
3
Physics in spacetime
High-energy collisions, scatterings and most decays are, for the most part, relativistic quantum
processes. It is therefore imperative to recall relativistic kinematics and the basic rules of ten-
sor calculus; see Appendix B.2 for a more complete introduction. However, this chapter neither
replaces nor competes with complete treatments of the special theory of relativity such as the illus-
trative but perfectly detailed text [512] or the first and original text [566]. Instead, the purpose
of this chapter is to provide an introduction and the results that will be useful in following the
subsequent material.

3.1 The Lorentz transformations and tensors
When describing physical processes, one necessarily uses a mathematical apparatus such as a (ref-
erence1) coordinate system – equipped with a specific and appropriate collection of coordinates.
The choice of any one such coordinate system is arbitrary and should not affect the characteristics
of the natural laws.

The basic idea (oft cited as one of the two postulates) of Einstein’s theory of relativity is that
the change in the choice of the coordinate system and corresponding coordinates used to describe
spacetime must not change the meaning of natural laws – and so must not have any measurable,
i.e., observable consequences.

Digression 3.1 Chapter 5 will show that the so-called gauge principle is simply the gen-
eralization of this relativity to the spaces of so-called internal degrees of freedom (also
a type of coordinates), such as the phase of the complex wave-function of any charged
particle.

In the special theory of relativity, this idea of relativity is limited to so-called inertial (co-
ordinate) systems, which are usually defined as coordinate systems that differ from each other

1 The term “coordinate system” is used instead of “reference system” to remind the Reader that its choice necessarily
includes a choice of a particular system of four variables, and the specification of the metric tensor in the space of those
variables; [☞ Chapter 9 for the general case, and here the relations (3.15)–(3.19)].
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84 Physics in spacetime

only in moving one with respect to the other with a constant relative velocity.2 However, against
all intentions, this “definition” does not exclude, for example, a pair of coordinate systems that
co-rotate about the same axis with the same angular velocity, but move with a constant relative
velocity along the co-rotating axis. Intuitively, the actual intention was to define a class of coor-
dinate systems that move with a constant velocity with respect to a system. . . at rest! This shows
that our intuition was infiltrated by the Newtonian idea of absolute space and time; it would be
inconsistent to define the relativistic inertial frames using Newtonian ideas.

A definition that relies on a relative property between two members of the class being defined
must imply that at least one member of this class can be unambiguously identified, so that other
members of the class would be defined by comparison with this chosen reference. However, the
very essence of the theory of relativity is that no such singled-out reference system can exist, which
makes such a relative definition essentially insufficient.

The practical property of all inertial coordinate systems in non-relativistic physics is that
Newton’s first law holds in them. As it was our intention anyway for this law to hold, following
Griffiths [243], we adopt it as a definition:

Definition 3.1 A coordinate system is inertial if Newton’s first law, i.e., the law of inertia,
holds in it: every body moves at a constant velocity in a straight line if and only if the sum
total of all forces that act upon it vanishes.

Comment 3.1 It is not hard to show that Definition 3.1 implies that the relative velocity be-
tween any two inertial systems is constant. Thus, Definition 3.1 implies the usually assumed
property of inertial coordinate systems, which were meant to be selected. It also excludes the
non-inertial systems such as the above-mentioned co-axially translating co-rotating systems,
which are known to be accelerated.

Comment 3.2 Evidently, for a specified coordinate system, we must know what is a “straight
line” and what qualifies as a “constant velocity.” As the first notion is purely geometrical, and
the second requires differential calculus in the specified coordinate system, Definition 3.1
presupposes this level of mathematical knowledge of the specified coordinate system. How-
ever, this requirement is logically acceptable and even to be expected. Also, this definition of
an inertial system depends on a presupposed familiarity with the concept of force; Chapter 9
will show that amongst all coordinate systems the concept of force may be exchanged for
the concept of curvature of the coordinate system. In contradistinction then, all inertial co-
ordinate systems are also flat , i.e., have no curvature. To be pedantic, one must also require
a “trivial topology,” i.e., no globally nontrivial features such as multiple connectedness.

Comment 3.3 Finally, note that Definition 3.1 implies the testing of certain numerical val-
ues: deviation from a straight line, the magnitude and direction of the vector of acceleration.
Since every measurement is subject to error, both criteria are subject to the limitations of
real, physical measurements. Definition 3.1 is therefore a truly physical one. For exam-
ple: in nearly all experiments, the “laboratory system” is considered to be inertial, although
it is not really so. The laboratory is on the surface of the planet Earth, the gravitational
field of which bends the trajectories of objects and accelerates them. Also, the Earth rotates
about its axis, so that there are also Coriolis-type forces. Furthermore, the Earth is in the

2 It should be kept in mind that the special theory of relativity [179, 55, 69, to name but a few textbooks] is only the
linear (flat spacetime) approximation to the general theory of relativity [508, 62, 367, 548, 66, 96]. It is possible to
extend the use of special relativity so as to include relatively accelerated systems where the incurred nonlinear effects
may be consistently neglected. The Reader is expected to have used the formalism of the special theory of relativity at
the level of standard texts in electrodynamics [296].
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3.1 The Lorentz transformations and tensors 85

gravitational field of the Moon and the Sun; the Earth rotates about the Sun; together with
the solar system, they also rotate about the galactic center, etc. For all practical purposes –
and to the precision needed in most experiments – these effects are either negligible or can
be accounted for by computation. Only if all these (both conceptual and computational)
corrections are negligible may the “laboratory system” be regarded as inertial – to within
the stated tolerance. The same applies to all other practical applications of Definition 3.1.

Typically cited as the second postulate is the statement that the speed of propagation of light
in vacuum, c, is constant. In the “particle system of units” that we adopt herein, c and h̄ are used
as basic units, and both quantities are automatically regarded as universal constants of Nature.

3.1.1 Space and time mixing

The next step is the realization that space and time in relativistic physics are not independently
specifiable quantities. The transition from one inertial coordinate system S into another inertial
coordinate system S′, one that moves with the constant velocity �v with respect to S, is achieved by
means of the so-called Lorentz boosts3 [☞ Exercise 3.1.1]:

�r ′ =�r + (γ−1)(v̂ ·�r) v̂ − γ�vt, �r = �r ′ + (γ−1)(v̂ ·�r ′) v̂ + γ�vt′, (3.1a)

t′ = γ
(

t − �v ·�r
c2

)
, t = γ

(
t′ + �v ·�r ′

c2

)
, (3.1b)

γ :=
(

1 − �v 2

c2

)− 1
2
, v̂ :=

�v√
�v 2

. (3.1c)

The inverse transformation (in the right-hand column) is formally identical to the original (in
the left-hand column), only with a flipped sign of the relative velocity between the two inertial
systems S and S′. Also, note that the formulae for the corresponding Galilean transformation in
non-relativistic physics emerge in the formal limit c → +∞, where γ→ 1.

It is essential to understand that all relativistic effects stem from boosts (3.1) – which after
all are the novelty of Lorentz transformations. For a swift motivation for Lorentz symmetries with
the benefit of hindsight of a transpired century, see Digression 8.1 on p. 295. Suffice it to say,
Lorentz transformations are the correct symmetry of the Maxwell equations, and therefore also of
any matter system that interacts with the electromagnetic field.

Relativity of simultaneity If two events A and B are simultaneous in system S so tA = tB, they need
not be simultaneous in system S′:

t′i = γ
(

ti − �v ·�ri

c2

)
, i = A, B, ⇒ t′A − t′B = γ

�v · (�rB −�rA)
c2 , (3.2)

which vanishes only if �v is orthogonal to the difference vector (the extent) �rB −�rA, but not
otherwise.

3 Herein, “boost” denotes the mathematical change of coordinates from one inertial system into another, and which moves
with a constant velocity �v with respect to the former. The physical process implementing this change would of course
require acceleration, to which the special theory of relativity is explicitly not applicable. By “Lorentz transformation,”
some earlier texts [326] mean only boosts, which leads to contradictory-sounding statements such as “Lorentz trans-
formations do not form a group”: indeed, boosts alone do not form a group, as their combination may also be a simple
rotation. To avoid this nonsense, by “Lorentz transformation” I mean an arbitrary element of the so-called Lorentz group,
which contains both rotations and boosts; see Appendix A.5.
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86 Physics in spacetime

Relativity of distance/extent Although a tad trivial, notice that by the length of an object (as
measured in an inertial coordinate system S) we mean the extent between the positions of the
end-points (A and B) of that object, L = |��r| = |�rB−�rA|, as measured simultaneously. Since
simultaneity is not absolute – see equation (3.2) – neither can we expect length to be.

Consider the two positions �rA and �rB in the system S, spanning the extent ��r := (�rB−�rA).
Using equation (3.1a) in the inertial system S′, this extent measures

��r ′ = ��r + (γ−1)(v̂ · ��r )v̂ − γ�v(tB − tA). (3.3)

If the two positions �rA and �rB have been established simultaneously in the system S (such as the
case of measuring the extent between end-points, i.e., the length of an object), then tB−tA = 0,
and we have that

��r ′ = ��r + (γ−1)(v̂ · ��r)v̂ = ��r⊥ + γ��r‖, (3.4)

where the special cases are

��r ′
‖ = γ��r‖, ��r‖ := (v̂ · ��r) v̂, (3.5a)

��r ′
⊥ = ��r⊥, ��r⊥ :=�r − (v̂ · ��r) v̂. (3.5b)

Formula (3.5a) is the well-known FitzGerald–Lorentz contraction: For an object (and its system
S′) that moves lengthwise with velocity �v with respect to the system S, the measurement of the
length of the object in the latter system is L = ��r ‖ = L′/γ = γ−1��r ′

‖. Since γ � 1, it follows that
L � L′. In turn, formula (3.5b) shows that there is no FitzGerald–Lorentz contraction in directions
perpendicular to the relative velocity of the two coordinate systems.

Relativity of the duration of time Consider two moments of time t′A and t′B in the inertial system S′,
which moves with velocity �v with respect to the inertial system S. Using equation (3.1a) then gives

tB−tA = γ(t′B−t′A) + γ
�v · (�r ′

B−�r ′
A)

c2 . (3.6)

If the two moments of time t′A and t′B have been measured in the same place in system S′ (such as
the case when the duration of a localized process is observed within the system S′), then �r ′

A=�r ′
B,

and �t′ := t′B−t′A is the duration of time in this “moving” system S′. Then

�t = γ�t′, (3.7)

is the well-known time dilation formula: �t � �t′. The S-measurement of the duration of time
between the events A and B is longer than measured in system S′, where A and B are in the same
place.

For elementary particle physics, this effect is priceless: in any system with respect to which
they move, particles “live” longer than as measured in the system where they are at rest. Thus,
a muon created in the higher layers of the Earth’s atmosphere nevertheless arrives at the Earth’s
surface, although its lifetime is only 2.197 µs in its rest-frame. Equivalently, from the muon’s point
of view, the trip through the Earth’s atmosphere is, owing to the FitzGerald–Lorentz contraction,
shorter and allows the muon to arrive at the Earth’s surface within its lifetime of only 2.197 µs.
This also explains how particles with lifetimes of only ∼10−23 s are nevertheless observable.

Addition of velocities For an object that moves with respect to an inertial system S so that it
traverses the extent ��r during the duration of time �t, the (average) velocity is �u = ��r/�t. In
the inertial system S′, which moves with the constant velocity �v with respect to S, for that same
object one measures the velocity �u ′ = ��r ′/�t′, so that
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�u :=
��r
�t

=
��r ′ + (γ− 1)(v̂·��r ′)v̂ + γ�v�t′

γ
(�t′ + (�v·��r ′)

c2

) =
γ−1�u ′ + (1 − γ−1)(v̂·�u ′)v̂ +�v(

1 + (�v·�u ′)
c2

)
=

�u ′
‖ +�v(

1 + (�v·�u ′)
c2

) +
�u ′
⊥

γ
(
1 + (�v·�u ′)

c2

) , where �u ′
‖ = (�u′·v̂)v̂, �u ′

⊥·v̂ = 0. (3.8)

The first term is the familiar formula for relativistic addition of collinear velocities, and the second
term provides the lesser-known v̂-orthogonal contribution to the velocity �u ′. Notice that the bigger
the velocity �v, the bigger the factor γ, and the lesser the contribution from the second (orthogonal)
term. It induces an element of rotation – which is a consequence of the algebraic fact that two
Lorentz boosts generate a rotation (A.103); see Appendix A.5 for more details.

— ❦ —

As they will be useful, consider the following approximations:

γ =
1√

1 − β2
≈ 1 +

1
2
β2 +

3
8
β4 +

5
16
β6 + O

(
β8), β :=

v
c
� 1; (3.9a)

or ≈ 1√
2ε

[
1 +

1
4
ε+

3
32
ε2 +

5
128

ε3 + O
(
ε4)], ε :=

(
1−|�v|

c

)
� 1; (3.9b)

γ−1 =
√

1 − β2 ≈ 1 − 1
2
β2 − 1

8
β4 − 1

16
β6 + O

(
β8); (3.9c)

or ≈
√

2ε
[
1 − 1

4
ε− 1

32
ε2 − 1

128
ε3 + O

(
ε4)]. (3.9d)

The expansions (3.9a) and (3.9c) are appropriate approximations for small (non-relativistic, v �
c) velocities, while the expansions (3.9b) and (3.9d) are convenient for large (ultra-relativistic,
v ≈ c) velocities.

3.1.2 Spacetime and the index notation
Since the 3-vector�r (spatial position) and the moment of time t were in the previous section shown
to not be independently specifiable quantities, introduce the 4-vector spacetime4

x :=
3

∑
μ=0

xμ êμ, where x0 = ct, �r =
3

∑
i=1

xiêi, (3.10)

and where ê1, ê2, ê3 are usual unit vectors in some (e.g., Cartesian) inertial coordinate system,
and ê0 is the additional, fourth unit vector in the direction of time. From now on, we will adopt
the strict Einstein convention, whereby summation is implied over any pair of indices precisely if
one is a superscript and the other a subscript; thus, ∑-symbols are no longer written except for
emphasis. Also, Greek indices range over values 0, 1, 2, 3, while Latin indices are restricted to range
over 1, 2, 3.

