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Quasiconvexity and Density Topology
Patrick J. Rabier

Abstract. We prove that if f : RN → R is quasiconvex and U ⊂ RN is open in the density topology,
then supU f = ess supU f , while infU f = ess infU f if and only if the equality holds when U = RN .

The first (second) property is typical of lsc (usc) functions, and, even when U is an ordinary open
subset, there seems to be no record that they both hold for all quasiconvex functions.

This property ensures that the pointwise extrema of f on any nonempty density open subset can
be arbitrarily closely approximated by values of f achieved on “large” subsets, which may be of rele-
vance in a variety of situations. To support this claim, we use it to characterize the common points of
continuity, or approximate continuity, of two quasiconvex functions that coincide away from a set of
measure zero.

1 Introduction

To begin with matters of terminology, a quasiconvex function f on RN refers to an
extended real-valued function whose lower level sets {x ∈ RN : f (x) < α} are convex
for every α ∈ R. The same class is obtained if the level sets {x ∈ RN : f (x) ≤ α}
are used instead. These functions were first introduced by de Finetti [5] in 1949,1

although the nomenclature was only coined by Fenchel [4] a few years later.
A null set is a subset of RN of Lebesgue measure 0 and Lebesgue measure, simply

called measure, is denoted by µN . Without accompanying epithet, the words “open”,
“interior”, “closure”, “boundary”, etc. and related symbols always refer to the eu-
clidean topology of RN .

Recall also that the density topology on RN is the topology whose open subsets
are ∅ and the measurable subsets of RN with density 1 at each point. They will
henceforth be referred to as density open. Every open subset is density open. The (ex-
tended) real-valued functions on RN that are (semi)continuous when RN is equipped
with the density topology and R with the euclidean topology are the so-called approx-
imately (semi)continuous functions.

We shall only use elementary properties of the density topology. For convenience,
a brief summary is given in the next section.

If f : RN → R := [−∞,∞] and α ∈ R, we set

(1.1) Fα := {x ∈ RN : f (x) < α}.

This will only be used without further mention when the function of interest is called
f , so no ambiguity will arise. As is customary, if f is measurable and E ⊂ RN is a
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1The occasional claim that they were already investigated by von Neumann in 1928 is a gross exagger-
ation; see the historical article [7].
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measurable subset, we define

ess inf
E

f := sup{α ∈ R : µN (E ∩ Fα) = 0} and ess sup
E

f := − ess inf
E

(− f ).

Since the sets Fα are linearly ordered by inclusion,

ess inf
E

f = inf{α ∈ R : µN (E ∩ Fα) > 0}.

Now, if f is upper semicontinuous (usc for short) and U ⊂ RN is an open subset,
it is trivial that

(1.2) inf
U

f = ess inf
U

f .

Indeed, since the lower level sets Fα are open, the intersection U ∩ Fα has positive
measure whenever it is nonempty. More generally, (1.2) is true and equally straight-
forward if U is density open and f is approximately usc, but it fails if U has only
positive measure, even if f is finite and continuous or has any amount of extra regu-
larity.

Thus, heuristically at least, (1.2) for every density open subset U ⊂ RN is best
possible for any measurable function f . This property, which ensures that infU f
can be arbitrarily closely approximated by values of f achieved on “large”subsets, is
of possible relevance in a variety of technical situations. It may fail to hold if the
function is modified at a single point, but elementary one-dimensional examples
show that it is more general than upper semicontinuity, even approximate.

Likewise, if f is approximately lower semicontinuous, then

(1.3) sup
U

f = ess sup
U

f ,

for every density open subset U of RN .
The main result of this note (Theorem 3.3) is that if f is quasiconvex, (1.3) al-

ways holds and (1.2) holds if and only if it holds when U = RN (Theorem 3.3). Of
course, (1.2) and (1.3) are trivial when f is approximately continuous (in particular,
when U is open and f is continuous), but it is more surprising that they continue to
hold when f is quasiconvex, without any continuity-like requirement. (Needless to
say, quasiconvexity does not imply approximate continuity.) When f is an arbitrary
convex function, not necessarily proper, an equivalent statement is given in Corol-
lary 3.4.

