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which has only the solutions 6 = constant, or 6 = o. It is easy to deduce from his
equations, e.g.

© R
=— (Schuler's eq. c)

mga g n

and

J R= - , (Schuler's par. 31)
mga. u. cos tp g r '

by simply multiplying both members by g, that his apparatus is independent ofg!—
and hence, again, fundamentally different from that characterized by equations
(1) and (2), above. In inertial navigation, it is Earth that is in tune, and there is
no possibility of altering the period by tinkering with the device. I do not think
that anyone can produce an inertial navigator with any other period, as, e.g., the
period of 'about thirty minutes' reported by Schuler in his 1923 paper, par. 31,
as his best approach to an apparatus 'with full 84-minute period.'

The Schuler Pendulum and Inertial
Navigation

Professor A. Stratton

F. C. Bell in his contribution raises most interesting philosophical questions.
In commenting on them, I will refer to a recent translation (Navigation U.S.A.,
14, 26) of Schuler's paper and use the same notation.
Gravity and the Schuler pendulum

The impossibility of distinguishing by any physical measurement between a
gravitational force and the inertial reaction force of an accelerating frame of
reference is fundamental. In Fig. 1 our observer in an enclosed laboratory is
observing the compression of a linear spring supporting a 'proof mass' m (he

knows the natural uncompressed
length of the spring). In situation
1 (a) the laboratory—unknown to
him—is sitting on the surface of
the Earth and the spring is com-
pressed to d1 = kmg by tike gravi-
tational force of g per unit mass
acting on m (k is a constant of the
spring). In situation i(b) the lab-
oratory—also unknown to him—
is in free motion in space ac-
celerating under the action of a
silent and vibration-free propul-
sive motor generating a thrust

HG 1 (a). Gravitation (b) Inertia of, a, per unit mass of the labora-
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tory and its contents; the spring is compressed to d2 =kma by the inertia of the
mass m. The compression of the spring will be identical in the two cases if a =g
and no observation of the 'proof mass* will distinguish between gravitational
force and acceleration of the frame of reference under the (external) propulsive
force as the 'source' of the deflection.

Inertial navigation thus requires certain
a priori knowledge of the gravitational
field; the question for discussion is the
nature of the information required.

Consider first of all the compound pen-
dulum of Fig. 2 moving on the surface of
a sphere of radius R, to being the angular
velocity of the radius vector; no gravita-
tional field exists.

The acceleration of the pedulum sup-
port 0 is Rdco/dt and the inertial reaction
force acting at the centre of mass G is
mRdco/dt (m is the total mass of the pen-
dulum).

Hence the torque applied to the pen-
dulum is mRadco/dt. If o)1 is the angular
velocity of the pendulum and 6 the
moment of inertia

do) da) 1
mRa— =B^-±

dt dt

dt

FIG. 2. A compound pendulum

If initially the pendulum is aligned to the radius vector then it will remain
aligned to the radius vector if dm ijdt = dcojdt, which requires that Ra = Bjm.

If k is the radius of gyration of the pendulum then 6 =mk2 and hence k = -\/(Ra).
IfR = 6'37 x io6 metre (equal to the radius of the Earth) and k — 2 metres then

a = o -6 micron which, as Schuler remarks, is completely impracticable for a
physical pendulum [note: Slater translates '4m Massenabstand' as 4 metres radius
of gyration; this should be (as the above calculation demonstrates) a 'distance
between masses of 4 metres'—i.e. a dumbell].

The above derivation is identical with that of Schuler—but there is no
gravitational field; the compound pendulum once aligned to the radius vector
maintains alignment when moved on the surface of a sphere of radius R. If a
gravitational field is introduced always parallel to the radius vector then the
aligned pendulum being always parallel to the gravitational field is unaffected by
it—and no knowledge of the magnitude g of the gravitational field is necessary.

If the pendulum is disturbed, however, it will oscillate with a period

V \maa) " \ \8a)
which is dependent on the magnitude of g.