4 It is customary in the literature to denote 4-vectors by a Latin letter without any index or arrow – just like scalars.
Usually, the context clarifies which of the two is meant; however, without an explicit note, this convention leaves it
unclear if a particular “a” denotes a scalar or a 4-vector. Since the purpose of this book is to introduce the Reader to the
material, “upright” Latin letters will be used for 4-vectors: herein, “a, b, c, . . . ” denote 4-vectors, while “a, b, c, . . . ” are
scalars.
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88 Physics in spacetime

Digression 3.2 Note the difference in transformations:

dxμ =
(∂xμ

∂yν

)
dyν, (3.11a)

∂

∂xμ
=

( ∂yν

∂xμ
) ∂

∂yν
,

⎫⎪⎬⎪⎭ mutually reciprocal
transformations

(3.11b)

when changing coordinates xμ → yμ. Taking a cue from the transformations (3.11a)–
(3.11b), any 4-vectors the components of which transform:

Aμ(x) =
(∂xμ

∂yν

)
Aν(y) are called contravariant; (3.11c)

Bμ(x) =
( ∂yν

∂xμ
)

Bν(y) are called covariant. (3.11d)

Digression 3.3 Note that the respectively reciprocal transformations automatically imply
that combinations such as

Aμ(x) Bμ(x), Aμ(x)
∂

∂xμ
, Bμ(x) dxμ, etc. (3.12a)

are invariant with respect to coordinate transformations. Therefore, sums such as

A(x) := Aμ(x) êμ and B(x) := Bμ(x) êμ (3.12b)

specify the vectors A(x) and B(x) invariantly. That is, no matter which coordinate system
we select, the components Aμ(x) and Bμ(x) will transform oppositely from the basis vec-
tors êμ and êμ, respectively, leaving the expressions (3.12b) invariant; see Comment B.1
on p. 512.

Mathematical literature favors this invariant notation, but we will follow the physics
notation, using components specified with respect to an implicitly chosen coordinate
system, as done in Digression 3.2. Furthermore, a quick comparison of equations (3.12a)
and (3.12b) shows that ∂

∂xμ and dxμ, being natural vector quantities in any coordinate
system, may well serve as explicit choices of basis vectors êμ and êμ, respectively.

In this 4-vector notation, the general Lorentz transformations may be compactly written as

yμ = Lμν xν ⇔ y = LLLL x ⇔
⎡⎣ y0

y1

y2

y3

⎤⎦ =

⎡⎣ L0
0 L0

1 L0
2 L0

3
L1

0 L1
1 L1

2 L1
3

L2
0 L2

1 L2
2 L2

3
L3

0 L3
1 L3

2 L3
3

⎤⎦⎡⎣ x0

x1

x2

x3

⎤⎦ . (3.13a)

Comparing equation (3.13) with (3.1), rewriting as the analogous system of equations, all 4× 4 =
16 matrix elements Lμν for concrete boosts may be identified:

LLLL =

⎡⎢⎢⎢⎢⎣
γ −γ vx

c −γ vy
c −γ vz

c

−γ vx
c 1 + (γ− 1) v 2

x
�v 2 (γ− 1) vxvy

�v 2 (γ− 1) vxvz
�v 2

−γ vy
c (γ− 1) vyvx

�v 2 1 + (γ− 1)
v 2

y

�v 2 (γ− 1) vyvz

�v 2

−γ vz
c (γ− 1) vzvx

�v 2 (γ− 1) vzvz
�v 2 1 + (γ− 1) v 2

z
�v 2

⎤⎥⎥⎥⎥⎦ . (3.13b)
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In the general case, Lorentz transformations also include the familiar rotations in addition to
the boosts (3.13) and are represented by constant (independent of spacetime coordinates) 4× 4
matrices of unit determinant:

∂Lμν
∂xρ

= 0, (μ, ν, ρ = 0, 1, 2, 3), det(LLLL) = 1. (3.14)

Digression 3.4 By comparison, the transformation (3.13) is seen to be the special case
of the general case (3.11a), when the matrix ∂xμ

∂yν = Lμν satisfies the additional condi-
tions (3.14), turning the coordinate change xμ → yν linear (yν = Lμν xν + Cμ) and
homogeneous (Cμ = 0).

Now, just as the rotation group SO(3) leaves the Euclidean length invariant, general Lorentz
transformations leave the quantity

(c τ)2 := c2 t2 −�r 2 = c2 t2 − [
(x1)2 + (x2)2 + (x3)2] (3.15)

invariant [☞ Appendix A.1.4]. Since c is constant, the quantity τ is also Lorentz-invariant and is
called the “proper time.” The name stems from the fact that, in any particular inertial system, for
any two separate moments in time in the same place we have �t = tB−tA �= 0 and ��r =�rB−�rA =
0, so that

�τ2 := (tB−tA)2 − c−2[ (x1
B−x1

A)2 − (x2
B−x2

A)2 − (x3
B−x3

A)2︸ ︷︷ ︸
=0

]
= (tB−tA)2. (3.16)

Note that time dilation (3.7) implies that the proper time for any process is always the shortest;
in any other inertial system, the duration of that process can only be longer than the proper times
or equal to it. Indeed, since �τ is invariant, in any inertial system where ��r �= 0, and the events
A and B do not happen in the same point in space, �t must be bigger so that (�t)2 − c−2(��r)2

remains constant, i.e., invariant with respect to the transformation from that inertial system into
the inertial (rest-)system where ��r = 0.

The invariant quantity (3.15) may be more compactly written as5

c2 τ2 = x2 = x·x := xμ ημν xν. (3.17)

An operation “x·y” denotes the (Lorentzian) scalar product of 4-vectors:

Definition 3.2 For 4-vectors x and y, the invariant (scalar) product is

x·y = xμ ημν yν. (3.18)

The quantity x2 := x·x is, simply, the “4-vector x square.” The matrix

ηηηη = [ημν] =

[
1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

]
(3.19)

is the metric tensor – the metric – of the empty (flat) spacetime. The number of positive
and negative eigenvalues in the matrix [ημν] is called the signature , and spacetime and its
metric are said to have signature (1, 3).

5 The scalar product of two n-vectors a and b is denoted “a·b”; the Reader must understand from the context if this
denotes the Euclidean, Lorentzian or some other scalar product. Following this tradition, note that the notation herein is
unambiguous, as Euclidean 3-vectors are indicated by an over-arrow and Lorentzian 4-vectors are denoted by “upright”
Latin letters. Therefore,�a·�b is the Euclidean scalar product, while a·b is Lorentzian.
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With this definition, it is possible to verify that the 4× 4 matrices representing the general Lorentz
transformations satisfy the ηηηη-orthogonality condition

LLLLTηηηη = ηηηηLLLL−1, i.e., LLLLTηηηηLLLL = ηηηη, or LρμηρσLσν = ημν. (3.20)

This generalizes the orthogonality relation RT1R = 1, satisfied by the usual rotation matri-
ces, where the identity matrix serves as the metric for the Euclidean invariant scalar product,
�r·�r = xiδijxj. Just as the rotation group is denoted SO(3), the Lorentz group is then denoted
SO(1, 3) – reminding us that the signature of the metric ηηηη used to define the Lorentz-invariant
scalar product (3.18) is (1, 3) [☞ Appendix A.5].

Also,

Definition 3.3 A 4-vector v in spacetime with the metric tensor ημν is called

time-like (temporal), if v2 > 0, (3.21a)

space-like (spatial), if v2 < 0, (3.21b)

light-like (null), if v2 = 0. (3.21c)

It should be fairly straightforward that the replacement t → (it) changes the sign of η00, the
signature into (0, 4), and the boosts (3.13). The qualitative nature of this change is easiest to spot
in the special case when the coordinate system is chosen so that �v → v ê1 in the relation (3.13):

[Lμν] =

⎡⎢⎢⎣
γ −γ v

c 0 0
−γ v

c γ 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ =

⎡⎢⎢⎣
cosh(φ) − sinh(φ) 0 0

− sinh(φ) cosh(φ) 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦
︸ ︷︷ ︸

hyperbolic “rotation”

, (3.22)

where we defined the formal variable φ := cosh−1(γ), so that v = c tanh(φ) and v
c γ = sinh(φ).

[ ✎Verify.] Upon the replacement t → it:

[Lμν]
t→it−−−−→
ϕ=−iφ

⎡⎢⎢⎣
cos(ϕ) − sin(ϕ) 0 0
sin(ϕ) cos(ϕ) 0 0

0 0 1 0
0 0 0 1

⎤⎥⎥⎦ , (3.23)

so that Lorentz boosts in the x1-direction become⎡⎢⎢⎣
(ict′)

x′1
x′2
x′3

⎤⎥⎥⎦ =

⎡⎢⎢⎣
cos(ϕ) − sin(ϕ) 0 0
sin(ϕ) cos(ϕ) 0 0

0 0 1 0
0 0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣
(ict)

x1

x2

x3

⎤⎥⎥⎦ (3.24)

rotations in the ((ict), x1)-plane in the so-called Wick-rotated spacetime ((ict), x1, x2, x3). Although
Henry Poincaré was the first to notice that the complex transformation

(ct, x1, x2, x3) → ((ict), x1, x2, x3) (3.25)

turns the group SO(1, 3) of Lorentz transformations6 into the group of rotations SO(4), this
was first used by Hermann Minkowski to restate the Maxwell equations and the special theory

6 We will see later that the Lorentz group is actually Spin(1, 3), the double covering of the SO(1, 3) group, for spinors to
be describable by single-valued spacetime functions [☞ discussion around the relations (5.45)–(5.48)].
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of relativity into the 4-dimensional notation. This result solidified the physical irreducibility of
4-dimensional spacetime, which is why it is often referred to as “Minkowski space.” To emphasize
the mixed signature of space+time, the term “spacetime” will be used throughout.

Digression 3.5 Following the example of Digression 3.2 on p. 88, the 4-vector with com-
ponents xμ is Lorentz-contravariant, whereby the vector with components xν := (xμημν)
is Lorentz-covariant, as the quantity xμ ημν xν is defined to be Lorentz-invariant:

xμ → x̃μ = Lμν xν, contravariant 4-vector; (3.26a)

⇒ xμ := (xνηνμ) → (x̃νη̃νμ) = x̃μ = L−1
ρ
νxν, covariant 4-vector. (3.26b)

Here, L−1
μ
ν = [LLLL−1]μν = ∂xν

∂x̃μ are the components of the matrix-inverse of the matrix of
Lorentz transformations Lμν = [LLLL]μν = ∂x̃μ

∂xν . We then compute, respectively, in the new
and in the old coordinates:

x̃μ = η̃μν x̃ν = η̃μνLνσxσ, = L−1
μ
ρxρ = L−1

μ
ρηρσxσ. (3.26c)

This implies that

η̃μνLνσ = L−1
μ
ρηρσ, i.e., η̃μν = L−1

μ
ρηρσL−1

ν
σ, i.e., η̃ηηη = [LLLL−1]T ηηηη LLLL−1. (3.26d)

The metric components ημν = [ηηηη]μν thus form a twice covariant tensor. However, as ηηηη and
η̃ηηη are numerically the same matrix (in the x- and the x̃-coordinate system, respectively),
they are Lorentz-invariants, i.e., remain unchanged under Lorentz transformations. Then

x·x → x̃·x̃ = x̃μη̃μν x̃ν = (Lμρxρ)η̃μν(Lνσxσ) (3.26d)= xρ Lμρ L−1
μ
ν ηνσxσ (3.26e)

= xρδνρηνσxσ = xρηρσxσ = x·x. (3.26f)

Note that the result (3.26d) implies

η̃ηηη = [LLLL−1]T ηηηη LLLL−1 ⇔ ηηηη = [LLLL ]T η̃ηηη LLLL, (3.26g)

so that the Lorentz transformation matrices are η-orthogonal; see equation (3.20).
This provides the desired spacetime (Lorentzian) generalization of the more familiar
(Euclidean) definition of orthogonal matrices OT 1 O = 1 by replacing 1 → ηηηη; see
Appendix A.5.

Further details on tensor calculus and with arbitrary coordinate systems may be
found in Chapter 9 and many books; see Refs. [508, 62, 367, 548, 66, 96], to begin
with.

The symbol ημν denotes (the components of) the matrix-inverse to ημν, so that

ημν ηνρ = ηρν η
νμ = δ

μ
ρ , so xμ := ημν xν, xμ = ημν xν. (3.27)

Note that (xμ) = (ct, x1, x2, x3) and (xμ) = (ct, x1, x2, x3) = (ημνxν) = (ct,−x1,−x2,−x3): the
value of the covariant spatial components of a 4-vector have the opposite sign from the values of
the contravariant spatial components of the 4-vector.

3.1.3 Mass, energy and linear momentum
The Hamilton action of a free particle is chosen to be proportional to the length of the “worldline,”
so Hamilton’s least action principle would minimize this length. In turn, the worldline can be
parametrized by the proper time τ of the same particle:
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S = −
∫ τB

τA

d(cτ) α (3.7)= −
∫ tB

tA

dt
αc
γ

, (3.28)

where α is some positive constant specific for the considered particle, and the sign is negative
so that the resting particle would constitute the minimum7 of the function S, in agreement with
Hamilton’s least action principle. The expression (3.28) implies that the Lagrangian8 of a free
particle

L = −αc

√
1 − v2

c2 ≈ −αc +
1
2
αc

v2

c2 + αc O
(v4

c4

)
, (3.29)

where we used the non-relativistic expansion (3.9c). Since the initial constant, −αc, is irrelevant
for dynamics, comparing the v2-term with the one in the non-relativistic expression LNR = 1

2 mv2

fixes α = mc, and the relativistic Lagrangian of a free particle is determined to be

L = −mc2γ−1 = −mc2

√
1 − �v 2

c2 = −mc2

√
1 − 1

c2 |
.
�r |2. (3.30)

Relativistic momentum and energy From equation (3.30) and using the canonical definition, we
have

�p :=
∂L

∂
.
�r

=
∂L
∂�v

= mγ�v
(3.9a)≈ m�v + · · · , (3.31)

where we dropped the terms that are at least O( v2

c2 ) smaller than m�v, and this canonical definition
indeed agrees with the usual non-relativistic definitions, for velocities sufficiently smaller than
c. Also, the Hamiltonian, i.e., the energy of a free particle, is, by the canonical definition (H =
pi

.
qi − L),

E := �p·.�r − L = mγ�v·�v + mc2γ−1 = mγc2, (3.32a)
(3.9a)≈ mc2︸︷︷︸

rest energy

+ 1
2 m�v 2︸ ︷︷ ︸

non-relativ.
kin. energy

+ 1
2 m�v 2

[
3
4

�v 2

c2 + 5
8

�v 4

c4 + · · ·
]

︸ ︷︷ ︸
relativistic corrections

. (3.32b)

Recall that the energy, by its definition, is a measure of the ability to do work. From the re-
sult (3.32a), it follows that a free particle has the ability to do work not only by virtue of its
motion (the kinetic energy), but also owing to simply having a nonzero mass! Indeed, the expres-
sion (3.32a) clearly expresses energy as a function of velocity, one that does not vanish in the
rest-frame of a particle, in which it is of course at rest:

E0 := E
∣∣
�v=0 = mc2, rest energy. (3.33)

The discovery contained in the relation (3.33) is Einstein’s best known formula. This is the ideal
place to cite Professor Okun’s warning [393], that the relation (3.33) – and not “E = mc2” – is the
real Einstein formula [☞ Exercise 3.1.2].