In spite of the by now substantial literature involving quasiconvex functions, this
arguably notable property seems to have remained unnoticed, even when U is an
euclidean open subset. At any rate, prior connections between quasiconvexity in the
sense of de Finetti and the density topology (or approximate continuity) appear to
be nonexistent.

In Section 4, we use (1.2) and (1.3) to compare the points of (approximate) con-
tinuity of two real-valued quasiconvex functions f and g on RN such that f = g a.e.,
so that f and g have the same essential infimum m := ess infRN f = ess infRN g.
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By a well known result of Crouzeix [3] (see also [2]), every real-valued quasicon-
vex function is Fréchet differentiable a.e. and so continuous a.e. An even sharper
property is proved in Borwein and Wang [1] in the lsc case. Thus, f and g above are
simultaneously continuous at the points of a large set, but this does not say whether
f is continuous at a given point x where g is known to be continuous.

In Theorem 4.2, we show that this question and the same question for points
of approximate continuity can be given simple, yet complete answers: a point x of
approximate continuity of g is not a point of approximate continuity of f if and only
if m > −∞, g(x) = m, and x ∈ Fm (see (1.1)), while a point x of continuity of g is
not a point of continuity of f if and only if m > −∞, g(x) = m, and x ∈

⋃
α<m Fα.

The similarity and the difference between these two results are better appreciated if it
is noticed that Fm =

⋃
α<m Fα.

Variants of the main results for quasiconvex functions on a Baire topological vec-
tor space X can be found in [13]. In that setting, the most significant by-product is
a very simple characterization of the real-valued quasiconvex functions continuous
at the points of a residual subset of X, in terms of basic topological properties of the
sublevel sets.

2 Background

We begin with a brief review of the few properties of the density topology on RN and
related topics that will be used in this paper. Further information, notably the proof
that the density topology is a topology, can be found in [6] or [11]. It was introduced
in 1952 by Haupt and Pauc [8] in a more general setting, but many other expositions
are limited to N = 1. For classical generalizations, see [12], [15].

First, recall that while the density of a set at a point x is often defined by using
shrinking families of open cubes centered at x, an equivalent definition is obtained if
cubes are replaced with euclidean balls. This is elementary but still requires a short
argument; see, for instance, [10, p. 460]. While not a major point, this observation is
convenient.

From the very definition of a density open subset, it follows that the density in-
terior of a measurable subset S ⊂ RN is the subset S1 of S of those points at which
S has density 1. By the Lebesgue density theorem, S\S1 is a null set. Thus, a null
set has empty density interior and, conversely, a measurable set with empty density
interior is a null set. (This converse is of course false with the euclidean topology.) In
particular, a nonempty density open subset always has positive measure.

Every subset of RN , measurable or not, has a density interior, but a non-
measurable subset with empty density interior is obviously not a null set. Such sets
will never be involved in the sequel. Although we shall not use this here, we feel com-
pelled to point out that every null set is density closed (and even discrete), because
its complement is clearly density open.

A measurable subset W ⊂ RN is a density neighborhood of a point x if and only
if it contains a density open neighborhood of x. From the above, this happens if and
only if W has density 1 at x, and then W has positive measure. Thus, the inverse
image f−1(V ) of an open subset V ⊂ R under a measurable function f is a density
neighborhood of some point x if and only if f−1(V ) has density 1 at x.
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In the introduction, a function f : RN → R was called approximately continuous
if it is continuous when RN is equipped with the density topology and R with the
euclidean topology. A different definition is that every x ∈ RN is contained in a
measurable set Ex having density 1 at x such that f|Ex

is continuous at x (for the
euclidean topology). It is well known and not hard to prove, though not entirely
trivial, that the two definitions are equivalent.

Aside from the density topology and approximately continuous functions, we shall
also use several properties of convex subsets of RN , some of which, but not all, are
explicitly spelled out in standard texts. A basic fact is that if a convex subset C ⊂ RN

has empty interior, it is contained in an affine hyperplane ([14]). Then, elementary
considerations yield the following. For every convex subset C ⊂ RN the statements:
(i) C has empty interior, (ii) C is a null set, (iii) C is a null set, and (iv) C has empty
interior, are all equivalent.

