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Compact Groups of Operators on
Subproportional Quotients of lm1
Piotr Mankiewicz

Abstract. It is proved that a “typical” n-dimensional quotient Xn of lm1 with n = mσ , 0 < σ < 1, has the
property

Average

∫
G
‖Tx‖Xn dhG(T) ≥

c√
n log3 n

(
n−

∫
G
| tr T| dhG(T)

)
,

for every compact group G of operators acting on Xn, where dG(T) stands for the normalized Haar measure on
G and the average is taken over all extreme points of the unit ball of Xn. Several consequences of this estimate
are presented.

1 Introduction

The fact that “typical” quotients of lm
1 play a special role in the local theory of Banach

spaces was established by Gluskin in his ground breaking paper [G1] on the diameters of
Minkowski compacts. Soon after, it was observed that such quotients are “rigid”—i.e., they
allow only a “few” well bounded operators, [S1], [G2], [S2], [M1], [B1], [M2]. On the
other hand, it was shown by Bourgain that the techniques developed for “typical” quo-
tients of lm

1 can be used in the context of general finite-dimensional Banach spaces, [B2],
which lead to several interesting results both in the local and structural theory of Banach
spaces, [MT1], [MT2], [MT3]. For more information on this subject the reader is refered
to [MT4].

Several properties of finite-dimensional Banach spaces within the local theory of Banach
spaces are described by means of some classes of compact groups of operators acting “well
boundedly” on the spaces in question cf. e.g., [GG], [BKPS]. In this paper we study the
behavior of compact groups of operators acting on subproportional quotients of lm1 , i.e.,
n-dimensional quotients with n = mσ , for some 0 < σ < 1. We prove that “typical” such a
quotient Xn has the property that for every compact group G of operators acting on it, the
following estimate holds

Average

∫
G
‖Tx‖Xn dhG(T) ≥

c√
n log3 n

(
n−

∫
G
| tr T| dhG(T)

)
,

where the average is taken over all extreme points of the unit ball of Xn, hG stands for the
normalized Haar measure on G and tr T denotes the trace of T, Theorem 2.2 below. As a
consequence we derive, Theorem 2.7, that for every sufficiently nontrivial compact group
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1000 Piotr Mankiewicz

G of operators acting on such a quotient (e.g., a group with no 1-dimensional invariant
subspaces) we have

Average

∫
G
‖Tx‖Xn dhG(T) ≥ c ′

√
n/ log3 n.

On the other hand, it is proved in Theorem 2.8, that if for some compact group G of oper-
ators acting on such Xn

Average

∫
G
‖Tx‖Xn dhG(T) ≤ A

then there exists a linear subspace H ⊂ Xn with dim H ≥ max{0, n−CA
√

n log3 n} such

that G|H is trivial, i.e., G|H either consist of± IdH or IdH only.
We shall use the standard notation as in [P], [T]. As it is a general practice in the context

of random quotients of ln
1 , we shall consider only the spaces over reals, however the corre-

sponding results for the complex case can be obtained along the same lines after a standard
modification.

2 Main Results

We shall study finite-dimensional Banach spaces, which will be represented as Rn equipped
with a suitable norm ‖ · ‖. In particular, by ‖ · ‖2 we shall denote the standard Euclidean
norm on Rn. For a linear subspace E ⊂ Rn, by E⊥ and PE we shall denote the orthogonal
complement of E in Rn and the orthogonal projection in Rn onto E, respectively. The space
of all linear operators acting on Rn will be denoted by L(Rn). For a finite-dimensional
Banach space X = (Rn, ‖ · ‖X) and a linear operator T ∈ L(Rn), the norm of T as an
operator acting on X will be denoted by ‖T‖X . If X is Rn equipped with the standard
Euclidean norm then ‖T‖2 will stand for the norm of T in X. For a compact group of
operators G ⊂ L(Rn) by hG we shall denote the normalized Haar measure on G. Finally,
the trace of an operator T ∈ L(Rn) will be denoted by tr T.

Recall, cf. [S2], [M1], [MT4], that an operator T ∈ L(Rn) is said to be (k, α)-mixing if
and only if there exists a k-dimensional linear subspace E ⊂ Rn such that dist(Tx, E) =
‖PE⊥Tx‖2 ≥ α‖x‖2, for every x ∈ E. Furthermore, for T ∈ L(Rn) we define

Mixn(T) = max{αk | T is (k, α)-mixing}.

For a finite dimensional Banach space X by Ex(X) we shall denote the set of extreme points
of the unit ball BX of X and by e(X) its cardinality. Clearly, e(X) = m <∞ if and only if X
is isometric to a quotient of lm

1 . The following theorem is a generalization of Theorem 1.4
in [S2].

Theorem 2.1 There are constants C > 1 and c > 0 such that for every n > 2 there exists an
n-dimensional Banach space Xn = (Rn, ‖ · ‖Xn ) satisfying the properties:

(i) e(Xn) = n2,
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(ii) for every x ∈ Rn

1

2
‖x‖2 ≤ ‖x‖Xn ≤ C

√
n

log n
‖x‖2,

(iii)

card

{
x ∈ Ex(Xn) | ‖Tx‖Xn ≥

c Mixn(T)√
n log n

}
≥

e(Xn)

2
,

for every T ∈ L(Rn).

The proof of this theorem is postponed to the next two sections. In fact, we shall prove a
probabilistic version of it. Namely, Theorem 3.5 below states that “most of” n-dimensional
quotients of lm

1 with m = n2 satisfy the requirements of Theorem 2.1.

Remark The theorem remains valid if in (i) we require that e(Xn) = n1+δ for arbitrary
fixed δ > 0 (with both C and c depending on δ).