Of course, the kinetic energy of a particle is then[ ✎why?]

T := E − E0 = m(γ−1)c2 ≈ 1
2 m�v 2︸ ︷︷ ︸

non-relativ.
kin. energy

+ 1
2 m�v 2

[
3
4

�v 2

c2 + 5
8

�v 4

c4 + · · ·
]

︸ ︷︷ ︸
relativistic corrections

. (3.34)

7 The time between the events A and B is maximal in the system where A and B are in the same place, hence the
worldline from A to B is entirely along the time coordinate. In all other systems, the worldline from A to B also extends
partially in the spatial directions, and the time tB−tA is shorter [☞ time dilation (3.7)].

8 The term “Lagrangian” and its derivatives honor the French mathematician Joseph Louis Lagrange.
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The energy–momentum 4-vector On par with the spacetime 4-vector x = ((ct), x1, x2, x3), we
define also the 4-momentum [☞ Digressions 3.6 and 3.7]:

p = (pμ) := (−E/c,�p ) = (−mγc, mγ�v ). (3.35)

From this, we have that

p2 := pμ ημνpν = E2/c2 − �p 2 = m2γ2c2 − �p 2 = m2γ2c2
(

1 − v2

c2

)
= m2c2. (3.36)

As the left-hand side quantity is evidently Lorentz invariant [☞ Exercise 3.1.3], so then is the mass
m. Just as proper time is the Lorentz-invariant magnitude of the position 4-vector x = (ct,�r ), (the
c-multiple of) mass is the Lorentz-invariant magnitude of the 4-momentum p = (−E/c,�p ). A very
useful formula follows from equation (3.36):

E2 = �p 2c2 + m2c4. (3.37)

Rewriting this as (mc2)2 = E2 − (c�p )2 exhibits the direct parallel with equation (3.15). In turn, the
4-momentum is indeed a covariant 4-vector, as defined in equation (3.26b), and its components
transform under Lorentz transformations as p′μ = L−1

ρ
ν pν.

Digression 3.6 To justify the definition (3.35) – the covariance and signs of the com-
ponents (3.35) – it is simplest to rely on quantum mechanics, where in coordinate
representation the components of the operator of 4-momentum p become pμ = h̄

i
∂
∂xμ :

p0 =
h̄
i
∂

∂x0 =
h̄
i

∂

∂(ct)
= −1

c
ih̄
∂

∂t
= −1

c
H, but �p = +

h̄
i
�∇. (3.38)

The peculiar negative sign in the identification of p0 = − 1
c H owes to the standard iden-

tifications in non-relativistic quantum mechanics, H = ih̄ ∂
∂t vs. �p = h̄

i
�∇, and to insisting

that the non-relativistic energy operator of a system should be the limit of the relativistic
one, with the same sign.

Digression 3.7 The same conclusion may also be derived classically, i.e., non-quantum
mechanically. Note first that the components of the canonical linear momentum 3-vector
are naturally covariant. This is seen from the explicitly written definition (3.31):

pi :=
∂L
∂vi , where vi :=

∂xi

∂t
, i = 1, 2, 3. (3.39a)

To extend this canonical definition to the relativistic 4-vector, use the earlier de-
fined (3.10) 4-vector (xμ) = ((x0 := ct), x1, x2, x3), so that

(vμ) :=
∂xμ

∂t
= (c,

.
x1,

.
x2,

.
x3). (3.39b)

In turn, the Hamilton action (3.28)–(3.30) may be rewritten as

S = −
∫ tB

tA

dt mc2

√
1 − �v 2

c2 =
∫ x0

B

x0
A

dx0 L0, L0 := (L/c) = −m
√

c2 −�v 2 , (3.39c)
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where we note that [L0] = ML
T has the physical dimensions of linear momentum and not

those of energy as does mc2/γ. From this we have (3.39b):

v0 :=
∂x0

∂t
=
∂(ct)
∂t

= c, (3.39d)

as well as that (x1, x2, x3) depend on t and so also on x0 = ct:

pμ :=
∂L0

∂ ∂xμ
∂x0

=
∂L0

1
c ∂

.
xμ

= c
∂L0

∂vμ
⇒

{ p0 := c
∂
(
−m

√
c2−�v 2

)
∂c = −mγc = −E/c,

pi := c
∂
(
−m

√
c2−�v 2

)
∂vi = mγ δij vj,

(3.39e)

which reproduces equation (3.35).

By the way, the expression S =
∫

dx0 L0 of course does not seem to be Lorentz-invariant,
since the coordinate x0 is singled out. However, the spacetime Lagrangian L0 may be expressed as
a spatial integral of the Lagrangian density:

L0 =
∫

V
d3�r L , such that S = −

∫ (tB ,V)

(tA ,V)
d4x L , (3.40)

where L is a scalar density: with respect to coordinate change xμ → yμ, we have that
d4x → ∣∣ ∂x

∂y

∣∣d4y, where
∣∣ ∂x
∂y

∣∣ is the determinant of the matrix of partial derivatives ∂xμ
∂yν . For the

Hamilton action to be independent of any (invertible) choice and/or change of coordinates, it
must be that L (x) → ∣∣ ∂x

∂y

∣∣−1
L (y), which is the defining property of scalar densities of weight

−1 [☞ Section B.2].
Massless particle In non-relativistic physics, a particle with no mass is nonsense: for such a particle
both the linear momentum and the kinetic energy would also have to vanish. Then, its response to
the action of a force could not be computed by Newton’s laws, since the formula a = 1

m F would
imply that any finite force would cause its infinitely large acceleration. On the other hand, the
relativistic formulae are self-consistent. Indeed, from the relation (3.36), it follows that

m = 0 ⇔ E2 = �p 2c2 ⇔ E = c|�p|, (3.41)

which, when combined with results (3.31) and (3.32a), gives

γmc2 = γmc|�v| ⇒ |�v| = c. (3.42)

That is, a massless particle must move at the speed of light. So far, only the photons provide a
manifest and directly observable example.

3.1.4 Exercises for Section 3.1

✎ 3.1.1 Simplify the relations (3.1) for the oft-cited case �v = v êz.

✎ 3.1.2 Without consulting Ref. [393], prove that the equality “E = mc2” is nonsense,
contradicting the provided definitions and the physical meaning of energy E and mass m.

✎ 3.1.3 Prove that the quantities p2 := pμ ημνpν and x·p = xμpμ are Lorentz-invariant.

✎ 3.1.4 Verify the transformations (3.22)–(3.23)–(3.24).
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3.2 Relativistic kinematics: limitations and consequences
The essential reason for defining the 4-momentum (3.31) with (3.32a) is the fact that this 4-vector
physical quantity is conserved [☞ Footnote 15 on p. 54] and transforms akin to (3.13). Because of
the typical application, we will consider collisions and decays.

Using the definitions (3.32a), (3.34) and (3.35), for collisions we have:

1. The sum of relativistic 4-momenta is strictly conserved.
2. The sum of relativistic kinetic energies:

(a) is conserved in elastic collisions;
(b) grows in “exo-energetic” (fissile or explosive) processes;
(c) is diminished in “endo-energetic” (fusing, implosive or sticking) processes.

Since the mass equals (E − T)/c2, it is conserved only in elastic collisions. In explosive/fissile
collisions, the total mass is diminished, which supports the impression that part of the mass was
“converted” into kinetic energy; in implosive/fusing/sticking processes, the total mass grows, as if
part of the kinetic energy was “converted” into mass. One must keep in mind that the total mass
of a composite system equals (up to the coefficient of proportionality, c2) the rest energy, which
includes various “internal forms of energy,” as these are usually called in non-relativistic physics.
Thus, e.g., the total mass of a hydrogen atom equals (mp + me)c2 + Eb, where Eb is the binding
energy of the hydrogen atom in the particular state, in the first approximation given by Bohr’s
formula (1.31).

Example 3.1 Two equal snowballs of mass m fly with the same speed |�vi| = βc, 0 <
β � 1, towards each other, then collide and fuse into one large snowball. For what speed
of the colliding snowballs will the resulting snowball have a mass of M = 3m (so that
“m + m → 3m”)?

Solution Given that �p1 = −�p2, conservation of the linear momentum 3-vector gives that
�p1+2 = �p1 + �p2 = 0. That is, the resulting snowball is at rest (which should be obvious).
Conservation of p0 now gives EA + EB = EA+B, i.e.,

2mγc2 = Mc2 ⇒ M =
2m√
1 − β2

> 2m, since β > 0. (3.43)

Inserting M = 3m, solve the equation (3.43) for β = vi
c to obtain |vi| =

√
5

3 c ≈ 74.54% c.

— ❦ —

Part of the analysis of this process, the one that relies exclusively on applications of the
4-momentum conservation law is usually referred to as “kinematics.” Sometimes, that term also
implies the application of the conservation law of angular momentum. For the remainder of this
chapter, angular momentum considerations are omitted, and a few simple processes are studied
“kinematically” as a user’s guide for application in general.

3.2.1 Decays
Two-particle decays
The simplest decay is of the form A → B + C. Label the 4-momenta:

A → B + C, pA = (−mAc,�0), pB = (−EB/c,�pB), pC = (−EC/c,�pC), (3.44)
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where we used the fact that, before the decay, particle A (with mA �= 0) defines an inertial system
where it is at rest, so that its total relativistic energy reduces to rest energy, EA = mAc2. The
4-momentum conservation law provides

pA = pB + pC, or pB = pA − pC, (3.45)

which includes the usual, 3-momentum conservation:

�pB = 0 − �pC. (3.46)

Squaring relation (3.45) for the 4-momenta produces9

p 2
B = (pA − pC)2 = p 2

A + p 2
C − 2 pA · pC,

‖ ‖ (3.47)

m 2
B c2 m 2

A c2 + m 2
C c2 − 2

EA

c
EC

c
= m 2

A c2 + m 2
C c2 − 2 mA EC.

From this, it follows that

EC =
(m 2

A + m 2
C − m 2

B

2mA

)
c2. (3.48)

The magnitude of the linear momentum 3-vector is now determined from the relation (3.37),
EC = c

√
m 2

C c2 + �p 2
C :

|�pC| =

√
E 2

C

c2 − m2
C c2 = c

√(m 2
A + m 2

C − m 2
B

2mA

)2 − m2
C

= c

√
(mA + mB + mC)(mA − mB + mC)(mA + mB − mC)(mA − mB − mC)

2mA

= c

√
m 4

A + m 4
B + m 4

C − 2m 2
A m 2

B − 2m 2
A m 2

C − 2m 2
B m 2

C

2mA
. (3.49)

From the relation (3.46) it follows that |�pB| = |�pC|, which also follows from the B ↔ C sym-

metry of the formula (3.49). The analogous derivation gives EB =
(m 2

A +m 2
B −m 2

C
2mA

)
c2. Note that both

EB and EC are fully determined by decay kinematics. This was crucial in the discussion on p. 54,
and induced Bohr to question the validity of the energy conservation law, and Pauli to predict
the neutrino in order to save the energy conservation law. On the other hand, besides the rela-
tion (3.46) amongst the magnitudes, there is nothing to determine the direction of p̂B = − p̂C,
which thus remains arbitrary. This implies that, in a large ensemble of A → B + C decays, the
angular distribution of the direction of p̂B = − p̂C is expected to be uniform.

Digression 3.8 The same result is obtained starting with equation (3.45), written in
Cartesian components, say,

EA = EB + EC, (3.50a)
�0 = �pA = �pB + �pC. (3.50b)

9 The final result, of course, may just as well be obtained by combining the separately stated conservation laws of the
linear momentum 3-vector and the relativistic energy. However, by squaring directly the 4-vector equality (3.45), the
result (3.48) is obtained faster, because of the simplifying circumstance that three of the components of pA vanish.
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From the equation (3.50b), it follows that �pC = −�pB =: �p, and in equation (3.50a),
express all three energies in terms of the linear momenta and masses using the general
relation (3.37):

mAc2 = c
√

m 2
B c2 + �p 2 + c

√
m 2

C c2 + �p 2. (3.50c)

From here, by squaring, rearranging terms to isolate the square-root, then by squaring
again, we obtain [ ✎verify][

m 4
A + (m 2

B − m 2
C )2]c2 = 2m 2

A

[
(m 2

B + m 2
C )c2 + 2�p 2]. (3.50d)

Solving this for |�p | one re-derives the result (3.49). [ ✎Verify.]

Digression 3.9 On the other hand, if we express (in the equation (3.50a)) EA and one
of EB, EC in terms of linear momenta and masses using the general relation (3.37), we
obtain, e.g.,

mAc2 = c
√

m 2
B c2 + �p 2 + EC, i.e., mAc2 − EC = c

√
m 2

B c2 + �p 2, (3.51a)

the square of which gives, after a little simplifying [ ✎verify] ,

E 2
C − 2mAc2 EC +

[
(m 2

A − m 2
B )c4 − �p 2c2] = 0. (3.51b)

After inserting the previous result (3.49) and simplifying, the solutions of this quadratic
equations are [ ✎verify]

E(±)
C =

[
mA ± m 2

A + m 2
B − m 2

C

2mA

]
c2, (3.51c)

where E(−)
C equals the result (3.48).

That the solution E(+)
C is not physical is quickest to see from the special case when

mB = mC = 0, as is the case in the decay π0 → 2γ. For this case,

E(+)
B = E(+)

C =
3
2

mAc2, and so mAc2 = EA
(3.50a)= E(+)

B + E(+)
C = 3mAc2, (3.51d)

which is clearly a contradiction. This leaves E(−)
C in the result (3.51c) as the only con-

sistent solution for the energy of the product in a two-particle decay, confirming the
result (3.48).

The technical advantage in using the square of a suitably chosen form of the
4-momentum conservation equation (3.47) is fully understood only through filling in
the derivation steps that had been omitted here (mostly, in rearranging and simplify-
ing). The diligent Student is therefore highly recommended to complete these alternate
computations.