Another useful property is that if C ⊂ RN is closed and convex, at least one sup-
porting hyperplane passes through each point of its boundary ∂C. Furthermore, ev-
ery convex subset C ⊂ RN is measurable, because C is the union of its interior C◦

with a subset of ∂C, and ∂C is always a null set. Indeed, the distance function to C
is convex and finite, hence a.e. differentiable ([14, Theorem 25.5]). Since it is readily
checked that it is not differentiable at any point of ∂C, the latter is a null set.

Notice that the measurability of convex sets implies at once that all quasiconvex
functions are measurable.

3 Main Result

We need two preliminary lemmas.

Lemma 3.1 Let C ⊂ RN be convex and U ⊂ RN be density open.

(i) If C has nonempty interior and U ∩C 6= ∅, then µN (U ∩C) > 0.
(ii) If U ∩ (RN\C) 6= ∅, then µN (U ∩ (RN\C)) > 0.

Proof (i) Choose x0 ∈ U ∩C along with an open ball B ⊂ C such that x0 /∈ B. The
hypothesis C◦ 6= ∅ ensures that B exists. Indeed, choose B ⊂ C◦. If x0 is not the
center of B, shrink the radius of B until x0 /∈ B. If x0 is the center of B, just replace B
by an open ball contained in B that does not contain x0.

The set K :=
⋃
λ∈(0,1)(λB + (1− λ)x0) is a truncated open convex cone with apex

at x0 (and spherical “end”) contained in C◦. Let B(x0, r) denote the open ball with
center x0 and radius r > 0. Clearly, the ratio

κ :=
µN (K ∩ B(x0, r))

µN (B(x0, r))
∈ (0, 1)

is independent of r > 0 small enough. On the other hand, since U has density 1 at
x0,

µN (U ∩ B(x0, r))

µN (B(x0, r))
> 1− κ

if r > 0 is small enough. This implies that µN (U ∩ K ∩ B(x0, r)) > 0, for otherwise
the intersection of U ∩ B(x0, r) and K ∩ B(x0, r) (that is, U ∩ K ∩ B(x0, r)) is a null
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set, so that

µN

(
(U ∪ K) ∩ B(x0, r)

)
= µN

(
U ∩ B(x0, r)

)
+ µN

(
K ∩ B(x0, r)

)
> µN

(
B(x0, r)

)
,

which is absurd. Since K ∩ B(x0, r) ⊂ K ⊂ C, it follows that µN (U ∩C) > 0.
(ii) Choose x0 ∈ U ∩ (RN\C). We claim that RN\C contains (at least) half of

any open ball centered at x0 with small enough radius. Since this is obvious if x0 lies
in the interior of RN\C, we assume that x0 ∈ ∂(RN\C) = ∂C. There is at least one
affine hyperplane H supporting C at x0. Therefore, H splits every open ball B(x0, r)
into two open halves, one of which does not intersect C and is therefore contained in
RN\C.

Since U has density 1 at x0, it follows that µN (U ∩ B(x0, r)) > 1
2µN (B(x0, r)) if

r > 0 is small enough. From the above, half of B(x0, r) is contained in RN\C and the
other half cannot contain a set of measure greater than 1

2µN (B(x0, r)). As a result, the
half-ball contained in RN\C must intersect U along a set of positive measure, so that
µN (U ∩ (RN\C)) > 0.

Lemma 3.2 If f : RN → R is measurable, the following statements are equivalent:

(i) supU f = ess supU f for every density open subset U ⊂ RN ;
(ii) for every x0 ∈ RN , every density open subset U ⊂ RN containing x0, and every

ε > 0,
µN

(
{x ∈ U : f (x) ≥ f (x0)− ε}

)
> 0.

Likewise, the following statements are equivalent:

(i ′) infU f = ess infU f for every density open subset U ⊂ RN ;
(ii ′) for every x0 ∈ RN , every density open subset U ⊂ RN containing x0 and every
ε > 0,

µN

(
{x ∈ U : f (x) < f (x0) + ε}

)
> 0.

Proof (i)⇒ (ii) Suppose that (i) holds and, by contradiction, assume that there are
x0 ∈ RN , a density open subset U ⊂ RN containing x0, and some ε > 0 such that

µN ({x ∈ U : f (x) ≥ f (x0)− ε}) = 0.