Remark Clearly, (ii) implies that the lower estimate for the norm in (iii) is up to a constant
optimal.

Remark (ii) and (iii) yield that the Banach-Mazur distance d(Xn, l2
n) is of order

√
n/ log n.

In the sequel by Xn we shall denote the class of all n-dimensional Banach spaces sat-
isfying the conditions (i)–(iii) of Theorem 2.1. As a consequence, for compact groups of
operators we have

Theorem 2.2 There are constants C > 1 and c1, c2 > 0 such that for every Banach space
Xn ∈ Xn and every compact group G of operators acting on Xn one has

1

e(Xn)

∑
x∈Ex(Xn)

∫
G
‖Tx‖Xn dhG(T) ≥

c1√
n log n

∫
G

Mixn(T) dhG(T)

≥
c2√

n log3 n

(
n−

∫
G
| tr T| dhG(T)

)
.

(2.1)

In particular,

sup
‖x‖Xn=1

∫
G
‖Tx‖Xn dhG(T) ≥

c1√
n log n

∫
G

Mixn(T) dhG(T)

≥
c2√

n log3 n

(
n−

∫
G
| tr T| dhG(T)

)
.

Proof Fix Xn ∈ Xn and an arbitrary compact group G of operators acting on Xn. Clearly,
it is enough to prove (2.1). To this end observe that by the definition of Xn we have

1

e(Xn)

∑
x∈Ex(Xn)

∫
G
‖Tx‖Xn dhG(T) =

1

n2

∫
G

∑
x∈Ex(Xn)

‖Tx‖Xn dhG(T)

≥

∫
G

c Mixn(T)

2
√

n log n
dhG(T),
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1002 Piotr Mankiewicz

which proves the left hand side inequality. To prove the remaining part of (2.1) note that
by Theorem 3.4 in [M2] there is a numerical constant c ′ > 0 such that for every T ∈ G

Mixn(T) + Mixn(T−1) ≥
c ′(n− | tr T|)

log n
.

Hence
∫

G
Mixn(T) dhG(T) =

1

2

∫
G

(
Mixn(T) + Mixn(T−1)

)
dhG(T)

≥
c ′

2 log n

∫
G

(n− | tr T|) dhG(T),

which yields the second estimate.

For k,m ∈ N, 1 ≤ k ≤ m let Gm,k denote the Grassmann manifold of k-dimensional
subspaces of Rm equipped with the normalized Haar measure µm,k. For a linear subspace
E ⊂ Rm the quotient of lm

1 by E will be denoted by lm
1 /E. For n ∈ N and c > 0 define

Yn,c =

{
Zn = ln2

1 /E | E ∈ Gn2,n2−n such that

1

e(Zn)

∑
x∈Ex(Z)

∫
G
‖Tx‖Zn dhG(T) ≥

c√
n log3 n

(
n−

∫
G
| tr T| dhG(T)

)

for every compact group G of operators acting on Zn

}
.

In fact, the argument used to prove Theorem 2.1 yields as well (cf. Remark following
Theorem 3.5)

Theorem 2.3 There are numerical constants c, c ′ > 0 such that

µn2,n2−n(Yn,c) ≥ 1− e−c ′n

for every n ∈ N.

For irreducible groups of operators we have

Theorem 2.4 For every Xn ∈ Xn and for every group G of compact operators acting irre-
ducible on Xn

1

e(Xn)

∑
x∈Ex(Xn)

∫
G
‖Tx‖Xn dhG(T) ≥

c

800

√
n

log n
,

where c is the constant from Theorem 2.1.
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Proof By [M3, Theorem 3.1], for every compact group G of operators acting irreducible
on Xn we have

hG

{
T ∈ G | Mixn(T) ≥

n

80

}
≥

1

5

and the theorem follows from Theorem 2.2, (2.1).

For an arbitrary fixed basis {xi}n
i=1 in an n-dimensional Banach space Yn with dual func-

tionals {x∗i }
n
i=1 consider the compact group G{xi} of operators on Yn of the form

G{xi} =
{

T ∈ L(Rn)
∣∣∣ T =

n∑
i=1

εix
∗
i (·)xi , εi ∈ {−1, 1} for i = 1, 2, . . . , n

}
.

Similarly as in the Theorem above, by [M3, Theorem 3.3], we have (cf. [BKPS], [B])

Theorem 2.5 There exists a numerical constant c > 0 such that for every Banach space
Xn ∈ Xn and every basis {xi}n

i=1 in Xn one has

1

e(Xn)

∑
x∈Ex(Xn)

∫
G({xi})

‖Tx‖Xn dhG({xi})(T) ≥ c

√
n

log n
.

In particular,

ruc(Xn) = inf sup
‖x‖Xn=1

∫
G({xi})

‖Tx‖Xn dhG({xi})(T) ≥ c

√
n

log n
,

where infimum is taken over all bases in Xn.

Remark By the last Remark following Theorem 2.1 the Banach-Mazur distance of Xn to
l2
n is of order

√
n/ log n. Hence the estimates in Theorems 2.4 and 2.5 are sharp up to a

multiplicative constant.
Clearly, the right hand side inequality in Theorem 2.2, (2.1) is not sharp and cannot

yield an optimal estimate. Before we shall be able to present its typical applications we need
some basic facts concerning compact groups of operators acting on Rn (cf. e.g., [M2]). For
a linear subspace E ⊂ Rn and an operator T ∈ L(Rn) by T|E we shall denote the restriction
of T to the subspace E.