Many-particle decays
The analysis of a decay of a particle into more than two “fragments” is of course more complicated.
However, the starting point is again the 4-momentum conservation, which may be written in any
of the following forms:

p = ∑
i

pi, pi = p − ∑
j �=i

pj, p − pi = ∑
j �=i

pj, ∀i, (3.52a)
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pi + pj = p − ∑
k �=i,j

pk, p − pi − pj = ∑
k �=i,j

pk, ∀i, j, etc. (3.52b)

Squaring the 4-vector equations (3.52) in the rest-frame of the decaying particle, where

p = (−E/c,�0), so that p2 = m2c2 = E2/c2, (3.53)

we respectively obtain the equations:

1
2

(
m2 − ∑

i
m 2

i
)

c4 = ∑
j>i

(
EiEj − |�pi||�pj|c2 cos(φij)

)
, (3.54a)

1
2

(
m2 − m2

i + ∑
j �=i

m 2
j
)

c4 = mc2 ∑
j �=i

Ej − ∑
j<k

j,k �=i

(
EjEk − |�pj||�pk|c2 cos(φjk)

)
, ∀i, (3.54b)

1
2

(
m2 + m2

i − ∑
j �=i

m 2
j
)

c4 = mc2Ei + ∑
j<k

j,k �=i

(
EjEk − |�pj||�pk|c2 cos(φjk)

)
, ∀i, (3.54c)

1
2

(
m2 − m2

i − m2
j + ∑

k �=i,j
m 2

k
)

c4 = mc2 ∑
k �=i,j

Ek +
(
EiEj − |�pi||�pj|c2 cos(φij)

)
− ∑

k<�
k,� �=i,j

(
EkE� − |�pk||�p�|c2 cos(φk�)

)
, ∀i, j, (3.54d)

1
2

(
m2 + m2

i + m2
j − ∑

k �=i,j
m 2

k
)

c4 = mc2(Ei + Ej)

+ ∑
k<�

k,� �=i,j

(
EkE� − |�pk||�p�|c2 cos(φk�)

)
, ∀i, j, (3.54e)

etc.

where E2
i = m2

i c4 + |�pi|2c2, but E = E0 = mc2, (3.54f)

using the particular consequences of the general relation (3.37) and also that

pi·pj = piμη
μνpjν =

(
−Ei

c

)(
−Ej

c

)
−�pi·�pj =

EiEj

c2 − |�pi||�pj| cos(φij). (3.55)

The combinatorially growing system (3.52)–(3.54) contains more equations than unknowns,
which is convenient, as we can select a subset of the equations (3.52)–(3.54) that provides the
simplest way to solve for the desired quantities. (Since the relations (3.52) are all just variants of
the same equation, it is clear that the system (3.54) cannot be over-determined.)

3.2.2 Scattering
Besides decays, in elementary particle physics one most often considers the scattering of two
particles. The 4-momentum conservation here has the general form

p1 + p2 = ∑
i>2

pi, (3.56)

which may, of course, be rewritten in several different ways, just like equations (3.52) are different
forms of p = ∑i pi for a decay. Also, collisions may be analyzed either10

10 The term “CM system” stands for “center-of-momentum system” and is defined by the property that the total linear
momentum 3-vector vanishes in it, clearly adapting equations (3.53).
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CM system, before: p1 + p2 =
(
−E1

c
− E2

c
, �0

)
, as �p1 +�p2 = 0, (3.57)

‖
CM system, after: ∑

i>2
pi =

(
− ∑

i>2

Ei

c
, �0

)
, as ∑

i>2
�pi = 0, (3.58)

or in the target system (choosing, say, target = “2,” so that p2 = (−m2c,�0)):

target system, before: p′1 + p′2 =
(
−E′

1
c

− m2c , �p′1
)

, as �p′2 =�0, (3.59)
‖

target system, after: ∑
i>2

p′i = ∑
i>2

(
−E′

i
c

, �pi

)
, where ∑

i>2
�p′i = �p ′

1. (3.60)

Here, the vertical equality between (3.57)–(3.58) and (3.59)–(3.60) respectively is, of course, the
statement of the 4-momentum conservation law.

What’s more, by using only Lorentz-invariant expressions (such as squares of 4-vectors), we
may combine both systems! That is, the 4-vectors in the “vertical” equation (3.57)–(3.58) and
the 4-vector on the left-hand side of (3.59)–(3.60) are, of course, not equal, p1 + p2 �= p′1 + p′2.
However, the squares of these 4-vectors are equal – as is the square of any 4-vector – and this
provides the continued equality:

(
p1 + p2

)2 =
(

∑
i>2

pi

)2
=

(
p′1 + p′2

)2 =
(

∑
i>2

p′i
)2

= . . . , (3.61)

where “ . . . ” denotes similar equalities for the square of the same 4-momentum specified in any
other coordinate system that we may choose for its need or convenience.

For two-particle collisions, A + B → C + D, one defines:

Definition 3.4 Mandelstam’s Lorentz-invariant variables:

s := −(pA + pB)
2c2, t := −(pA − pC)2c2, u := −(pA − pD)2c2. (3.62)

These variables are often used in computations as they are Lorentz-invariant; keep in mind, how-
ever, that the 4-momentum conservation law and the relation (3.36) produce the linear relation

−(s + t + u) =
[
3p 2

A + p 2
B + p 2

C + p 2
D + 2pA·(pB − pC − pD︸ ︷︷ ︸

−pA

)
]

c2 =
D

∑
i=A

p 2
i c2 =

D

∑
i=A

m 2
i c4. (3.63)

In turn, albeit not Lorentz-invariant, (lab-frame) energies and angles φij := arccos( p̂i· p̂j) are more
convenient variables for comparison with experiments.

Fusing collisions
Generalizing Example 3.1 on p. 95, consider the collision of two particles that fuse into a single
one, with a specified mass mC. This process is evidently a time-reversed version of the two-particle
decay, so that the computation (3.44)–(3.8) may be used by adapting the notation. However, in
this case, instead of the inertial system (3.44), where the end-product is at rest, select the inertial
system where the particle B (“target”) is at rest:

A + B → C, pA = (−EA/c,�pA), pB = (−mBc,�0), pC = (−EC/c,�pC). (3.64)
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Conservation of 4-momentum gives

pC = pA + pB, i.e.,
(
−EC

c
, �pC

)
=

(
−EA

c
− mBc , �pA

)
, (3.65)

from which it follows that �pC = �pA =: �p, as well as that EC = EA + mBc2. Squaring the
4-momentum version of equation (3.65) produces, straightforwardly,

pC
2 = pA

2 + pB
2 + 2pA·pB, (3.66)

m2
C c2 = m2

Ac2 + m2
Bc2 + 2EAmB ⇒ EA =

m2
C − (m2

A + m2
B)

2mB
c2. (3.67)

The same relation can, of course, also be obtained using the conservation of energy and
3-momentum, and the diligent Reader is invited to do so, then compare the relative ease of this
computation. [ ✎Do it.] Since E = mc2 + T, we have the condition

TA =
m2

C − (mA + mB)2

2mB
c2. [ ✎Verify.] (3.68)

That is, the “probe” A must have the precisely specified kinetic energy (3.68) for it to fuse with
the target; for any other value of TA, the 4-momentum conservation law strictly forbids the fusing.
The process A + B → C is said to be kinematically forbidden except when the relation (3.68) is
satisfied.

Process threshold
Following a worked-out example from Ref. [243], we can determine the “threshold” of the reac-
tion (3.56), i.e., the minimal kinetic energy with which the probe “1” must collide with the target
“2” for the particles in the product of the process (3.56) to be created. For this minimal energy, the
particles in the product of the process (3.56) will have no kinetic energy, and we have that

pi
∣∣
threshold =

(−mic , �0
)
, i > 2, CM system. (3.69)

On the other hand, before the collision, we have equation (3.59). Using the equality of the second
and the third term in equation (3.61), we have for the special “threshold” (minimal energy) case

min
[(

p′1 + p′2
)2
]

=
(

∑
i>2

pi
∣∣
threshold

)2
,

min
[
p1

2 + p2
2 + 2p′1·p′2

]
=

(
∑
i>2

(
mic , �0

))2
, (3.70)

min
[
m1

2c2 + m2
2c2 + 2E′

1 m2

]
=

(
∑
i>2

mic
)2

,

(m1
2 + m2

2)c2 + 2 min(E′
1) m2 = ∑

i,j>2
mi mj c2.

It follows that the occurrence of the process (3.56) requires

E′
1 � 1

2m2

[
∑

i,j>2
mimj −

(
m 2

1 + m 2
2
)]

c2, (3.71)

and thus

T′
1 � 1

2m2
∑

i,j>2
mimj c2 − (m1 + m2)2

2m2
c2. [ ✎Verify.] (3.72)
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Thus, e.g., for the process X + X → 3X + X, for any particle X, the first X-particle must collide
with the second, stationary X-particle with at least 6 mX c2 of kinetic energy.

This threshold is larger than the naive expectation, whereby the kinetic energy would need
to be “only” sufficient to produce the (3X+X)− (X+X) = X+X particles, i.e., 2mX c2. The reason
for this is the inefficiency of a moving probe collision with a stationary target: Before the collision,
the total linear momentum of the incoming probe-X and stationary target-X system is not zero,
and must equal the total linear momentum of the 3X+X system of particles after the collision.
Since the linear momentum of the out-coming 3X+X particles differs from zero, so does the total
kinetic energy, which increases the process threshold.

Head-on collisions
In the CM system, where �p1 = −�p2 = �p, so that E1 = E2 =: E if m1 = m2, we have

min
[
(p1 + p2)

2] =
(

∑
i>2

pi
∣∣
threshold

)2
,

(
−2 min(E)

c
, �0

)2
=

(
∑
i>2

mic , �0
)2 ⇒ min(E) = 1

2 ∑
i>2

mic
2. (3.73)

Since both particles have the same minimal energy (as they are identical) before the collision, and
T = E − mc2, we have that

min
(
∑ TX

)
=

(
∑
i>2

mi − 2mX

)
c2 2X→3X+X= (4 − 2)mX c2 = 2mX c2, (3.74)

exactly as expected naively. Thus, for the X + X → 3X + X process, head-on collisions of two
particles that move with the same speed towards each other (as observed in the CM system) are
three times as efficient as colliding a probe-X with a stationary target-X. For the head-on collision,
the apparatus must provide only 2mX c2 of energy (mX c2 per X-particle before the collision) to
create the 3X + X system, while colliding a moving X-particle with a stationary X-particle requires
providing the moving X-particle 6mX c2 of energy.

The difference of 4mX c2 in energy threshold for a probe colliding with a stationary target en-
sures that the resulting 3X + X particle system has the kinetic energy required by the conservation
of linear momentum, and which is the extra “price” in the kinetic energy of the probe before the
collision. No such extra energy is needed in head-on collisions, where all of the kinetic energy is
thus available to produce new particles – providing the basic rationale for building colliders.

The relative kinetic energy
The other aspect of the efficacy of head-on collisions is the relative kinetic energy: The previous
section showed that if two X-particles move in the lab coordinate system one against another with
the kinetic energy mX c2 each, in the inertial system of one of the two X-particles (wherein it itself
is at rest), the other particle moves with a kinetic energy of 6mX c2. More generally, use the equality
of the first and third term in equation (3.61):(

p1 + p2
)2 =

(
p′1 + p′2

)2,(
−E1 + E2

c
, �0

)2
=

(
−E′

1
c

− m2c , �p1

)2
.

If m1 = m2 = m, then from �p1 = −�p2 it follows that E1 = E2 =: E; also, write E′
1 = E′. Using the

results of the previous computations, we arrive at

4E2 = 2mc2(E′ + mc2), (3.75)
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or

T′ = 4T
(

1 +
T

2mc2

)
, [ ✎verify] (3.76)

where the second term is the fast-growing relativistic correction:

T/mc2 : 1 2 5 10 20 50 100 · · ·
T′/mc2 : 6 16 70 240 880 5,200 20,400 · · · (3.77)

When two particles of the same mass collide head-on with a kinetic energy of 100 mc2 each, i.e.,
total 200 mc2, the collision has the same effect as if a particle at rest was hit by another with a
kinetic energy of 20,400 mc2 – which is 102 times more!

3.2.3 Lessons
This is an excellent place to highlight the differences between conserved and invariant quantities:

1. Energy is conserved but not Lorentz-invariant:
(a) The total energy of each particle at any point in time (before, during, after) in a process

equals this same quantity at all other points in time.
(b) Energy (its − 1

c -multiple) is the 0th component of a 4-vector, and cannot be Lorentz-
invariant: It changes – it mixes with the components of �p – when the observer changes
from one inertial coordinate system to another.

2. Mass is Lorentz-invariant but not conserved:
(a) Its value does not change when the observer changes from one inertial coordinate

system to another.
(b) Mass is not conserved, as should be obvious from Example 3.1 on p. 95.

Note that Lorentz-invariant means “unchanged under transforming amongst inertial coordinate sys-
tems,” i.e., with respect to Lorentz transformations, while conserved means “unchanged during any
isolated process, as time passes.” That is, the very definition of “conservation” implies a preferred
choice of time, which cannot possibly be a notion invariant with respect to Lorentz transformations
of coordinates.

The relativistic 4-momentum of a particle is conserved but not Lorentz-invariant – just like its
0th component, the relativistic energy, as well as its remaining 3 components known also as the
“relativistic 3-momentum.”

3.2.4 Exercises for Section 3.2

✎ 3.2.1 Using Bohr’s formula (1.31), compute the relative difference m(3p)−m(1s)
m(1s) between the

hydrogen atom mass when it is in a 3p state (where n = 3, � = 1, while |m�| � � and
ms = ± 1

2 are arbitrary) and when it is in a ground, 1s state (where n = 1, � = 0 = m�,
while ms = ± 1

2 is arbitrary).

✎ 3.2.2 Compute the relative contribution of the correction (1.33) to the relative difference
between the masses computed in Exercise 3.2.1.

✎ 3.2.3 If a particle of mass M at rest decays into two particles of equal masses, m1 = m2 = m,
compute the speed with which the particles leave the decay locus. Compute the relative
speed with which the resulting particles move away from each other.
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✎ 3.2.4 If a particle of mass M at rest decays into two particles of different masses, m1 > m2,
compute the difference between their kinetic energies as a function of only the masses
M, m1, m2, including the special case when m2 = 0.

✎ 3.2.5 Show that the system of equations (3.54) reproduces all derived and stated results for
the special case of a two-particle decay.

✎ 3.2.6 Show that for the case of a two-particle decay, the results (3.48)–(3.49) and analo-
gously for EB, |�pB| together with equation (3.54a) produce φBC = 180◦, in agreement with
the result obtained using the linear momentum conservation.

✎ 3.2.7 Show that a free electron can neither absorb nor emit a single photon, i.e., that the
simple processes γ+ e− → e− as well as e− → e− +γ are kinematically forbidden [☞ Chap-
ter 3.3 for explanation].

✎ 3.2.8 Reconsider the fusing collision computations (3.64)–(3.68) and assume that the probe
A flies into the target B with total energy EA and fuses with it. Compute the 4-momentum
and mass of the resulting fused object C.

3.3 Feynman’s diagrams and calculus
In the analysis of Section 3.2, as well as in the corresponding exercises and especially in Exer-
cise 3.2.7, it is tacitly assumed that all particles in the analyzed processes can be observed directly,
i.e., that all kinematic parameters (mass, energy, linear momentum, angular momentum, etc.) can
be measured.