Then ess supU f ≤ f (x0)− ε < f (x0) ≤ supU f , which contradicts (i).
(ii) ⇒ (i) Let U ⊂ RN be a density open subset. We argue by contradiction,

thereby assuming that supU f > ess supU f . If so, U is not empty (otherwise, both
suprema are −∞ ) and ess supU f <∞. Thus, the assumption supU f > ess supU f
implies the existence of x0 ∈ U such that ess supU f < f (x0) ≤ supU f . Choose
ε > 0 small enough that ess supU f < f (x0)− ε. By (ii),

µN ({x ∈ U : f (x) ≥ f (x0)− ε}) > 0,

so that ess supU f ≥ f (x0)− ε, which is a contradiction.
That (i ′) ⇔ (ii ′) follows after replacing f by − f above, and noticing that the

equivalence between (i) and (ii), remains true if the inequality in {x ∈ U : f (x) ≥
f (x0)− ε} is replaced by the corresponding strict inequality.
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We now prove the main result announced in the introduction.

Theorem 3.3 Let f : RN → R be quasiconvex.

(i) supU f = ess supU f for every density open subset U ⊂ RN .
(ii) infU f = ess infU f for every density open subset U ⊂ RN if and only if this is true

when U = RN .

Proof The extended real-valued case can be deduced from the real-valued one by
changing f into arctan f . This does not affect quasiconvexity, and it is easily checked
that arctan commutes with ess supU and ess infU . Accordingly, in the remainder of
the proof, f is real-valued.

(i) We show that Lemma 3.2(ii) holds and use the equivalence with (i) of that
lemma.

Pick x0 ∈ RN , a density open subset U ⊂ RN containing x0, and ε > 0. The
set {x ∈ U : f (x) ≥ f (x0) − ε} is the intersection U ∩ (RN\F f (x0)−ε) (see (1.1)).
Since U ∩ (RN\F f (x0)−ε) 6= ∅ (it contains x0), it follows from Lemma 3.1(ii) that
µN (U ∩ (RN\F f (x0)−ε)) > 0.

(ii) It is obvious that infRN f = ess infRN f is necessary. Conversely, assuming this,
we show that Lemma 3.2(ii ′) holds and use the equivalence with (i ′) of that lemma.

Pick x0 ∈ RN , a density open subset U ⊂ RN containing x0, and ε > 0. The set
{x ∈ U : f (x) < f (x0) + ε} is the intersection U ∩ F f (x0)+ε. Since ess infRN f =
infRN f ≤ f (x0) < f (x0) + ε, the set F f (x0)+ε has positive measure, and hence
nonempty interior since it is convex. Therefore, µN (U ∩ F f (x0)+ε) > 0 by Lemma
3.1(i).

For convex functions (defined as functions with convex epigraphs and hence not
necessarily proper), Theorem 3.3 can be phrased differently. Recall that the domain
dom f of a convex function f is the set of points where f <∞. It includes the points
where f = −∞, if any.

Corollary 3.4 Let f : RN → [−∞,∞] be convex. Then:

(i) supU f = ess supU f for every density open subset U ⊂ RN ;
(ii) infU f = ess infU f for every density open subset U ⊂ RN if and only if either

f =∞ everywhere, or dom f has nonempty interior.

Proof Since there is no need to discuss the case when f = ∞ everywhere (trivial
convex function), we henceforth assume that f is not trivial. By Theorem 3.3, it suf-
fices to prove that infRN f = ess infRN f if and only if dom f has nonempty interior.

We begin with necessity. If infRN f = ess infRN f , then dom f has nonempty in-
terior, for otherwise dom f (convex) is a null set, so that ess infRN f = ∞, while
infRN f <∞, since f is not trivial. The proof of sufficiency requires a little work. For
convenience, we set D := dom f and from now on assume that D◦ 6= ∅.

That infRN f = ess infRN f = −∞ is trivial if f−1(−∞) is a (convex) set of posi-
tive measure. On the other hand, if f−1(−∞) is a null set, then f−1(−∞) = ∅, for
otherwise f = −∞ on D◦ by [14, Theorem 7.2], which is not a null set. Thus, from
now on, f is proper.