Fact 1 Let G be a compact group of operators acting on Rn. Then

(1o) there is another scalar product 〈·, ·〉1 on Rn such that G is a group of isometries on

(Rn, ‖ · ‖1), where ‖x‖1 = 〈x, x〉
1/2
1 for x ∈ Rn,

(2o) there is a decomposition of Rn into an ‖ ‖1-orthogonal sum of G-invariant subspaces
Rn = E1 ⊕ E2 ⊕ · · · ⊕ Ek with the properties:

(i) the group G|Ei = {T|Ei | T ∈ G} acts irreducibly on Ei for i = 1, 2, . . . , k,
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1004 Piotr Mankiewicz

(ii) if U ∈ L(Ei) commutes with every element of G|Ei then

〈U x, x〉1 = (dim Ei)
−1 tr U‖x‖2

1,

for every x ∈ Ei, i = 1, 2, . . . , k.

Lemma 2.6 For every r ≥ 2 and every irreducible compact group G of isometries acting on
Rr ∫

G
| tr T| dhG(T) ≤

r
√

2
.

Proof Fix an irreducible compact group G of isometries acting on Rr. For every e ∈ Rr

with ‖e‖2 = 1 write Te = 〈e, ·〉e and set

Ue =

∫
G

T−1TeT dhG(T).

Since tr Ue = tr Te = 1 and Ue commutes with every T ∈ G, by Fact 1, we infer that
〈Uex, x〉 = 1/r for every x ∈ Rr with ‖x‖2 = 1. Hence, for every e ∈ Rr with ‖e‖2 = 1

1

r
= 〈Uee, e〉 =

∫
G
〈T−1TeTe, e〉 dhG(T)

=

∫
G
〈〈e,Te〉e,Te〉 dhG(T) =

∫
G
〈e,Te〉2 dhG(T).

Thus, by the Hölder inequality, for every e ∈ Rr with ‖e‖2 = 1 we have

∫
G
|〈e,Te〉| dhG(T) ≤

1
√

r
.

Therefore ∫
G
| tr T| dhG(T) ≤

r∑
i=1

∫
|〈ei,Tei〉| dhG(T) ≤

√
r ≤

r
√

2
.

As a consequence of Theorem 2.2 (2.1) we have

Theorem 2.7 For every Banach space Xn ∈ Xn and for every compact group G of operators
acting on Xn one has

1

e(Xn)

∑
x∈Ex(Xn)

∫
G
‖Tx‖Xn dhG(T) ≥

c2 dim E

4
√

n log3 n

for every G-invariant subspace E ⊂ Xn which admits no 1-dimensional G-invariant subspaces,
where c2 is the constant from Theorem 2.2.
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Proof Let 〈·, ·〉1 be the scalar product which makes G to be a group of isometries of
(Rn, ‖ · ‖1) and let F = E⊥ be the 〈·, ·〉1-orthogonal complement of E. Note that for every
G-invariant subspace H ⊂ Rn we have | tr T|H| ≤ dim H. Therefore

n−

∫
G
| tr T| dhG(T) = dim F −

∫
G
|tr T|F| dhG(T) + dim E −

∫
G
|tr T|E| dhG(T)

≥ dim E −

∫
G
|tr T|E| dhG(T).

(2.2)

Thus, in view of Theorem 2.2, it suffices to show that

∫
G
|tr T|E| dhG(T) ≤

dim E
√

2
.

To this end let E = E1 ⊕ E2⊕, . . . ,⊕Ek be a decomposition of E into 〈·, ·〉1-orthogonal
sum of G-invariant G-irreducible subspaces. Since dim Ei ≥ 2 for i = 1, 2, . . . , k, by the
previous lemma we have

∫
G
| tr T|E| dhG(T) =

k∑
i=1

∫
G
|tr T|Ei | dhG(T)

=
k∑

i=1

∫
GEi

| tr T| dhi(T) ≤
1
√

2

k∑
i=1

dim Ei

=
dim E
√

2
,

where hi for i = 1, 2, . . . , k denotes the normalized Haar measure on G|Ei .

Theorem 2.8 There exists a constant C0 > 0 such that for every Xn ∈ Xn and every compact
group G of operators acting on Xn satisfying

1

e(Xn)

∑
x∈Ex(Xn)

∫
G
‖Tx‖Xn dhG(T) ≤ A

there is a linear subspace H ⊂ Xn with dim H ≥ max{0, n−C0A
√

n log3 n} such that G|H

acts trivially on H (i.e., G|H consists of either IdH or± IdH).

Proof Fix Xn and G satisfying the assumption of the theorem and let Xn = E1 ⊕ E2 ⊕
· · ·⊕Em be a decomposition of Xn into an ‖ · ‖1-orthogonal sum of G-irreducible invariant
subspaces, where ‖·‖1 is a suitable Euclidean norm, cf. Fact 1. Without any loss of generality
we may assume that

dim E1 ≥ dim E2 ≥ · · · ≥ dim Em−k1−k2 > dim Em−k1−k2+1 = · · · = dim Em = 1,
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where for j = m − k1 − k2 + 1,m − k1 − k2 + 2, . . . ,m − k2 we have G|E j = ± IdE j and
G|E j = IdE j for j = m − k2 + 1,m − k2 + 2, . . . ,m. Observe that by Theorem 2.2 and by
(2.2), for every G-invariant subspace E ⊂ Xn we have

A ≥
c2√

n log3 n

(
dim E −

∫
G
|tr T|E| dhG(T)

)
.(2.3)

Set
F = lin{E j | j = m− k1 − k2 + 1,m− k1 − k2 + 2, . . . ,m− k2}.