However, that is not always the case.
Recall Conclusion 2.3 on p. 56. Of course, this has to do with the consequence of Heisenberg’s

indeterminacy principle [☞ Digression 2.7 on p. 73]. That is, for kinematics, this involves the
specific relations (1.42) and (1.47):

�p0 �x0 = �E �τ � 1
2 h̄, �pi �xi � 1

2 h̄, i = 1, 2, 3. (3.78)

The indeterminacy principle permits the two-step process(
e− + γ

1+2−−−→ e− + γ
)

=
(

e− + γ
1−→ (

e∗−
) 2−→ e− + γ

)
, (3.79)

even if the process “1” and the process “2” were kinematically forbidden – by themselves. Indeed,
if the intermediate, “excited” electron, e∗−, exists only during a time shorter than

�τ ∼ h̄
2(Eγ + mec2)

, (3.80)

that is, if the time that elapses between process “1” and process “2” is shorter than the one given
by the indeterminacy relation (3.80), then the particle e∗− cannot possibly be observed directly:
It is then possible neither to measure its kinematic parameters, nor to check the 4-momentum
conservation.

Thus, the 4-momentum conservation law is neither violated nor broken11; Heisenberg’s inde-
terminacy relations (3.78) have to do with a fundamental natural limitation of measuring. That is:

11 It is important to differentiate between these terms. “Violation” typically refers to a particular case, event or process in
which a rule, law or symmetry is not satisfied, while “breaking” applies to all cases, events and processes in a particular
phase of the system. Also, in the present context, “breaking” usually refers to symmetry breaking, and in cases of gauge
symmetry it also refers to the breaking of the corresponding continuity equation and charge conservation, by extension.
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Conclusion 3.1 The 4-momentum conservation law is strict, applies to all processes, and
down to the measurement resolution (precision, tolerance) dictated by Heisenberg’s
indeterminacy principle.

To effectively differentiate the precision of the application of the 4-momentum conservation law,
we define:

Definition 3.5 States of a (system, object, particle, etc.) that cannot be directly observed
owing to Heisenberg’s indeterminacy principle are called virtual. Processes that relate real
incoming and real outgoing states are real; all others are virtual.

Comment 3.4 The processes (3.79) labeled “1” and “2” are virtual, but the process “1+2” is
real. [ ✎Why?] A virtual particle is also said to be “off-shell,” i.e., off the mass shell, which
is the hyperboloid p2 = pμpμ = m2c2 in the 4-momentum space. That is, the 4-momentum
of a particle “on-shell” satisfies the relations (3.36)–(3.37), whereas that of a particle “off
shell,” is not so restricted; to this end, I write p2 \= m2c2 – in distinction from “p2 �= m2c2,”
which means that p2 must not equal m2c2. [☞ Tables C.7 on p. 529 and C.8 on p. 529.]

3.3.1 Diagrams
Processes between particles are naturally represented graphically, by so-called Feynman dia-
grams.12 It is important to understand that these diagrams must not be taken as a literal rendition
of a process in the “real” space, but as a schematic tool, the primary task of which is to help in
the estimation and computation regarding physical processes that they represent. For example, the
Feynman diagrams

(3.81)

look identical although the left-hand diagram depicts the repulsive effect of (the Coulomb force
due to) the exchange of one photon between two electrons, and the right-hand one depicts the
attractive effect of (the Coulomb force due to) the exchange of one photon between an electron
and a proton.

Except when noted differently, all Feynman diagrams herein are, by convention, drawn with
time passing predominantly upward and the lines of simultaneity being oriented predominantly
left–right. The tilt (angle with respect to the chosen time axis) of these lines depends on the choice
of the observer,13 which changes the interpretation of the diagram:

12 The graphical representation of interactions is very intuitive and clear. Feynman certainly did not come up with this idea
first, but he did contribute to their popularity as he worked out the technical details that make those diagrams into a
useful computational tool. Ernst Stückelberg was the first to use the idea for the individual processes, before Feynman,
but had no actual drawings; Freeman Dyson was the first to rigorously establish the link between these diagrams and the
well-known perturbative computations. Feynman linked these diagrams to the so-called path integrals, which became a
standard only years later.

13 To be precise, the tilt of all lines changes depending on the observer. However, the tilt of virtual lines – which represent
particles that are unobservable in principle and so do not satisfy any classical equation of motion – may change radically,
and represent the motion of a massive, light-like, or even tachyonic particle. In distinction, the wave-functions of real
particles satisfy their classical equations of motion, and so have the same character for all observers: either massive or
light-like. (Or tachyonic – should they ever be experimentally detected [☞ Digression 7.1 on p. 261].)
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(3.82)

According to the interpretation on the left-hand side, the left-hand particle first emits a photon,
which the right-hand particle then absorbs; according to the interpretation on the right-hand side,
the right-hand particle emits a photon first, which the left-hand particle then absorbs. Thus we
simply speak of an “exchanged” photon, and a diagram such as (3.82) is identified as a schematic
representation of this process, and not as a literal, real depiction of the process in spacetime.

The exchanged photon must be virtual (after all, it is by definition never directly observed!),
since the individual processes (the left-hand half and the right-hand one)

(3.83)

would be kinematically forbidden [☞ Exercise 3.2.7] – while the whole process (3.83) and those
in (3.81) are real. However, this implies that processes such as either one of (3.81) must be
understood as one of the contributions to the process that may be depicted as

(3.84)

where the schematic region in the shaded ellipse is the Heisenberg zone; particles and processes
that are entirely within this region can be neither observed nor measured directly as a matter of
(Heisenberg’s indeterminacy) principle. On the other hand, that also means that within the shaded
region of indeterminacy, all possible sub-processes may well occur, and in fact do occur [☞ Con-
clusion 2.3 on p. 56]. It remains to determine the hierarchy of their contributions to the physical
quantity being computed for the considered physical process (specified by the particles outside the
Heisenberg zone of indeterminacy!):

(3.85)

In classical physics, it makes perfect sense to ask: “In a concrete e− + e− → e− + e− scattering,
which one of the processes happened, either (a) or (b) or (c) or (d) or (e) or. . . ?” In quantum
physics, this question makes no sense: As a matter of principle, not one of the processes shown
in the expansion on the right-hand side of the equality (3.85) can possibly be singled out as the
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“actual” process. All the possibilities that satisfy the “boundary conditions” contribute, as (virtual)
sub-processes of the e− + e− → e− + e− scattering. In this context, “boundary conditions” are
the data reliably established outside the Heisenberg zone, the region obscured by Heisenberg’s
indeterminacy relations.

Besides intuitively depicting by graphs the interactive processes between particles, the Feyn-
man diagrams are also a precise instrument for computing probabilities as well as other measurable
parameters of the considered process. The goal of every application of Feynman diagrams is the
establishment of precise 1–1 correspondences between:

1. the fundamental theory that designs the considered process, usually in terms of a specified
Lagrangian density,

2. individual Feynman diagram elements as the graphical representation of individual terms
from the specified Lagrangian density,

3. the rules of linking these graphical elements into a complete diagram, as a graphical depiction
of the computation with the individual terms from the specified Lagrangian density,

4. the rules of listing all possible Feynman diagrams that need to be included in a computation,
5. the final mathematical expression (usually, in terms of an algebraic sum of various mul-

tiple integrals over various 4-momenta), the final result of which is the desired physical
quantity,

and finally,

6. the computation (or, more often, an estimate) of the value of the mathematical expression
depicted by the Feynman diagram.

Here, we skip the derivations of the second and third steps in this listing; that would be the task
of a field theory course. Instead, we consider some examples [☞ Chapters 5–7] from the Standard
Model, to illustrate the application of the last three steps and will only heuristically motivate their
relationship to the first step – the construction of appropriate Lagrangians, which however we will
discuss at length.

A complete discussion of all aspects of this task is beyond the scope of an introductory text
such as this. Reference [305] describes the early history of Feynman diagrams and the reasons
for the variety of “styles” and conventions in their application; see, e.g., Refs. [61, 474, 537],
the field-theory texts [64, 63, 48, 257, 307, 221, 159, 422, 423, 538, 250, 389, 243, 45, 580,
238, 241, 239, 240], as well as those specializing in path-integral methods [459, 165, 123, 277].
However, since the Feynman diagram technique is quite widespread – even in topics well out-
side elementary particle physics [☞ e.g., Refs. [357, 316]] – we first turn to non-relativistic
quantum mechanics, where the well-known perturbative computations are also representable
graphically.

3.3.2 Quantum-mechanical digression

As a “warm-up,” recall the perturbative computations in non-relativistic quantum mechanics: the
relations (1.17)–(1.19) are very often listed and derived in almost all textbooks. Most textbooks
also give the basic idea behind the derivation of such oft-used results, but the derivation itself and
the results are hardly ever given for corrections of higher order. However, adopting the standard
derivation, we write

H |n〉 = En |n〉, where H := H0 + λH′ (3.86)
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is the “true” Hamiltonian, given as a sum of a “known” Hamiltonian H0 and a “perturbation” H′,
and where λ serves to consistently count the order of perturbation. Suppose that for the “known”
system (designated by the Hamiltonian H0) the complete system of orthonormalized solutions is
known:

H0|n; 0〉 = E(0)
n |n; 0〉,

{ 〈n; 0|n′; 0〉 = δn,n′ ,
∑n |n; 0〉〈n; 0| = 1, (3.87)

and the solutions of equation (3.86) may be found in the analytic form

En =
∞

∑
k=0

λk E(k)
n , |n〉 =

∞

∑
k=0

λk |n; k〉, (3.88)

with the normalizations

〈m; k|n; k〉 = δmn, ∀m, n, and 〈n; k|n; �〉 = δk�, ∀k, �. (3.89)

The energy E(k)
n is the kth order perturbative correction to the original, unperturbed energy E(0)

n ,
and |n; k〉 is the kth order perturbative correction to the original, unperturbed state |n; 0〉. The
treatment of the general situation with (partial) continuous and/or degenerate spectrum is only
technically more complicated,14 and so will not be discussed here.

Introducing the definition

Π̂α
n := ∑

m �=n

|m; 0〉〈m; 0|
(E(0)

n −E(0)
m )α

, so Π̂α
n Π̂β

n = Π̂α+β
n , (3.90)

where the superscript in Π̂α
n really behaves like an exponent, the standard recursive formulae15 for

the kth correction to the state and energy are

|n; k〉 = Π̂1
n H′|n; k−1〉 −

k−1

∑
i=1

E(i)
n Π̂1

n |n; k−i〉, k > 0, (3.91a)

E(k)
n = 〈n; 0

∣∣H′∣∣n; k−1〉. (3.91b)

The first several iterations of these recursive formulae are:

E(1)
n = 〈n; 0|H′|n; 0〉, (3.92a)

|n; 1〉 = Π̂1
n H′|n; 0〉, (3.92b)

E(2)
n = 〈n; 0

∣∣H′ Π̂1
n H′∣∣n; 0〉, (3.92c)

|n; 2〉 = Π̂1
n(H′ − E(1)

n )|n; 1〉
= Π̂1

n H′ Π̂1
n H′|n; 0〉 − Π̂1

n Π̂1
n H′|n; 0〉〈n; 0

∣∣H′∣∣n; 0〉
=

[
Π̂1

n H′ Π̂1
n − Π̂2

n H′|n; 0〉〈n; 0|]H′|n; 0〉, (3.92d)

14 The basis of states |n; k〉 must be redefined so as to eliminate the meaningless terms such as 〈m;k|H′ |n;k〉
E(0)

m −E(0)
n

∼ 1
0 for m �= n –

which is always possible, by (at least a partial) diagonalization of the perturbation matrix 〈m; k|H ′ |n; k〉.
15 Most quantum mechanics texts list only the results for E(1)

n , |n; 1〉 and E(2)
n ; for a more complete treatment, see e.g.,

Ref. [362, pp. 685–695].
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E(3)
n = 〈n; 0

∣∣H′∣∣n; 2〉
= 〈n; 0|H′[ Π̂1

n H′ Π̂1
n − Π̂2

n H′|n; 0〉〈n; 0|]H′|n; 0〉
= 〈n; 0|H′ Π̂1

n H′ Π̂1
n H′|n; 0〉 − 〈n; 0|H′ Π̂2

n H′|n; 0〉〈n; 0|H′|n; 0〉 (3.92e)

|n; 3〉 = Π̂1
n
(
(H′ − E(1)

n )|n; 2〉 − E(2)
n |n; 1〉)

= Π̂1
n H′|n; 2〉 − Π̂1

n |n; 2〉〈n; 0
∣∣H′∣∣n; 0〉 − Π̂1

n |n; 1〉〈n; 0
∣∣H′ Π̂1

n H′∣∣n; 0〉
= Π̂1

n H′ Π̂1
n H′ Π̂1

n H′|n; 0〉 − Π̂1
n H′ Π̂2

n H′|n; 0〉〈n; 0|H′|n; 0〉
− Π̂2

n H′ Π̂1
n H′|n; 0〉〈n; 0|H′|n; 0〉 − Π̂2

n H′|n; 0〉〈n; 0
∣∣H′ Π̂1

n H′∣∣n; 0〉
+ Π̂3

n H′|n; 0〉〈n; 0|H′|n; 0〉2, (3.92f)

and so on. The expressions after (3.92c) indeed become increasingly more and more tedious, and
very quickly. However, the particular ordering in these expressions uncovers a simple algorithm for
finding all subtractions, in the form of “excisions” from the original expression:

|n; 3〉 = Π̂1
n H′ Π̂1

n H′ Π̂1
n H′|n; 0〉 ← original expression

− Π̂1
n [H′] Π̂1

n H′ Π̂1
n H′|n; 0〉 ← 1st excision

− Π̂1
n H′ Π̂1

n [H′] Π̂1
n H′|n; 0〉 ← 2nd excision

− Π̂1
n H′ Π̂1

n H′ Π̂1
n [H′]|n; 0〉 ...