Since f = ∞ outside D and D has positive measure, ess infRN f = ess infD f .
Also, it is plain that infRN f = infD f . To complete the proof, it suffices to show that
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f (x) ≥ ess infD f for every x ∈ D. This is obvious if x ∈ D◦, since a proper convex
function is continuous on the interior of its domain.

Let then x ∈ D ∩ ∂D. Given y ∈ D◦, the segment (x, y] is entirely contained
in D◦ ([14, Theorem 6.1]) and a (finite) convex function on an interval is upper
semicontinuous on the closure of that interval ([9, p. 16]). Thus,

f (x) ≥ lim sup
z→x,z∈(x,y]

f (z).

As observed earlier, f (z) ≥ ess infD f , since z ∈ D◦, so that f (x) ≥ ess infD f .

4 Common Points of Continuity of Equivalent Quasiconvex
Functions

The equivalence referred to in the section head is equality almost everywhere. A point
of (approximate) continuity of f : RN → R is defined as a point x ∈ f−1(R) such that
f is (approximately) continuous at x. Such points are the points x of (approximate)
continuity of arctan f such that arctan f (x) 6= ± π

2 . Thus, as in the proof of Theorem
3.3, we may and will confine attention to real-valued functions.

Lemma 4.1 Let f , g : RN → R be quasiconvex functions such that f = g a.e., so that
ess infRN f = ess infRN g := m (≥ −∞).

(i) If also infRN f = m and infRN g = m (not a restriction if m = −∞), then f and g
have the same points of continuity, the same points of approximate continuity, and
achieve a common value at such points.

(ii) max{ f ,m} and max{g,m} have the same points of continuity, the same points of
approximate continuity, and achieve a common value at such points.

Proof (i) Let x denote a point of continuity of f , so that for every ε > 0, there is an
open neighborhood U of x such that f (U ) ⊂ [ f (x) − ε, f (x) + ε]. Thus, infU f ≥
f (x) − ε and supU f ≤ f (x) + ε. By Theorem 3.3(i) and (ii), this is the same as
ess infU f ≥ f (x)− ε and ess supU f ≤ f (x) + ε.

Since f = g a.e., the essential extrema are unchanged when f is replaced by g so
that ess infU g ≥ f (x) − ε and ess supU g ≤ f (x) + ε. By using once again Theorem
3.3(i) and (ii), it follows that infU g ≥ f (x) − ε and supU g ≤ f (x) + ε, whence
g(U ) ⊂ [ f (x)− ε, f (x) + ε]. In particular, g(x) ∈ [ f (x)− ε, f (x) + ε]. Since ε > 0
is arbitrary, it follows that g(x) = f (x) and hence that g(U ) ⊂ [g(x) − ε, g(x) + ε],
which proves the continuity of g at x.

In summary, the points of continuity of f are points of continuity of g and g = f
at such points. By exchanging the roles of f and g, the converse is true.

The exact same argument can be repeated for the points of approximate continu-
ity, since Theorem 3.3 is applicable when U is density open.

(ii) Just use (i) with max{ f ,m} and max{g,m}, respectively. Neither quasicon-
vexity nor a.e. equality is affected and

ess inf
RN

max{ f ,m} = ess inf
RN

max{g,m} = m,

so that infRN max{ f ,m} = m = infRN max{g,m} is obvious.
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Lemma 4.1(ii) will now be instrumental in identifying simple necessary and suf-
ficient conditions ensuring that a given point of (approximate) continuity of one
function, say g, is not a point of (approximate) continuity of f .

Theorem 4.2 Let f , g : RN → R be quasiconvex functions such that f = g a.e. so
that ess infRN f = ess infRN g := m (≥ −∞).

(i) If x ∈ RN is a point of approximate continuity of g, then g(x) ≥ m. Furthermore,
x is a point of approximate continuity of g, but not one of f , if and only if m >
−∞, g(x) = m, and x ∈ Fm, a set of measure 0.

(ii) If x ∈ RN is a point of continuity of g, then g(x) ≥ m. Furthermore, x is a point
of continuity of g, but not one of f , if and only if m > −∞, g(x) = m, and
x ∈

⋃
α<m Fα ⊂ Fm, a set of measure 0.