It is not difficult to see that F admits a unique decomposition

F = F1 ⊕ F2 ⊕ · · · ⊕ Fm0

of minimal length m0 such that G|F j = ± IdF j for every j = 1, 2, . . . ,m0. For every T ∈ G
and for j = 1, 2, . . . ,m0 define ε j(T) by the equality T|F j = ε j(T) IdF j . The minimality
of m0 yields

∫
G ε j1 (T)ε j2 (T) dhG(T) = 0 for j1, j2 = 1, 2, . . . ,m0, j1 �= j2. In order to

simplify notations assume that dim F1 = max{dim F j | j = 1, 2, . . . ,m0}. By the Jensen
inequality

(∫
G
|tr T|F| dhG(T)

)2

≤

∫
G
|tr T|F|2 dhG(T)

=

∫
G

( m0∑
j=1

ε j(T) dim F j

)2
dhG(T) =

m0∑
j=1

(dim F j)
2

≤ k1 dim F1 ≤ n dim F1.

(2.4)

Let E0 = lin{Ei | i = 1, 2, . . . ,m − k1 − k2} and put k0 = dim E0. By Theorem 2.7 we
have

k0 = dim E0 ≤
4A

c2

√
n log3 n.

Therefore, if k1 = dim F ≤ (8A
√

n log3 n)/c2 then k2 ≥ n− (12A
√

n log3 n)/c2 and we are

done. Thus, it remains to consider the case when k1 > (8A
√

n log3 n)/c2. This case splits

into two disjoint sub-cases

(A) k2 < (2A
√

n log3 n)/c2,

(B) k2 ≥ (2A
√

n log3 n)/c2.

To establish the theorem in the sub-case (A) it suffices to note that k1 = dim F ≥ n −

(6A
√

n log3 n)/c2. Hence, by (2.3)

∫
G
|tr T|F| dhG(T) ≥ n−

7A

c2

√
n log3 n(2.5)
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and by combining (2.5) and (2.4) we get

dim F1 ≥ n−
14A

c2

√
n log3 n.(2.6)

The last step is to prove that, in fact, the sub-case (B) cannot occur. Indeed, to see this

assume that (B) holds. Observe that
∫

G|tr T|F| dhG(T) ≤ k1/2 and k1 > (8A
√

n log3 n)/c2

contradict (2.3). On the other hand, if
∫

G|tr T|F| dhG(T) > k1/2 then, by (2.4), dim F1 >

k1/4 ≥ (2A
√

n log3 n)/c2. Let F̃ and H̃ be arbitrary (2A
√

n log3 n)/c2-dimensional sub-

spaces of F1 and lin{E j | j = m− k2 + 1,m− k2 + 2, . . . ,m} respectively. Then

∫
G
|tr T|F̃ ⊕ H̃| dhG(T) =

2A
√

n log3 n

c2
=

dim F̃ ⊕ H̃

2
,

which yields a contradiction with (2.3) and completes the proof of the theorem.

3 Technical Theorem

We begin with some notations. Fix a probability space (Ω,P). For every n ∈ N we shall
consider a sequence of independent Gaussian vectors {gn,1, gn,2, . . . , gn,n2} in Rn, each with
the distribution N(0, 1,Rn), i.e., with the density (n/2π)n/2 exp(−n‖x‖2

2/2) with respect to
the standard Lebesgue measure in Rn. In order to simplify the notations, for a given n ∈ N
we shall write m = n2. We shall need the following well known properties of Gaussian
vectors in Rn. Let g be such a vector with the distribution N(0, 1,Rn).

Fact 2

(i) For every linear subspace E of Rn with dim E = k, the random vector
√

n/k PEg is
Gaussian with the distribution N(0, 1, E).

(ii) For every pair of linear orthogonal subspaces E1 and E2 in Rn the random vectors PE1 g
and PE2 g are independent.

(iii) There is an universal constant c ′ > 0 such that

P{ω ∈ Ω | 1/2 ≤ ‖g‖2 ≤ 2} > 1− e−c ′n.

(iv) For every measurable subset A ⊂ Rn

P{ω ∈ Ω | g ∈ A} ≤
( n

2π

)n/2
vol A,

where vol A denotes the n-dimensional Lebesgue measure of A.

For each n ∈ N and ω ∈ Ω we set

Bn,ω = absconv{gn,1, gn,2, . . . , gn,m}.
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For each n ∈ N, by Ω ′n denote the set {ω ∈ Ω | Bn,ω is a convex body in Rn}. Clearly,
P(Ω ′n) = 1. For ω ∈ Ω ′n, let ‖ · ‖n,ω be the norm on Rn with Bn,ω as its unit ball. In this way
for each n ∈ N, we have defined a random family of Banach spaces Xn,ω = (Rn, ‖ · ‖n,ω).
Observe that each Banach space Xn,ω is canonically isometrically isomorphic to a quotient
of lm

1 via the quotient map Qn,ω defined by the equality

Qn,ω(ei) = gn,i(ω) for i = 1, 2, . . . ,m,

where {ei}m
i=1 denotes the standard unit vector basis in lm

1 = (Rm, ‖ · ‖1). It is not difficult
to verify that for each n ∈ N the distribution of kernels of of Qn,ω is rotational invariant in
Rm. Therefore, by the uniqueness of the Haar measure µm,m−n we have

µm,m−n{E ∈ Gm,m−n | E ∈ B} = P{ω ∈ Ω | ker Qn,ω ∈ B}(3.1)

for every Borel subset B ⊂ Gm,m−n.
For each n ∈ N set

Ω ′′n = {ω ∈ Ω
′
n | 1/2 ≤ ‖gn,i‖2 ≤ 2 for every i ≤ m}

and define

Ω ′ ′ ′n =

{
ω ∈ Ω ′ ′n

∣∣∣ 1

4

√
log n

n
B2

n ⊂ Bn,ω

}
.