− Π̂1
n [H′] Π̂1

n [H′] Π̂1
n H′|n; 0〉

− Π̂1
n [H′ Π̂1

n H′] Π̂1
n H′|n; 0〉

− Π̂1
n H′ Π̂1

n [H′ Π̂1
n H′]|n; 0〉 (3.93)

where the [· · ·]-bracketed factors in the original expression are successively “excised.” For example,

(3.94a)

(3.94b)

The right-most “excisions” in (3.93) vanish:

Π̂1
n H′ Π̂1

n H′ Π̂1
n [H′]|n; 0〉 = Π̂1

n H′ Π̂1
n H′ Π̂1

n |n; 0〉︸ ︷︷ ︸
=0

〈n; 0|H′|n; 0〉, (3.95a)

Π̂1
n H′ Π̂1

n [H′ Π̂1
n H′]|n; 0〉 = Π̂1

n H′ Π̂1
n |n; 0〉︸ ︷︷ ︸
=0

〈n; 0|H′ Π̂1
n H′|n; 0〉, (3.95b)

owing to the fact that the normalization (3.89) guarantees

Π̂α
n |n; 0〉 = ∑

m �=n

|m; 0〉〈m; 0|
(E(0)

n − E(0)
m )α

|n; 0〉 = ∑
m �=n

1

(E(0)
n − E(0)

m )α
|m; 0〉 〈m; 0|n; 0〉︸ ︷︷ ︸

=0 (∵ m �=n)

. (3.96)

Since only factors of the form (H′ Π̂α
n · · · Π̂β

n H′) have a non-vanishing expectation value in
the original, “known” state |n; 0〉, only such factors may be “excised.” The relations (3.91) may
then be written as

|n; k〉 = (Π̂1
n H′)k|n; 0〉 − all “excisions”, k � 0, (3.97a)
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E(k)
n = 〈n; 0

∣∣H′(Π̂1
n H′)k−1∣∣n; 0〉 − all “excisions”. k � 1. (3.97b)

Using this “excising” notation, e.g., the expression (3.92e) becomes

E(3)
n = 〈n; 0|H′ Π̂1

n H′ Π̂1
n H′|n; 0〉 − 〈n; 0|H′ Π̂1

n [H′] Π̂1
n H′|n; 0〉

= 〈n; 0|H′ Π̂1
n H′ Π̂1

n H′|n; 0〉 − 〈n; 0|H′ Π̂2
n H′|n; 0〉〈n; 0|H′|n; 0〉. (3.98)

The diligent Student is expected to verify [ ✎do it] that the formulae (3.97a)–(3.97b) reproduce
at least the above results (3.92d)–(3.92f).

Digression 3.10 It is not hard to see that the expression (3.98) has no other non-
vanishing “excisions.” Take, for instance, the candidate

(3.99)

The results (3.91) may be depicted graphically, drawing

2nd order propagator (3.100)

Then we have
2

(3.101a)

2
(3.101b)

2
(3.101c)

2 (3.101d)

2 (3.101e)

and so on, where the subtractions are shown as stacks of diagrams, and represent a product of the
corresponding factors. The “excising” algorithm (3.92d) may be graphically depicted also as

.. (3.102)
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Thus, the whole stationary perturbation theory in non-relativistic quantum mechanics exemplified
by (3.101a)–(3.101e) may be written unambiguously and precisely using the graphical sym-
bols (3.100). Similarly, the whole perturbation theory in field theory may be faithfully written
in terms of Feynman diagrams.

The detached portions in these “excision” diagrams, such as in (3.101d)–(3.102),
may well be thought of as the quantum-mechanical analogue of “vacuum diagrams” in field theory:
These diagrams begin and end at the same state in the Hilbert space, |n; 0〉; these being stationary
states, they do not change in time; finally, fixing |n; 0〉 to be the ground state would indeed refer
to the “vacuum.”

3.3.3 Decays, scattering and calculations
In elementary particle physics, one studies decays, collisions/scatterings, and bound states of these
elementary particles. The analysis of bound states uses very successfully the non-relativistic quan-
tum mechanics in Schrödinger’s picture, with perturbatively added relativistic corrections [☞ Sec-
tion 4.1]. On the other hand, decays and collisions/scatterings typically require relativistic analysis.
Our goal here will be to estimate the lifetime for the particle A decaying as A → B + C, and the
differential as well as the total cross-section (probability) of the A + B → C → A + B scattering.
The relativistic computations using Feynman diagrams are convenient for this, and we follow the
standard approach, adopting Griffiths’s conventions [243].

Decays and the half-life
Particles (and even composite systems such as atoms and atomic nuclei) decay probabilistically: It
is not possible to specify precisely when a specific particle will decay, but it is possible to determine
the average lifetime τ, i.e., half-life, t1/2 = ln(2)τ, where

N(t) = N(0) e−t/τ = N(0)
( 1

2

)t/t1/2 (3.103)

is the number of certain particles at time t > 0 within a sample where there existed N(0) particles
at time t = 0. The decay rate (a.k.a. the decay constant) is defined as

Γ :=
1
τ

=
ln(2)
t1/2

. (3.104)

Most particles decay in several ways; in 99.80% cases, π0 decays into two photons, but
in 1.20% cases into an e− + e+-pair. Other particles have many more “modes” of decay: Each
particular decay mode then has a corresponding decay rate Γi, and of course

Γtot = ∑
i

Γi, τ =
1

Γtot
. (3.105)

The ratios Γi/Γtot are called branching ratios; for the five most significant decay modes of the K+

particle, Γi/Γtot are listed, as percentages, in Table 3.1.

Table 3.1 The significant decay modes of the K+ meson

μ− + νμ 63.44± 0.14 % π+ + π0 20.92± 0.12 %

π+ + π+ + π− 5.590± 0.031 % π0 + e+ + νe 4.98± 0.07 %

π0 + μ+ + νμ 3.32± 0.06 % plus a dozen or so rare modes
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Scattering and the effective cross-section
The “effective cross-section” is used to design scattering of one particle on another. Conceptually,
this is the literal geometrical description of the target, as seen by the incoming probe. For an archer,
the probability of a hit is proportional to the cross-section of the target: that’s why swordsmen turn
sideways, for the opponent to “see” a smaller cross-section, so as to diminish the probability of a
stab.

This literal geometric figure is really faithful [☞ Example 3.2] in the case of “hard” targets,
as in the case of a collision of a pool ball, a marble, a cannonball, etc. Such objects have a “binary”
interaction: they either collide or they miss. That is, there exists a very well determined critical
distance, dc, between the centers of such objects. Should the objects pass by each other so that
the distance between them is always bigger than dc, they do not interact at all. For two regular
spheres, dc equals the sum of their radii.

Point-like
“probe”

Effective “target”
of double

radius

“Target”-marble“Probe”-marble

Figure 3.1 The collision of two marbles.

Example 3.2 The classical collision of “hard” marbles of radius R may be analyzed geo-
metrically, as shown in Figure 3.1, where the left-hand marble is replaced by a material
point, and the radius of the right-hand marble is doubled. The left-hand marble plays
the role of a “probe,” and the right-hand one that of the “target.” If the orthogonal dis-
tance b from the target center is changed a little, b → b + db, the scattering angle θ
also changes, θ → θ + dθ. As the collision geometry has axial symmetry, the same result
holds if the “probe” approaches the target from any other angle φ, so that the “probe”
passes through the “surface” element dσ = |db b dφ|. The out-coming space-angle is then
dΩ = | sin θ dθ dφ|, so that the ratio

dσ
dΩ

=
∣∣∣∣ b
sin θ

(db
dθ

)∣∣∣∣ =

∣∣∣∣∣2Rcos
(
θ
2

)
sin θ

(
(2R)

[− 1
2 sin

(
θ
2

)])∣∣∣∣∣ = R2. (3.106)

That produces the total effective cross-section

σ =
∫

dσ =
∫

dΩ
dσ
dΩ

= 4π R2 = π(2R)2, (3.107)

which is the cross-section of a circle of radius 2R: Every “probe” the center of which
passes through this effective circle of double radius will collide with the “target,” all
other probes miss.
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The “hard” target models evidently cannot hold for scattering of two charged particles, since
the electromagnetic interaction extends infinitely far, and the two charged particles always interact,
regardless of the smallest distance between them. Of course, the intensity, i.e., the force of in-
teraction, diminishes with the square of the distance. However, there is no regime in which the
interaction completely vanishes. In distinction from the previous, “hard” targets, such targets are
then called “soft.”

Molecular forces, which decay as ∼ 1/rn where n > 2, as well as forces of Yukawa type
(which decay as ∼ e−r/r0 /r2) evidently behave between the two limiting cases. The effective cross-
section is then a measure of the mutual “hardness” of the target and the probe.

Besides, the collision probability may also depend on the nature of the probe as well as the
target, of the interaction, and even the number and type of out-coming particles. Indeed, the elastic
collision e− + p+ → e− + p+ is relatively simple at sufficiently small energies. However, at growing
energy collisions, we may have

e− + p+ → e− + p+ + γ, e− + p+ → e− + p+ + π0, e− + p+ → e− + n0 + π+,

and then also e− + p+ → νe + Λ0 + K0, etc. (3.108)

For each of these processes, the exclusive (partial) scattering effective cross-section may be
computed, and their sum is then the inclusive (total) scattering effective cross-section.

Finally, the effective cross-section is a measure of the interaction of the “probe” and the target,
and must depend on the speed of the “probe”: The faster it moves, the less time is available for
the interaction, and the effects of the interaction should diminish. Thus, the effective cross-section
should depend inversely on the speed of the “probe.” In realistic scattering, this dependence of
the effective cross-section as a function of speed – or, more frequently, energy – is not so simple:
near certain values of speed (i.e., energy) the effective cross-section is significantly amplified.
Because of the similarity with the amplification of alternating current when its frequency is near a
natural frequency of the circuit, this effect is also called “resonance.” In such resonant collisions,
the collision energy is just right for the “probe” and the “target” to produce a virtual intermediate
state that decays before it could be detected directly [☞ equations (3.67) and (3.48)], and this is
the most frequent way of (indirect) observation of new particles.

Example 3.2 on p. 111 shows that the physical meaning of the effective cross-section coincides
with the naive measure of interaction – the cross-section of the effective target of doubled radius.
In the general case, instead of a point-like “probe” one uses a beam of “probes,” of luminosity L,
defined as the number of point-like “probes” in unit time and unit area. Thus, we have that

dN = L dσ ⇒ dN
dΩ

= L
dσ
dΩ

, i.e.,
dσ
dΩ

=
1
L

dN
dΩ

. (3.109)

This shows that the differential cross-section may be understood as the number of point-like
“probes” that reach the detector in the interval of space angles [Ω, Ω + dΩ], per unit luminos-
ity. The first of these relations (3.109) gives the number of scattered probe-particles expected to
be observed in the detectors placed in the interval [Ω, Ω + dΩ], if the total luminosity of the beam
of probes is L; that is the theoretical (computed) result that may be compared with experimental
results directly.

For dimensional analysis, and to check the results, note the following relation between Γ and
σ: For a decay of a two-particle bound state, Γ must be proportional to the effective cross-section, σ,
of the collision of the two particles within the bound state, to the relative speed of these particles,
as well as the value of the probability distribution in the place where the particles meet:

1. If the collision effective cross-section vanishes, there is no direct interaction between them,
and there can be no decay of their bound state.
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2. If the relative speed of the two particles vanishes, they will never meet, nor interact.
3. If the probability of the two particles to be in the same place vanishes, the direct interaction

cannot happen, nor can the decay.

Dimensional analysis in fact even fixes the linear dependence on v, σ and |Ψ(�0, t)|2:

Conclusion 3.2 The physical units for the decay rate are evidently T−1, and for the effective
cross-section (both total and differential) they are L2. It follows that (see Exercise 3.3.2):

Γ ∝ σ v |Ψ(�0, t)|2. (3.110)

Fermi’s golden rule
The basic idea of the so-called Fermi’s golden rule is that the computation of a physical quantity
such as a decay rate or a scattering effective cross-section, both total (inclusive) and exclusive
(partial) may be written (up to conventional numerical factors) as a product of two factors:

1. the modulus-squared of the so-called “matrix element,” i.e., “amplitude” of the process,
2. the sum/integral over the “phase space” – i.e., over aspects of the process that are not being

measured/observed, and so do not specify the process.

This approach gives the formulae, cited here from Ref. [243] without derivation:

A → C1 + C2 + · · · decay : (3.111)

dΓ = |M|2 S
2h̄mA

(2π)4δ4(pA − ∑ipi
)

∏
j

c d3�pj

2(2π)3Ej
, (3.112)

where S is the product of “statistical factors,” one (k!)−1 factor for every group of k identical
particles amongst the decay products.

A + B → C1 + C2 + · · · collision/scattering : (3.113)

dσ = |M|2 h̄2 S

4
√

(pA·pB)2 − (mAmBc2)2
(2π)4δ4(pA + pB − ∑ipi

)
∏

j

c d3�pj

2(2π)3Ej
, (3.114)

where, in both results, the energy of the jth particle amongst the process products is a function of
the linear momentum:

Ej ≡ Ej(�pj) = c
√

m2
j c2 +�p2

j , (3.115)

since all particles in these processes are real, i.e., they can be observed directly in detectors, and
so are “on-shell,” i.e., on the E2 = m2c4 + �p2c2 hyperboloid. In all these formulae, the indices i, j
count the process products (C1, C2, . . . ), not the components of the linear momenta.

Example 3.3 Consider the two-particle decay A → C1 + C2, where the products have
masses m1 and m2, respectively, and where the linear momenta of the products are not
measured, and so must be integrated over. Adapting equation (3.112), we have

Γ =
S

2h̄mA

∫
|M|2 (2π)4δ4(pA − p1 − p2

) c d3�p1

2(2π)3E1(�p1)
c d3�p2

2(2π)3E2(�p2)
. (3.116)
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Translating first into the rest-frame of particle A, we have pA = (mAc,�0). The
4-dimensional δ-function factorizes: δ4(pA − p1 − p2) = δ(mAc − E1/c − E2/c)δ3(−�p1 −
�p2). Using the 3-dimensional factor that imposes �p2 = −�p1 and cancels the d3�p2-
integration, we have

Γ =
S

2(4π)2 h̄mA

∫
d3�p1 |M|2

δ
(

mAc −
√

m2
1c2 +�p2

1 −
√

m2
2c2 + (−�p1)2

)
√

m2
1c2 + �p2

1

√
m2

2c2 + (−�p1)2
. (3.117)

On one hand, we know that |M| is a Lorentz-invariant (scalar) function of the vectors �p1
and �p2 = −�p1. So M = M(�p1, �p2) = M(�p1,−�p1) = M(�p1) may depend on the direction
of �p1 only if it also depends on some other (reference) vector quantity in the resulting
particles, such as their spin: Then M may depend also on the scalars �pi·�S j and �Si·�S j,
where �Si is the (operator of) spin of the ith particle, and i, j = 1, 2. In turn, if we may
assume that the decay process does not depend on any such additional vector quantities,
every scalar function of the vector �p1 must in fact depend only on the modulus ρ := |�p1|.
It is therefore convenient to use spherical coordinates for the d3�p1-integration. Angular
integration gives a factor 4π, and we remain with

Γ =
S

8π h̄mA

∫ ∞

0

ρ2dρ |M|2√
m2

1c2 + ρ2
√

m2
2c2 + ρ2

δ
(

mAc −
√

m2
1c2 + ρ2 −

√
m2

2c2 + ρ2
)

.

