0), (3.1)

where Ck is a constant and pk is a polynomial of degree k - 1 with Pk(0) = l.
Now define functions uk by

\ - ' (reC\{0».

Then, from (3.1) it follows that

CkF*)(C) = Q « k ( ^ ) (fc = l ,2 £eX0). (3.2)

In fact, (3.2) also holds for fc = 0 if we set po = 0 and C0 = l. Note that uk(f)-»0 as
t -* oo in S and that ufc(f) -> 0 as t -> 0 in S (k = 1,2,...), while uo(0 -» 1 as f -> 0 in S.

We claim that (Fm : m = 1, 2,. . .) is a bounded approximate identity for the algebra
An. First observe that vv/m -> oo in S as £ -* 0 in Xo, and so (3.2) implies that
CkFV(£)-*Q as £-»0 for each k and m. Thus (Fm)<=An. Also, using (3.2) again, the
sequence (Fm) is bounded in An. Now take GeAn and k e { 0 , 1 , . . . , n}. Then, for

Zk(GFm -GYk\C) = fkG(k)(f)(Fm({)-1) + I CF%(OCk-TG<*-'KO, (3.3)

the sum in the above expression being taken to be 0 when k =0. Given €>0, we can
choose 8 > 0 so that |£fcG{lo(£)l<e for fc=0, . . . , n provided that £eX o and |^|<S.
Also if | £ | s s and {eX0, then |w(£)|S8~1/N, and so for all sufficiently large m,
| F m ( 0 - l | = k(w/m)-Uo(0)|<e and, for fc = 1 , . . . , n,

Thus, using (3.3) in the two cases that | f |<5 and that |^|SS, we see that ||GFm -G\\->
0 as m —* oo, as required.

This completes the proof.

The above lemma concludes the discussion of the four groups of technicalities, and
the proof of Theorem 3.3 of (3) now gives the following result.

Theorem 3.3. Let Xbe a compact plane set which does not separate the plane. Suppose
that X satisfies condition (A) and that 0 is a boundary point of X. If du ..., a\ is a
nondegenerate point derivation at 0 on Dn(X), and if pS2q, then the point derivation
du ... ,dq is continuous.

In fact, each of the other results of (3) concerning point derivations on C(M)([0,1])
has a formally equivalent counterpart for algebras D"(X), where X satisfies the
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conditions of the above theorem. It would perhaps be interesting to find a more
complicated regular set X for which the above results were not true.

REFERENCES

(1) W. G. BADE and P. C. CURTIS, Jr., The structure of module derivations of Banach algebras
of differentiable functions, J. Functional Analysis 28 (1978), 226-247.

(2) H. G. DALES and A. M. D A VIE, Quasianalytic Banach function algebras, J. Functional
Analysis 13 (1973), 28-50.

(3) H. G. DALES and J. P. MCCLURE, Higher point derivations on commutative Banach
algebras, I, /. Functional Analysis 26 (1977), 166-189.

(4) H. G. DALES and J. P. MCCLURE, Higher point derivations on commutative Banach
algebras, II, J. London Math. Soc. (2) 16 (1977), 313-325.

(5) J. DETRAZ, Sous-algebres de codimension 1 et derivations dans les algebres de Banach
commutatives, Studia Math. 30 (1968), 79-82.

(6) A. NAGEL, Cohomology of sheaves of holomorphic functions satisfying boundary condi-
tions on product domains, Trans. Amer. Math. Soc. 172 (1972), 133-141.

(7) A. G. O'FARRELL, Point derivations on an algebra of Lipschitz functions, Proc. Royal Irish
Academy, Section A 80 (1979), 23-39.

(8) D. R. SHERBERT, The structure of ideals and point derivations in Banach algebras of
Lipschitz functions, Trans. Amer. Math. Soc. I l l (1964), 240-272.

SCHOOL OF MATHEMATICS
UNIVERSITY OF LEEDS
LEEDS, LS2 9JT
ENGLAND

DEPARTMENT OF MATHEMATICS AND ASTRONOMY
UNIVERSITY OF MANITOBA
WINNIPEG, R3T 2N2
CANADA

https://doi.org/10.1017/S0013091500003977 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500003977