The following proposition is well known to specialists

Proposition 3.1 There exists a constant c̃ > 0 such that

P(Ω ′ ′ ′n ) > 1− exp(c̃n).

Proof Note that for a real Gaussian variable g with the distribution N(0, 1,R) we have

P
({
ω ∈ Ω

∣∣∣ |g| ≥ 1

2

√
log n
})
≥

1

4
√

n
,

and observe that by Fact 2, (i), for every x ∈ Rn with ‖x‖2 = 1 and every i ≤ m the
Gaussian variable

√
n〈x, gn,i〉 has the N(0, 1,R) distribution. Thus, by the independence of

the Gaussian variables gn,i we infer that

P

({
ω ∈ Ω

∣∣∣ sup
i≤m
{|〈x, gn,i〉|} <

1

2

√
log n

n

})
<
(

1−
1

4
√

n

)m
,(3.2)

for every x ∈ Rn with ‖x‖2 = 1.
Let Nn be the (

√
log n/n /8)-net in the unit sphere Sn−1 of Rn with card Nn ≤

(40
√

n/ log n)n, cf. e.g.[P]. Define

ANn =

{
ω ∈ Ω ′ ′n

∣∣∣ sup
i≤m
{|〈x, gn,i〉|} ≥

1

2

√
log n

n
for every x ∈ Nn

}
.
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Clearly,

P(ANn ) ≥ P(Ω ′ ′n )−
(

1−
1

4
√

n

)m
(

40

√
n

log n

)n

.(3.3)

Now, fix arbitrary x0 ∈ Sn−1 and ω ∈ ANn and choose x ∈ Nn with

‖x0 − x‖2 ≤
1

8

√
n

log n
.

Since

sup
i≤m
{|〈x0, gn,i(ω)〉|} ≥ sup

i≤m
{|〈x, gn,i(ω)〉|} − ‖x0 − x‖2 sup

i≤m
{‖gn,i‖2}

≥
1

4

√
log n

n
,

we infer that for every x ∈ Sn−1 and ω ∈ ANn we have

sup
i≤m
{|〈x, gn,i(ω)〉|} ≥

1

4

√
log n

n
.

By the standard separation argument, this yields that for ω ∈ ANn , the ball Bn,ω contains
(
√

log n/n /4)B2
n and therefore ANn ⊂ Ω

′ ′ ′
n . The proof is completed by combining Fact 2

(iii) with (3.3).

Remark Note that

d(Xn,ω, l
n
2) ≤ 8

√
n

log n

for ω ∈ Ω ′′ ′n .

Remark The same line of argument shows that in order to ensure that most of the unit
balls Bn,ω contain (c

√
log n /n)B2

n for sufficiently small c > 0, it is enough to consider
m = n1+ε, with ε = ε(c) > 0, independent Gaussian variables in Rn, while to obtain
that most of Bn,ω’s contain (c/

√
n)B2

n, for sufficiently small c > 0, it is enough to consider
m = Cn log n with C = C(c).

Proposition 3.2 For n ∈ N let

Ω0
n = {ω ∈ Ω

′′ ′
n | e(Xn,ω) = m}.

Then there exists a numerical constant c0 > 0 such that P(Ω0
n) ≥ 1− e−c0n.
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Proof By the definition of the spaces Xn,ω we have that e(Xn,ω) ≤ m for every ω ∈ Ω.
Clearly, if for some ω ∈ Ω the cardinality of extreme points of the unit ball of Xn,ω is less
than m then there exists a positive integer j0 ≤ m such that gn, j0 (ω) ∈ absconv{gn,i(ω) |
i �= j0}. Set

B j0
n,ω = absconv{gn,i(ω) | i �= j0}.

By Fact 2 (iii) and the independence of random vectors gn,I for i = 1, 2, . . . ,m we infer that

P{ω ∈ Ω ′′ ′n | gn, j0 ∈ B j0
n,ω} ≤

( n

2π

)n/2
max vol B j0

n,ω,

where maximum is taken over all ω ∈ Ω ′ ′′n . On the other hand, by Theorem 1 in [BP]

and the Santaló inequality we obtain that vol B j0
n,ω ≤ (c

√
log n /n)n for some numerical

constant c > 0 and every ω ∈ Ω ′ ′ ′n . Therefore

P(Ω0
n) ≥ P(Ω ′ ′ ′n )−m(c

√
log n /n)n

and the proof is completed by applying the previous proposition.

We shall need

Lemma 3.3 For every n ∈ N and δ > 0, let

Ãδn =

{
ω ∈ Ω0

n

∣∣∣ card
{

i ≤ m
∣∣∣ |〈gn,i, e〉| <

δ
√

n

}
>

m

2

for some e ∈ Rn with ‖e‖2 = 1

}
.

Then there exists a numerical constant c ′ ′ > 0 such that P(Ãδn) < e−c ′ ′n for every 0 < δ ≤
1/32.

Proof Since Ãδ1n ⊂ Ãδ2n for δ1 < δ2 it suffices to prove the proposition for δ = 1/32.
Fix n ∈ N, δ > 0 and e ∈ Rn with ‖e‖2 = 1. Let

Aδe =

{
ω ∈ Ω0

n

∣∣∣ card
{

i ≤ m
∣∣∣ |〈gn,i, e〉| <

2δ
√

n

}
>

m

2

}
.