(3.118)

To simplify the integral, introduce

E = c
(√

m2
1c2 + ρ2 +

√
m2

2c2 + ρ2
)

, (3.119)

from which it follows that

dE
E =

ρ(E) dρ√
m2

1c2 + ρ2
√

m2
2c2 + ρ2

so
ρ2dρ√

m2
1c2 + ρ2

√
m2

2c2 + ρ2
= ρ(E)

dE
E , (3.120)

where we intentionally leave ρ = ρ(E) as is, and have

Γ =
S

8π h̄mA

∫ ∞

(m1+m2)c2

dE
E |M|2 ρ(E) δ(mAc − E/c). (3.121)

Since δ(mAc − E/c) = cδ(E − mAc2), we finally use the δ-function to cancel the dE -
integral:

Γ =

{ S ρ0

8π h̄m2
Ac

|M(ρ0)|2, if mA > m1 + m2;

0, if mA � m1 + m2,
(3.122)

where ρ0 = |�p1|0 solves the relation (3.119) with E = mAc2:

ρ0 = |�p1|0 =
c

2mA

√
m4

A
+ m4

1 + m4
2 − 2m2

A
m2

1 − 2m2
A

m2
2 − 2m2

1 m2
2, [ ✎verify]

(3.123)
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and satisfies the linear momentum conservation law. It is useful to list a few simplifica-
tions: When the two products have the same mass but are not the same particle, S = 1
and

Γ =

√
1 − (2m/mA)2

16π h̄mA

∣∣∣M( c
2

√
m2

A − (2m)2)∣∣∣2. (3.124)

If, furthermore, m1 = 0 = m2 but the resulting particles are still distinct (e.g., a neutrino
and a photon, or two different neutrinos and where m ≈ 0 is a pretty good approximation
for neutrinos), we have

Γ =
1

16π h̄mA

∣∣M( 1
2 mAc)

∣∣2. (3.125)

Finally, if the products really are identical particles, S = 1
2 , and the decay rate is one half

of the previously listed results (3.122), and (3.124)–(3.125).

Example 3.4 Consider the inelastic scattering A + B → C1 + C2, where the particles have
masses mA, mB, m1 and m2, respectively, and where the products’ linear momenta are not
measured, and so must be integrated over. The expression (3.114) must be integrated
over d3�p1d3�p2, and the procedure is similar to that in Example 3.3. However, this time
note that M in principle depends on all four linear momenta, �pA,�pB,�p1 and �p2. Since M
is a scalar function, it may depend only on the scalar quantities constructed from these
four 3-vectors.

However, if these 3-vectors are expressed in the coordinate system where �pA +�pB =
�0, it follows that �pA = −�pB = �pi (initial) and �p1 = −�p2 = �p f (final). Scalar functions of
these two 3-vectors can only depend on |�pi|, |�p f | and �pi·�p f = |�pi||�p f | cos ϑ, where ϑ is
the angle between the initial and the final linear momentum, �pA and �p1.

Since the initial linear momentum �pA is known, amongst the integration variables
in the integral of the expression (3.114), M may depend only on |�p1| and ϑ. Choosing
the spherical coordinate system where êz‖�pA, we have

d3�p1 = ρ2dρ sin(ϑ)dϑ dϕ = ρ2dρ dΩ. (3.126)

Repeating the simplification of the integral just as done in Example 3.3 and using the
result (3.163), we obtain

dσ
dΩ

=
( h̄ c

8π

)2 S |M|2
(EA + EB)2

|�p f |
|�pi| . (3.127)

To compute the final expression for the total effective cross-section, σ, by angular in-
tegration over dΩ = sin(ϑ)dϑ dϕ, the angular dependence of M on ϑ, ϕ must be
known.

3.3.4 A simple toy-model example
In this section we consider the Feynman calculus in a very simple toy-model. In Chapters 5 and 6,
this procedure will be applied to concrete and realistic processes in the Standard Model. This
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toy-model is “borrowed” from Ref. [243], where it is attributed to Max Dresden; ultimately of
course, the number of very simple but nontrivial models is very limited.

— ❦ —

There are only three types of particles in this model, A, B, C, with mA > mB + mC, and such that
there exists only one elementary process:

A

B

C
g (3.128)

We assume that the constant (charge/strength) of interaction g is sufficiently small to serve as a
perturbation parameter, at least formally. The computation of any physical quantity is thus orga-
nized as a power series in g, and we compute all contributions of order gn, ranging from the lowest
possible value of n � 0, towards increasingly higher values of n.

Procedure 3.1 The contribution to the matrix element (amplitude) M corresponding to a
Feynman diagram in the ABC-model is computed following the algorithm:

1. Notation: Denote the incoming and outgoing 4-momenta by p1, p2, . . . and the “internal”
4-momenta (assigned to lines that connect two vertices within the graph) q1, q2, . . . Orient
each line, selecting the positive sense of the corresponding 4-momentum.

2. Vertices: Assign to each vertex the factor −ig.
3. Lines: Assign to the jth internal line the factor i

q2
j −m2

j c2 , the so-called propagator. As this

depicts a virtual particle,16 q2
j \= m2

j c2.
4. 4-momentum conservation: Assign to each vertex the factor (2π)4δ4(∑j kj), where kj (−kj)

are the 4-momenta entering (leaving) the vertex.

5. 4-momentum integration: Assign to the jth internal line the
∫ d4qj

(2π)4 -integral.
6. Reading off the amplitude: The above procedure produces(−i M

)
(2π)4δ4(∑

j
pj), (3.129)

where the (2π)4δ4(∑j pj) represents the 4-momentum conservation law, and from where the
amplitude (matrix element) M is read off.

The A → B + C decay
The lowest order contribution is of the order g1:

A

B C

g
(3.130)

16 For virtual particles, it is not that q2 is required to not equal m2c2 (i.e., q2 �= m2c2), but rather that q2 is not required
to equal m2c2. In distinction from “does not equal,” the relation “not required to equal” will herein be denoted by the
non-standard symbol “ \=” [☞ Tables C.7 on p. 529 and C.8 on p. 529].
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The time axis is directed vertically, upward. The next contributions are of the order g3:

A

A CB

C B

A

B C

A

C B

A

B C
A

B
C

A

B C
A

B
C (3.131)

and so on. The lowest order contribution (3.130) is depicted by a tree-graph (with no closed loop).
The subsequent contributions (3.131) all have precisely one closed loop and are of the order g3;
there are no contributions of even order g2k. However, starting with the next (g5) order, a novelty
appears, which can be seen by comparing the following two graphs:

(3.132)

The left-hand graph is planar, but the right-hand graph is not. This property of planarity may
be used for a finer classification of graphs, and proves to be very useful in computations for the
strong nuclear interaction [511]; for a recent review, see Ref. [349]. Also, only connected diagrams
contribute: diagrams such as any one of the above but with a disconnected component (e.g., •©)
added do not contribute; this recalls the “excisions” in Section 3.3.2, the contribution of which had
to be subtracted in non-relativistic stationary state perturbation theory.

Return to the contribution of the lowest order (3.130), where there are no internal lines.
Procedure 3.1 reduces to:

1. Let the “external” 4-momenta be pA, pB and pC.
2. Assign −ig to the vertex.
3. There are no internal lines, and so no propagators either.
4. Assign (2π)4δ4(pA − pB − pC) to the vertex.
5. There are no internal lines, and so no integration either.
6. We’ve obtained

−ig (2π)4δ4(pA − pB − pC) = (−i M) (2π)4δ4(pA − pB − pC), (3.133)

from where M is read off – here, to order g1. Thus, M(1) = g.

Inserting this result into the expression (3.122) we obtain

Γ(1) =
g2|�pB|0

8π h̄m2
Ac

, so that τ(1) =
1

Γ(1)
=

8π h̄m2
Ac

g2|�pB|0 , (3.134)

where
|�pB|0 =

c
2mA

√
m4

A + m4
B + m4

C − 2m2
Am2

B − 2m2
Am2

C − 2m2
Bm2

C = |�pC|0. (3.135)

The result M(1) = g, and so also (3.134), is analogous to the result (3.92a): M(1) = g is
the first-order result in M expanded in a power series over g, as is E(1)

n the first-order result in
a power-series expansion of the energy over λ. In this sense, the constant of interaction g serves
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as the perturbation parameter, and its numerical value must be sufficiently “small” so that such a
power series would make sense,17 so that the interaction parameter g has the same formal role as
the perturbation parameter λ in non-relativistic quantum mechanics, in Section 3.3.2.

However, unlike this formal parameter, the interaction constant g has a physical meaning and
its physical value can be measured. In this toy-model, it would suffice to measure the lifetime of the
A-particle, then use the relation (3.134) to compute g – to the lowest perturbative approximation.
An experiment would, of course, follow an ensemble of a large number of A-particles, and the
diminishing of their number during time would determine the average value of the half-life t(1)

1/2 =
τ(1) ln(2).

Note, however, that there would occur an additional “correction”: Processes (3.130), (3.131),
(3.132), and others of the same order in g (and then also the higher-order ones) are contributions
only to the exclusive (partial) decay A → B + C. If the mass mA is sufficiently bigger than mB, mC,
the A-particle may also decay into more-particle modes:

A → 3B + C, A → B + 3C, . . . A → pB + qC, (3.136a)

which are limited by the relation
∑
p,q

p mB + q mC < mA, (3.136b)

as well as the nature of the decay graphs, from which it follows, e.g.,

(p, q) �= (1, 2), (2, 2), (2, 3), . . . (3.136c)

The A+A→ B+B scattering
The constant g may also be measured – in a thought experiment since this is a toy-model – more
directly, by measuring the intensity of the interaction during scattering. Griffiths [243] analyzes
the inelastic decay A + A → B + B, where “incoming” A-particles are assigned the 4-momenta p1
and p2, and the outgoing B-particles p3 and p4.

By definition and using the relation (3.37), we have that Ei
c =

√
m2

i c2 +�p 2
i for i = 1, 2, 3, 4.

In the CM system, where(
−E1

c
,�p1

)
+

(
−E2

c
,�p2

)
= (p0,�0) =

(
−E3

c
,�p3

)
+

(
−E4

c
,�p4

)
, (3.137)

the total linear momentum vanishes so �p1 = −�p2 and �p3 = −�p4. Denote θ := 	(�p1,�p3) =
	(�p2,�p4), so that 	(�p1,�p4) = 	(�p2,�p3) = (π−θ). We also have that

E1 = c
√

m2
Ac2 +�p 2

1 = c
√

m2
Ac2 + (−�p1)2 = E2, (3.138)

E3 = c
√

m2
Bc2 + �p 2

3 = c
√

m2
Bc2 + (−�p3)2 = E4. (3.139)

From conservation of energy, i.e., the energy component (3.137), it follows that

E := E1 = E2 = E3 = E4. (3.140)
17 It would be ideal if this power series would converge. Within field theory, in practice – if this can be determined at

all – one mostly obtains asymptotic or even formally divergent sums, for which one must independently establish if
the sum may be unambiguously assigned a particular value [☞ [259] for “summability”] for the given value of the
constant g as its argument. Not infrequently, one only knows that the first several orders of perturbative computations
are ever smaller “corrections,” but with no formal proof about the nature of the whole infinite series. On the other hand,
practical computations in quantum electrodynamics show unprecedented precision: both perturbative computations
and experimental measurements are found to agree with a relative error < O(10−10) [293], better than anywhere else
in natural sciences!
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Equating the squares of these energies, we obtain

m2
Ac2 −�p 2

1 = m2
Ac2 −�p 2

2 = m2
Bc2 −�p 2

3 = m2
Bc2 − �p 2

4 . (3.141)

In the limiting case of this toy-model, when mA = mB = m, but mC = 0, the relation (3.141)
gives

|�p| := |�p1| = |�p2| = |�p3| = |�p4|. (3.142)

Scattering In this case, following Procedure 3.1 we have:

1. Denote the “incoming” 4-momenta by p1, p2, and the “outgoing” ones by p3, p4:

A

p1

B

p3

−ig
C q

−ig

A

p2

B

p4

(3.143)

2. Assign to both vertices a factor of −ig.
3. Assign to the internal line the 4-momentum q, and the propagator i

q2−m2
c c2 .

4. Assign to the vertices the factors (2π)4δ4(p1 − q − p3) and (2π)4δ4(p2 + q − p4).
5. Integrate over d4q

(2π)4 .
6. We have thus obtained:

−i M (2π)4δ4(p1 + p2 − p3 − p4)

=
∫ d4q

(2π)4 (−ig)2 i
q2 − m2

C c2
(2π)4δ4(p1 − q − p3) (2π)4δ4(p2 + q − p4)

= −ig2(2π)4
∫ d4q

q2 − m2
C c2

δ4(p1 − q − p3) δ
4(p2 + q − p4)

= −i
g2

(p4 − p2)2 − m2
C c2

(2π)4δ4(p1 + p2 − p3 − p4). (3.144)

However, this is not the only Feynman diagram that produces a g2 contribution; holding the posi-
tions of the outgoing lines and their assigned 4-momenta, it is clear that a “topologically” distinct
diagram is obtained by swapping the vertices to which the outgoing lines connect:

A

p1

B
p3

−ig
C q

−ig

A

p2

B
p4

(3.145)

and which clearly produces a contribution of the same form (3.144), however, with the exchange
p3 ↔ p4. As there are no other Feynman diagrams, the amplitude M is read off from the sum of
these two contributions:

M =
g2

(p4 − p2)2 − m2
C c2

+
g2

(p3 − p2)2 − m2
C c2

. (3.146)
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This amplitude is to be substituted into the expression (3.127):

dσ
dΩ

=
( h̄ c

8π

)2 S |M|2
(E1 + E2)2

|�p3|
|�p1| , (3.147)

where S = 1
2 , we used the result (3.163), and chose to use a spherical coordinate system in which

the angle θ equals the angle 	(�p1,�p3).
The denominators in the ratios (3.146) are

(p4 − p2)
2 − m2

C c2 = (m2
A + m2

B − m2
C)c2 − 2

(E4

c
E2

c
− �p4·�p2

)
= (m2

A + m2
B − m2

C)c2 − 2
(√

(m2
Bc2 + �p 2

4 )(m2
Ac2 + �p 2

2 ) −�p4·�p2

)
,

(p3 − p2)
2 − m2

C c2 = (m2
A + m2

B − m2
C)c2 − 2

(√
(m2

Bc2 + �p 2
3 )(m2

Ac2 + �p 2
2 ) −�p3·�p2

)
,

which significantly simplifies in the limiting case when mA = mB = m and mC = 0:

(p4 − p2)
2 − m2

C c2 = 2m2c2 − 2
(
(m2c2 + �p 2) − �p 2 cos θ

)
= −2�p 2(1 − cos θ), (3.148)

(p3 − p2)
2 − m2

C c2 = 2m2c2 − 2
(
(m2c2 + �p 2) − �p 2 cos(π−θ)

)
= −2�p 2(1 + cos θ). (3.149)

Thus, in the limiting case mA = mB = m, and mC = 0:

M = − g2

�p 2 sin2 θ
, so

( dσ
dΩ

)
=

1
2

( h̄ c
16π

g2

E�p 2 sin2 θ

)2
, (3.150)

which may be used to measure – in a thought experiment for this toy-model – the interaction
constant g by measuring the differential effective cross-section as a function of the deflection angle
θ := 	(�p1,�p2), and the energy and linear momentum of the “incoming” particles, �p = �p1 and
E = E1, respectively.