The 'tuning' condition for maintenance of alignment to the radius vector
depends, however, only on the radius R of the sphere, viz.
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Such a pendulum, if it could be
physically constructed and di-
mensioned to maintain alignment
to the Earth's radius, when
taken to another planet of the
same radius but, say, four times
the gravitational field, would still
maintain alignment to the radius
vector but have a period (if dis-
turbed) of only 42 -2 minutes.

Now consider the accelero-
meter— integrator — gyroscope
combination referred to by Carr
and Scott (Fig. 3) ('inertial plat-
form') operating on a sphere of

radius R in the absence of a gravitational field. The output of the accelerometer
is Rdw/dt and the precession signal applied to the gyroscope is K^w.

The 'platform' carrying the accelerometer will rotate at a rate
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FIG. 3. Accelerometer-integrator-gyroscope com-
bination

If KtK2 = i/R then at1 = <D and once aligned normal to the radius vector the
platform will, if there are no instrumental errors, stay aligned—even in the
absence of a gravitational field.

Instrumental errors—for example an initial velocity error as considered by
Bell—will,' in the absence of a gravitational field, cause unbounded divergence
of the platform from the radius vector. If there is a gravitational field g parallel
to the radius of the sphere then, if disturbed, the platform will oscillate with a
period T= 2Tr^(R/g) and, of great importance, oscillations due to instrumental
errors are bounded.

Apart from the practically all important instrumental errors, however, the
'inertial platform' is directly analogous in behaviour to the physically impractic-
able compound pendulum of Schuler and would also maintain the vertical,

without any modification, on
a planet of equal radius but
differing gravitational field.

In contrast, the 'gyroscopic
pendulum' of Schuler does
not maintain the vertical in-
dependent of the gravitational
field. Fig. 4 shows such a pen-
dulum moving on the surface
of a sphere with acceleration
Rdw/dt. The resultant inertial

m R doi reaction torque maRday/dt
about axis GY will cause
precession at an angular rate
df}jdt about the orthogonal
axis GX where

FIG. 4. Platform rotation

dco
dT

It ~di
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(J being the angular momentum of the wheel.)
Hence if initially aligned to the radius vector the gyroscope will precess about

GX through an angle (assumed small) of

(0

J
where v is the velocity over the surface of the sphere. About GY the gyroscope
will maintain the initial alignment and will not follow the radius vector with
movement over the sphere. If, however, a radial gravitational field g obtains, the
tilt induced by equation (i) will generate a gravitational torque mgafi, which in
turn will give a precession rate about G Y of

= I ——— I at from equation (i)

If

i.e.

(Schuler equation 10)
m8a Il9\
J VW

then co1 = cu and the gyroscopic pendulum will maintain indication of the vertical
in the plane OGX. If translated to a planet with different g, but the same R, the
constants of the instrument would have to be modified.

A gravitational field is thus essential for the operation of the Schuler gyro-
scopic pendulum.

Summarizing, with the compound pendulum and the inertial platform, it is
only necessary to know that the gravitational field is normal to the surface; with
the 'gyroscopic pendulum' of Schuler it is also necessary to know the magnitude
of the gravitational field.

Schuler and inertial navigation

Schuler recognized in his paper 'that a gyroscopic horizon with two gyro-
scopes counter-rotating simultaneously indicates the speed of the vehicle'. He
then points out that such an apparatus gives the total velocity of the aircraft rela-
tive to Earth and that Earth rotation must be subtracted. He then quite rightly
discounts the accuracy of a magnetic compass for determining the direction and
inclination of the Earth's axis (which must be known to subtract the Earth's
rotation); the only alternative which he offers for this is the stars.

The key to pure inertial navigation—which is omitted by Schuler—is the
definition of the Earth's axis by means of a free gyroscope aligned before flight,
and with a sufficiently low drift rate to maintain this alignment unmonitored
during flight.

It would be very interesting to know the earliest published record of this step.
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