Since, by Fact 2 (i), the random variables
√

n〈gn,i, e〉’s have the N(0, 1,R) distribution we
infer that for every i ≤ m

P
({
ω ∈ Ω

∣∣∣ |〈gn,i, e〉| <
2δ
√

n

})
= P({ω ∈ Ω | |

√
n〈gn,i, e〉| < 2δ}) ≤ 2δ.

By the independence of the random vectors gn,i and by the binomial formulae, we get

P(Aδe ) <
m∑

j=m/2

(
m

j

)
(2δ) j < 2m(2δ)m/2,(3.4)
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for δ < 1/2.
Let N(n, δ) be the δ/4

√
n-net in the unit sphere Sn−1 of Rn with

card N(n, δ) ≤ (20
√

n/δ)n.

Set
AN(n,δ) =

⋃
e∈N(n,δ)

Aδe .

Assume that for some ω ∈ Ω0
n, i ≤ m and e1 ∈ Rn with ‖e1‖2 = 1 we have |〈gn,i(ω), e1〉| <

δ/
√

n, and choose e ∈ N(n, δ) with ‖e1 − e‖2 ≤ δ/4
√

n. Then

|〈gn,i(ω), e〉| ≤ |〈gn,i(ω), e1〉| + ‖e1 − e‖2 ‖gn,i(ω)‖2 <
2δ
√

n
.

This proves that Ãδn ⊂ AN(n,δ). To complete the proof it is enough to note that for δ = 1/32
we get

P(Ãδn) ≤ P(AN(n,δ)) ≤ 2m(2δ)m/2(20
√

n/δ)n = 2−m(640
√

n)n.

As a consequence, we have

Proposition 3.4 For every n ∈ N, let

Ãn =

{
ω ∈ Ω0

n

∣∣∣ card
{

i ≤ m
∣∣∣ ‖Tgn,i‖n,ω <

1

100
√

n

}
>

m

2

for some T ∈ L(Rn) with ‖T‖2 ≥ 1

}
.

Then P(Ãn) < e−c ′ ′n, where c ′ ′ is the numerical constant from the previous lemma.

Proof Fix n ∈ N and T ∈ L(Rn) with ‖T‖2 ≥ 1 and assume that for some ω ∈ Ω0
n and

i ≤ m we have

‖Tgn,i‖n,ω <
1

100
√

n
.

Write T in the polar decomposition form, i.e.,

Tx =
n∑

j=1

λ j < u j , x > v j ,

where {u j}n
j=1 and {v j}n

j=1 are orthonormal bases in Rn and ‖T‖2 = λ1 ≥ λ2 ≥ · · · ≥

λn ≥ 0. Since ‖x‖n,ω ≥
1
2‖x‖2 for every x ∈ Rn and ω ∈ Ω0

n, we infer that

1

100
√

n
> ‖Tgn,i‖n,ω ≥

1

2
‖Tgn,i‖2 ≥

λ1

2
|〈u1, gn,i〉| ≥

1

2
|〈u1, gn,i〉|.

Hence |〈u1, gn,i〉| < 1/50
√

n, which clearly implies that Ãn ⊂ Ã
1/50
n for every n ∈ N which,

by Lemma 3.3, yields the required estimate.

The following is a “random” version of Theorem 2.1.
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Theorem 3.5 There are numerical constants c, c ′ ′′ > 0 such that

P(Ω0
n \An) ≥ 1− e−c ′ ′ ′n,

where for n ∈ N the set An is defined by

An =

{
ω ∈ Ω0

n

∣∣∣ card
{

i ≤ m
∣∣∣ ‖Tgn,i‖n,ω <

c Mixn(T)√
n log n

}
>

m

2

for some T ∈ L(Rn)

}
.

Remark Observe that Theorem 2.3 follows directly from (3.1) and Theorems 2.1, 2.2
and 3.5.

Due to the homogenuity of the operator norm it is enough to prove the theorem for
T ∈ L(Rn) with Mixn(T) = 1. Clearly, Mixn(T) = 1 implies that T ∈ Mixn(k, 1/k) for
some k ≤ n/2. Set Mixn(l, α) = {T ∈ Mixn(l, α) | ‖T‖2 ≤ 1} for l ≤ n/2 and α ∈ R+.
Define, for n ∈ N, k ≤ n/2 and c > 0

Bc
n,k =

{
ω ∈ Ω0

n

∣∣∣ card
{

i ≤ m
∣∣∣ ‖Tgn,i‖n,ω <

c√
n log n

}
>

m

2

for some T ∈ Mixn(k, 1/k)

}
.

Proposition 3.6 There are numerical constants c, c̃ > 0 such that

P
(n/2⋃

k=1

Bc
n,k

)
≤ e−c̃n.

Clearly, Theorem 3.5 is a direct consequence of Propositions 3.1, 3.2, 3.4 and 3.6 so it
remains to prove the last one.

4 Proof of Proposition 3.6

Lemma 4.1 There is a constant C1 > 0 such that for every n ∈ N, every c < C−1
1 , every

pair E1, E2 of k-dimensional orthogonal subspaces in Rn and every linear operator T : Rn → E2

satisfying the inequality ‖Tx‖2 ≥ ‖x‖2/2k for every x ∈ E1, we have

P(Ac
n,E1,E2,T) < 2m(C1c)km/2,

where

Ac
n,E1,E2,T =

{
ω ∈ Ω0

n

∣∣∣ card
{

i ≤ m
∣∣∣ Tgn,i ∈

c√
n log n

PE2 Bn,ω

}
>

m

2

}
.
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Proof Fix i0 ≤ m and let g = PE1 gn,i0 . Then{
ω ∈ Ω0

n

∣∣∣ Tgn,i0 ∈
c√

n log n
PE2 Bn,ω

}

⊂
{
ω ∈ Ω0

n

∣∣∣ Tg ∈
c√

n log n
PE2 Bn,ω − TPE⊥1

gn,i0

}

⊂
{
ω ∈ Ω0

n

∣∣∣ g ∈
c√

n log n
(T|E1)−1PE2 Bn,ω − (T|E1)−1TPE⊥1

gn,i0

}
.