Of course, the diagrams (3.143) and (3.145) and so also the result (3.150) are all only
the contributions of the lowest order. In the next, O(g4), order, we have the diagrams listed in
Figure 3.2.

The number of Feynman diagrams shown in Figure 3.218 indicates the volume of the task
in computing physical quantities, such as the differential effective cross-section, order by order in
perturbation theory. It is fairly obvious that the task of computing even just the first few order
contributions (in the expansion organized into growing powers of the interaction constant) to a
physical quantity is already a very demanding exercise, so that discussions and analyses of the
convergence of the whole perturbative sum must limit to general properties.

Besides, diagrams such as the 15th in Figure 3.2 uncover a new property: divergences and
renormalization. Consider this diagram, redrawn here as

AA

BB

C

A

B

C

p1 q2

q1

p3 q3

q4

p4

p2

(3.151)

18 The counting given in Ref. [243, 1st edn.] was imprecise: one-third of the diagrams counted there are either impossible
in the A-B-C toy-model (diagrams 4 and 7, in Figure 3.2), or are counted twice (diagrams 11, 12 and 14). However,
this is seen only when the lines are assigned particles and one verifies all vertices to be of the form (3.128).
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1 2 3 4 5

6 7 8 9

10 11 12

13 14

15

Not all diagrams are viable in the
A-B-C toy-model: the lines in
the diagrams 4 and 7 cannot be
assigned to particles A, B and C
while also having the vertices of

the form (3.128).

After assigning particles to the lines, we see
that several diagrams are identical with pre-
viously listed ones: 11 � 2, 12 � 5� 3 and
14 � 9 � 8.

This leaves only eight diagrams:1, 2, 3, 6, 8, 10, 13 and 15,
together with another eight, generated from (3.145).

Figure 3.2 Fifteen possible O(g4) diagrams, before assigning particles to lines. All diagrams are gen-
erated from the O(g2) diagram (3.143), by adding one internal line. When assigning particles to lines,
maintain the “external conditions”: two incoming A-type particles (initial, lower in the diagrams) and
two outgoing B-type particles (final, upper in the diagrams). These conditions reduce the total number
to eight.

Following the Procedure 3.1, we obtain

(−ig)4
∫ i d4q1

q2
1 − m2

C c2
i d4q2

q2
2 − m2

Ac2
i d4q3

q2
3 − m2

Bc2
i d4q4

q2
4 − m2

C c2

× δ4(p1 − p3 − q1) δ
4(q1 − q2 − q3) δ

4(q2 + q3 − q4) δ
4(p2 + q4 − p4), (3.152)

where the first δ-function cancels the d4q1-integral and replaces q1 → (p1 − p3), while the last
δ-function cancels the d4q4-integral and replaces q4 → (p4 − p2). Thereafter, the second δ-function
cancels the d4q2-integral and replaces q2 → (q1 − q3) = (p1 − p3 − q3) and turns the remaining,
third δ-function into the expected factor δ4(p1 + p2 − p3 − p4). This then leaves

M =
(g/2π)4[

(p1 − p3)2 − m2
C c2

]2

∫ d4q3

[(p1 − p3 − q3)2 − m2
Ac2](q2

3 − mBc2)
. (3.153a)

This d4q3-integral necessarily diverges: in 4-dimensional spherical coordinates, we have that
d4q3 = ρ3dρ dΩ(3), so the “radial” integral becomes, near the upper (infinite) limit:

∼
∫ ∞ ρ3dρ

ρ4 = lim
R→∞

∫ R dρ
ρ

= lim
R→∞

ln(R), (3.153b)

which diverges logarithmically.
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Comment 3.5 Note two of the properties of this divergent result:

1. The divergence may occur only in the integration over a 4-momentum associated
with a closed loop in the Feynman diagram, since only such a 4-momentum is not
determined from external data by the 4-momentum conservation law.

2. This divergence does not emerge in attempting to sum an infinite series as
is the case in a so-called asymptotic series,19 but occurs in a single, concrete
contribution to a summand in such a series.

Digression 3.11 Oppenheimer and Waller seem to have been the first to notice, indepen-
dently and in 1930, the appearance of divergences in perturbative calculations in field
theory; this discovery was such a shock that Pauli at first did not want to believe in its
correctness [552].

The appearance of divergences in contributions such as (3.153) reminds us a little of the sit-
uation in non-relativistic stationary state perturbation theory in systems with degeneration. There,
the formula (1.18), which provides the first-order correction to the state |n〉, becomes meaningless
if there exists

|m〉 �= |n〉 : E(0)
m = E(0)

n , 〈m|H′|n〉 �= 0. (3.154)

Such contributions in the sum (1.18) are of the form 1
0 and literally make no sense. In that

simpler case, the problem is solved by changing the basis of states so that the problematic
combinations (3.154) and terms of the type 1

0 in the sum (1.18) no longer occur.

Digression 3.12 To eliminate the offending situation (3.154), one defines

|m′〉 = cmm|m〉 + cmn|n〉, |n′〉 = cnm|m〉 + cnn|n〉, (3.155a)

and requires that 〈m′|H′|n′〉 = 0. This implies that H0 and H ′ have been simultaneously
diagonalized over the {|m〉, |n〉} ∈ H subspace of the Hilbert space. In turn, this implies
that

[H0, H ′] = 0 over {|m〉, |n〉} ∈ H . (3.155b)

In this sense the “ 1
0 -divergence” is “removed.” It is also clear from the structure of the sums

in the results (1.18), (1.19), and also the entire algorithm given in Section 3.3.2, that the re-
diagonalization of the basis |n〉 that removes the 1

0 -divergences from the sum (1.18) to the first
perturbative order also removes all divergences of this type in the whole perturbative procedure.

However, divergences of the form (3.153) are harder to “remove,” and their treatment has
halted the first physically significant field theory – quantum electrodynamics – for almost two
decades. The work of many physicists on this problem culminated in independent and equiv-
alent methods by Richard Feynman, Julian Schwinger and Shin-Ichiro Tomonaga, which were
systematized by Freeman Dyson.

19 H. Poincaré defined the series ∑k ckxk where limx→∞ xkRk(x) = 0 for any fixed k, but limk→∞ xkRk(x) = ∞ to be asymp-
totic (semi-convergent). Here Rk(x) := [ f (x)− ∑k

i=0 cix−i ], and f (x) asymptotically agrees with the sum for large
x ∼ ∞.
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Digression 3.13 The systematic procedure and idea of renormalization stems from an
older and unrelated idea: In 1902, Max Abraham proposed the model [4] in which
the electron was a sphere of finite radius on the surface of which the electron charge
is uniformly distributed. In 1904, Hendrik Lorentz [346] developed this idea, so that
the model is now called the Abraham–Lorentz model. In this model, the work required
to assemble the electron charge by bringing it from infinity into the Gaussian sphere of
radius re contributes to the mass of the electron. If this is the only contribution, that work
may be equated with the (electromagnetic) rest energy of the electron:

memc2 = 1
2

∫
d3�r �E2 = 2π

∫ ∞

re

r2dr
( e

4πε0 r2

)2
=

1
2

e2

4πε0

1
re

, (3.156a)

if the electron charge is distributed uniformly on the surface of the sphere of radius
re. If the charge is distributed uniformly throughout the entire sphere, the factor 1

2 is
replaced by 3

5 . Equating mem with the measured electron mass (as if the electron mass
stems entirely from the electric field that this electron produces, and the charged shell
has no mass of its own) and neglecting the numerical factor 1

2 – 3
5 , we obtain the classical

electron radius:

re =
e2

4πε0

1
me c2 = αe

h̄
mec

= 2.817 940 325 × 10−15 m. (3.156b)

Because of the dependence mem ∝ r−1
e , it follows that the electron cannot be ideally

point-like: if it were, its mass would be infinitely large. Since the total effective mass
must also include (realistically, a non-vanishing) mass of the spherical shell, the “true”
electron radius may differ from the result (3.156b). However, for the radius to be smaller
than re, it would be necessary for the mass of the spherical shell to be negative. In the
limiting case of the point-like electron, this infinitely small shell would have to have an
infinitely negative mass, which is an evidently meaningless value.

However, from these considerations about the Abraham–Lorentz model of the elec-
tron stems the idea that the measured values of a physical quantity may consist of several
contributions, which – in the limiting case – may each diverge, as long as their sum
(which is what is compared with the experimental data!) is a finite quantity.

The basic idea, schematically, is that for each parameter there exists

mphysical = mbare + δm, gphysical = gbare + δg, etc. (3.157)

where the “bare” version of the parameter is the one showing up in the classical Lagrangian theory,
and the “quantum correction” δm often diverges. However, mbare is defined so as to also diverge,20

and precisely so that the physical value of the parameter remains finite and comparable with
the experiments. Besides, the systematic procedure of renormalization guarantees that the so-
defined finite part and divergent part of the result may be consistently separated order by order
in perturbation theory for quantum electrodynamics, which then serves as a template for all other
existing field theory models.

20 One of the methods of “canceling” divergences requires that the integrals are computed in finite limits, ±Λ, so that
one can isolate the portion of the contributions that are independent of Λ in the sums of the form (3.157). In the
Λ → ∞ limit, that Λ-independent portion represents the desired physical quantity. There exist several other methods
for isolating the “finite part” from divergent integrals, but there is no general formal proof that the finite result does not
depend on the method of its isolation.
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Most nontrivial models in field theory are in practice defined by means of the perturbative
computations, including some variant of the renormalization procedure. Certain results in a grow-
ing class of models can be computed by non-perturbative means – or by using an essentially
different perturbative method where individual terms of “lower order” may represent a sum of
a large number of (contributions from) standard Feynman diagrams. A formal and rigorous proof
of finiteness of all possible observables is not known in general, and in this sense field theory is in
general not formally rigorously defined, nor does one know if field theory in general – or even a
certain concrete model, such as quantum electrodynamics – is formally self-consistent!21 Neverthe-
less, perturbative and other concrete results offer enough useful data to compare with experiments,
which suffices for a pragmatic acceptance of this theoretical system – all the more so, since (1) the
various renormalization prescriptions invariably produce final results agreeing for observables, and
(2) no contradiction has been detected in anomaly-free theoretical models [☞ Section 7.2.3].

The appearance and the conspicuous cancellation of divergent contributions in perturbative
computations of evidently measurable (and finite!) physical quantities is still cited as the cause for
a principled disagreement with the entire renormalization procedure [☞ e.g., Ref. [29]]. However,
the number of living physicists who openly oppose this procedure is decreasing.22 The Reader with
a piqued interest in the subject should turn to the texts on quantum field theory [63, 48, 441,
459, 154, 474, 249, 240, 425, 554, 555, 484, 588, 496, 446, 589, 316, 7, 586, 277, 590], texts on
renormalization itself [113, 212], and research articles, such as [44, 431, 343, 146, 253].

3.3.5 Exercises for Section 3.3

✎ 3.3.1 In the special case when �v = v êz, show that the transformations (3.1) acquire the
well-known form:

x′ = x, y′ = y, z′ = γ(z − v t), x = x′, y = y′ z = γ(z′ + vt′), (3.158a)

t′ = γ
(

t − v z
c2

)
, t = γ

(
t′ + v z′

c2

)
, (3.158b)

with the usual γ = (1 −�v2/c2)−1/2.

✎ 3.3.2 Using that [Γ] = T−1, [σ] = L2, [v] = LT−1 and
[|Ψ|2] = L−3, prove equation (3.110)

and Conclusion 3.2.

✎ 3.3.3 For the elastic collision A + B → A′ + B′, in a system where B is originally at rest (and
is the target), derive

dσ
dΩ

≈ S
( h̄

8π

)2 |M|2
mB

�p 2
A′

|�pA|
∣∣(|�pA′ |(EA + mBc2) − |�pA|EA′ cos θ

)∣∣ . (3.159)

Here A and A′ denote the incoming and outgoing, but otherwise identical particles, just as
do B and B′.

✎ 3.3.4 Show that the result of the previous problem simplifies when (mA/mB) � 1:

dσ
dΩ

≈ S
( h̄ EA′

8π EA

)2 |M|2
m 2

B

. (3.160)

21 In view of Gödel’s incompleteness theorem, a formally rigorous proof of self-consistency of field theory may turn out
to be a pipe dream, since theoretical axiomatic systems that are sufficiently strong (e.g., include standard arithmetics)
turn out to also be incapable of proving their own consistency [☞ Appendix B.3].

22 To paraphrase Max Planck [428, pp. 33–34], new scientific truths do not convince their opponents, they outlive them.
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✎ 3.3.5 For the elastic collision in Exercise 3.3.3 but in the case when the recoil of the target
after the collision may be neglected since mBc2  EA, derive

dσ
dΩ

≈
( h̄

8πmBc

)2|M|2. (3.161)

✎ 3.3.6 For the inelastic collision A + B → C1 + C2, in a system where B (the target) is
originally at rest, and (mCi

/mA) � 1 and (mCi
/mB) � 1, derive

dσ
dΩ

≈
( h̄

8π

)2 S |M|2
mB(EA + mBc2 − |�pA|c cos θ)

|�pC1 |
|�pA| , (3.162)

where θ is the angle between �p1 and �p3.

✎ 3.3.7 Why is the cascade decay A → B + C → 2B + A in the toy-model of Section 3.3.4
forbidden, but A → B + C → 2B + A → 3B + C may be allowed? What is the condition for
the latter process to be viable?

✎ 3.3.8 Using only Feynman diagrams to analyze the possible decay modes of particle A, show
that p and q in relation (3.136) must both be odd integers.

✎ 3.3.9 For a head-on collision of two particles of masses m1 and m2, we have p1 = (E1/c,�p)
and p2 = (E2/c,−�p) in the CM system. Show that

c
√

(p1·p2)2 − (m1m2c2)2 = (E1 + E2)|�p|. (3.163)

✎ 3.3.10 Prove that, in the A-B-C toy-model and with g < 1, the elastic collisions are O(g4)
times less probable than the inelastic collisions such as (3.143).

✎ 3.3.11 Prove that equation (3.155b) is satisfied for all of the finitely many degenerate
states (3.154), so that the standard procedure described in Digression 3.12 on p. 122 is
always possible.
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