(4.1)

Observe that since PE2 Bn,ω = absconv{PE2 gn,i | i ≤ m}, by Fact 2 (ii), we infer that PE2 Bn,ω

as well as (T|E1)−1TPE⊥1
gn,i0 is independent of g. By Fact 2 (i) and (iv), we have

P
({
ω ∈ Ω0

n

∣∣∣ g ∈
c√

n log n
(T|E1)−1PE2 Bn,ω − (T|E1)−1TPE⊥1

gn,i0

})

≤
( c√

2π log n

)k
vol{(T|E1)−1PE2 Bn,ω}

(4.2)

in order to estimate the volume in question, note that ‖(T|E1)−1‖2 ≤ 2k and that for
ω ∈ Ω0

n we have ‖gn,i‖2 ≤ 2 for every i ≤ m. Therefore (T|E1)−1PE2 Bn,ω is an absolute
convex of m vectors, each of them of the length not greater than 4k. Hence, by e.g., [BP,
Theorem 1] and Santaló inequality, we have

vol{(T|E1)−1PE2 Bn,ω} ≤
(
C0

√
log(m/k)

)k
,(4.3)

where C0 > 0 is a suitable numerical constant. Combining (4.1), (4.2) and (4.3) we get

P
({
ω ∈ Ω0

n

∣∣∣ Tgn,i0 ∈
c√

n log n
PE2 Bn,ω

})
< (C1c)k,

for some numerical constant C1 > 0. Hence, by the binomial formulae, for c < C−1
1

Ac
n,E1,E2,T < 2m(C1c)km/2,

which completes the proof of the lemma.

Lemma 4.2 For every E1, E2 pair of k-dimensional orthogonal subspaces in Rn and every
c > 0 set

TE1,E2 = {T : Rn → E2 | ‖T‖2 ≤ 1 and ‖Tx‖2 ≥ ‖x‖2/2k for every x ∈ E1}

and

Ac
E1,E2
=

{
ω ∈ Ω0

n

∣∣∣ card
{

i ≤ m
∣∣∣ Tgn,i ∈

c

2
√

n log n
PE2 Bn,ω

}
>

m

2

for some T ∈ TE1,E2

}
.

Then P(Ac
E1,E2

) < 2m(C1c)km/2(100n3)2nk for every 0 < c < C−1
1 and sufficiently large n ∈ N,

where C1 is the numerical constant from the previous Lemma.
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Proof Fix any c > 0 satisfying the requirement of the previous lemma and let NE1,E2 be
a 1/16n2-net in TE1,E2 with respect to the operator norm in (Rn, ‖ · ‖2) with the mini-
mal cardinality, and let NRn and NE2 be 1/32n3-nets in the unit balls of Rn and E2 with
card NRn ≤ (100n3)n and card NE2 ≤ (100n3)k respectively. Obviously, the set of operators
of the form

T =
k∑

j=1

〈x j , ·〉y j

with x j ∈ NRn and y j ∈ NE2 for j = 1, 2, . . . , k is a k/16n3-net for TE1,E2 with cardinality

not greater than (100n3)nk+k2
< (100n3)2nk. By a well known argument, this yields that

card NE1,E2 < (100n3)2nk.(4.4)

Now, let

Ãc
E1,E2
=
⋃

T∈NE1 ,E2

Ac
n,E1,E2,T ,(4.5)

where Ac
n,E1,E2,T

for T ∈ NE1,E2 are the sets defined in the lemma above. Assume that for
some ω ∈ Ω0

n, i0 ≤ m and some T ∈ TE1,E2 we have

‖Tgn,i0‖PE2 Bn,ω <
c

2
√

n log n
,

where ‖ ·‖PE2 Bn,ω the norm on E2 induced by PE2 Bn,ω. Choose T1 ∈ NE1,E2 with ‖T−T1‖2 ≤

1/16n2. Since (
√

log n /n /4)B2
n ⊂ Bn,ω, for ω ∈ Ω0

n, we infer that

‖T1gn,i0 (ω)‖PE2 Bn,ω ≤ ‖(T1 − T)gn,i0 (ω)‖PE2 Bn,ω + ‖Tgn,i0 (ω)‖PE2 Bn,ω

≤ 4

√
n

log n
‖(T1 − T)‖2 ‖gn,i0 (ω)‖2 + ‖Tgn,i0 (ω)‖PE2 Bn,ω

≤
1

2n
√

n log n
+

c

2n
√

n log n
<

c√
n log n

,

for n large enough. This implies that Ac
E1,E2
⊂ Ãc

E1,E2
for sufficiently large n and the proof

is completed by combining (4.4), (4.5) and Lemma 4.1.

Lemma 4.3 For every k ≤ n/2 and c > 0 set

Tn,k = {T ∈ L(Rn) | ‖T‖2 ≤ 1 rank T = k and there is

a k-dimensional subspace E1 ⊂ Rn orthogonal to T(Rn) with

‖Tx‖2 ≥ ‖x‖2/k for every x ∈ E1},
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and let

Ac
n,k =

{
ω ∈ Ω0

n

∣∣∣ card
{

i ≤ m
∣∣∣ Tgn,i ∈

c

4
√

n log n
PT(Rn)Bn,ω

}
>

m

2

for some T ∈ Tn,k

}
.

Then there is a constant C2 > 0 such that

P(Ac
n,k) < (C2c)km/2(1600n5)2nk

for c > 0 small enough and sufficiently large n.

Proof For k < n, denote by Gk,n the Grassmann manifold of k-dimensional subspaces of
Rn with the metric d(E1, E2) = ‖PE1 − PE2‖2 and let Nn,k be the 1/16n2-net in Gk,n with

card Nn,k ≤ Cm
3 (16n2)k(n−k),(4.6)

where C3 is an universal constant, cf. [S1]. For every F ∈ Nn,k by Gk,n,F denote the Grass-
mann manifold of k-dimensional subspaces of F⊥ and let Nn,k,F be the 1/16n2-net in Gk,n,F

with

card Nn,k,F ≤ Cm
3 (16n2)k(n−2k).(4.7)

Claim For every T ∈ Tn,k there are F2 ∈ Nn,k and F1 ∈ Nn,k,F2 such that PF2 T ∈ TF1,F2 and
‖PE2 − PF2‖2 ≤ (16n2)−1, where E2 = T(Rn).

Proof of the Claim Fix T ∈ Tn,k and set E2 = T(Rn). Let E1 be a k-dimensional subspace
orthogonal to E2 such that ‖Tx‖2 ≥ ‖x‖2/k for every x ∈ E1. Choose F2 ∈ Nn,k with
‖PE2 − PF2‖2 ≤ (16n2)−1 and let Ẽ = PF⊥2

E1. Clearly, PF⊥2
|E1 is a one-to-one mapping and

‖(PF⊥2
|E1)−1 y‖2 ≥ ‖y‖2 for every y ∈ Ẽ. On the other hand, setting x = (PF⊥2

|E1)−1 y for

y ∈ Ẽ we have

‖x − y‖2 = ‖PE⊥2
x − PF⊥2

x‖2 ≤ ‖x‖2/16n2 ≤ ‖y‖2/15n2.(4.8)

Now, choose F1 ∈ Nn,k,F2 with ‖PF1 − PẼ‖2 ≤ (16n2)−1. Let z ∈ F1, y = PẼz and
x = (PF⊥2

|E1)−1 y. Since PE2 T = T and ‖z‖2 ≥ ‖y‖2 then, by (4.8),

‖PF2 Tz‖2 ≥ ‖Tz‖2 − ‖(PE2 − PF2 )Tz‖2 ≥ ‖Tz‖2 − ‖z‖2/16n2

≥ ‖Ty‖2 − ‖T(PẼ − PF1 )z‖2 − ‖z‖2/16n2 ≥ ‖Ty‖2 − ‖z‖2/8n2

≥ ‖Tx‖2 − ‖T(y − x)‖2 − ‖z‖2/8n2 ≥ ‖Tx‖2 − ‖y‖2/15n2 − ‖z‖2/8n2

≥ ‖Tx‖2 − ‖z‖2/4n2.

(4.9)
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On the other hand, since x ∈ E1 and also ‖y‖2 ≥
15
16‖z‖2 we have

‖Tx‖2 ≥ ‖x‖2/k ≥ ‖y‖2/k ≥
15

16k
‖z‖2.(4.10)

Combining (4.9) and (4.10) we get

‖PF2 Tz‖2 ≥
15

16k
‖z‖2 − ‖z‖2/4n2 ≥ ‖z‖2/2k,

which completes the proof of the Claim.
Returning to the proof of the lemma, pick T ∈ Tn,k and let E2, F2 and F1 be as in the

Claim. Assume that for some ω ∈ Ω0
n and some i0 ≤ m we have

Tgn,i0 ∈
c

4
√

n log n
PE2 Bn,ω

and observe that since PF2 Bn,ω = absconv{PF2 gn,i | i ≤ m} and

‖PF2 gn,i − PF2 PE2 gn,i‖2 = ‖PF2 (PF2 − PE2 )gn,i‖2 ≤
1

8n2
,

for i = 1, 2, . . . ,m then, by the definition of the set Ω0
n, we have

PF2 PE2 Bn,ω ⊂ PF2 Bn,ω +
1

8n2
PF2 B2

n ⊂ 2PF2 Bn,ω.

Therefore
PF2 Tgn,i0 ∈

c

4
√

n log n
PF2 PE2 Bn,ω ⊂

c

2
√

n log n
PF2 Bn,ω.

By the Claim, this implies that

Ac
n,k ⊂

⋃
F2∈Nn,k

⋃
F1∈Nn,k,F2

Ac
F1,F2
.

The proof is completed by combining Lemma 4.2 with (4.6) and (4.7) and setting C2 =
(max {2,C1,C3})9.

Proof of Proposition 3.6 Let T ∈ Mixn(k, 1/k) for some n, k ∈ N. By the definition, there
is a k-dimensional subspace E1 with the property ‖PE⊥1

Tx‖2 ≥ ‖x‖2/k for every x ∈ E1.

Set E2 = PE⊥1
TE1. Clearly, T̃ = PE2 T ∈ Tn,k. Therefore, for c0 = c/4 and sufficiently large

n we have Bc0
n,k ⊂ Ac

n,k. Therefore, by Lemma 4.3, for sufficiently large n and c > 0 small
enough we have

P
(n/2⋃

k=1

Bc0
n,k

)
≤ P
(n/2⋃

k=1

Ac
n,k

)
≤

n/2∑
k=1

(C2c)km/2(1600n5)2nk

which yields the required estimate.
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