Proof With no loss of generality, assume m > −∞, since, otherwise, everything fol-
lows at once from Lemma 4.1(i). We first justify the statement that Fm and

⋃
α<m Fα

are null sets. Notice that Fm =
⋃
α<m,α∈Q Fα and that each Fα with α < m is a null

set by definition of m. Thus, Fm is a null set and therefore Fm is also a null set since
Fm is convex (see Section 2). Thus,

⋃
α<m Fα ⊂ Fm is a null set.

(i) By contradiction, assume that x is a point of approximate continuity of g and
that g(x) < m. Pick α ∈ R such that g(x) < α < m. By definition of m, the
set Gα := {y ∈ RN : g(y) < α} is a null set. On the other hand, since x ∈
Gα = g−1((−∞, α)), the approximate continuity of g at x implies that Gα is a density
neighborhood of x so that it has positive measure. This contradiction proves that
g(x) ≥ m, as claimed.

Next, let x be a point of approximate continuity of g and hence one of max{g,m}.
By Lemma 4.1(ii), x is a point of approximate continuity of max{ f ,m} and
max{g(x),m} = max{ f (x),m}. Therefore, if g(x) > m or f (x) > m, then g(x) > m
and f (x) > m. To see that x is a point of approximate continuity of f , choose
ε > 0 small enough that m < f (x) − ε and let Iε := ( f (x) − ε, f (x) + ε). Then
(max{ f ,m})−1(Iε) is a density neighborhood Wε of x. From the choice of ε, it is ob-
vious that Wε = f−1(Iε) . Since this is true for every ε > 0 small enough, it follows
that f is approximately continuous at x.

From the above, if x is a point of approximate continuity of g, but not one of f ,
then g(x) = m and f (x) ≤ m. As was seen earlier (with g instead of f ), x is not
a point of approximate continuity of f if f (x) < m. It remains to prove that the
converse is true, i.e., that if f (x) = m, then f is approximately continuous at x.

It suffices to show that if α < m < β and I := (α, β), then f−1(I) is a density
neighborhood of x, i.e., that f−1(I) has density 1 at x (since I is an interval and quasi-
convex functions are measurable, f−1(I) is measurable). Now, max{ f ,m} is approx-
imately continuous at x, whence (max{ f ,m})−1(I) does have density 1 at x. Since
m < β, we may split (max{ f ,m})−1(I) = Fm ∪ E with E := {y ∈ RN : m ≤ f (y) <
β}, and we already know that Fm is a null set. Therefore, E and (max{ f ,m})−1(I)
have the same density at every point of RN . In particular, E has density 1 at x, so that
f−1(I) ⊃ E has density 1 at x, as claimed.

(ii) That g(x) ≥ m follows at once from (i). The proof that x is a point of con-
tinuity of f if it is one of g and either g(x) > m or f (x) > m proceeds as above, by
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merely changing the terminology in the obvious way. Thus, it only remains to show
that if x is a point of continuity of g such that g(x) = m, it is not a point of continuity
of f if and only if x ∈

⋃
α<m Fα.

If f (x) < m, i.e., x ∈ Fm, then by (i) x is not a point of approximate continuity
of f , so it is not a point of continuity of f and x ∈

⋃
α<m Fα, since Fm =

⋃
α<m Fα.

Next, if f (x) ≥ m and x is not a point of continuity of f , then f (x) = m from the
above. To see that x ∈

⋃
α<m Fα, suppose by contradiction that x /∈

⋃
α<m Fα. Let

(xn) be a sequence tending to x and let ε > 0 be given. If n is large enough, then
f (xn) ≥ m − ε, for otherwise there is a subsequence (xnk ) such that xnk ∈ Fm−ε so
that x ∈ Fm−ε, which is not the case. Therefore, lim infn→∞ f (xn) ≥ m− ε.

Since x is a point of continuity of g, it is one of max{g,m}. Thus, from
Lemma 4.1(ii), max{ f ,m} is continuous at x and so limn→∞max{ f (xn),m} =
max{ f (x),m} = m since f (x) = m. It follows that lim supn→∞ f (xn) ≤ m. In
summary,

m− ε ≤ lim inf
n→∞

f (xn) ≤ lim sup
n→∞

f (xn) ≤ m.

Since ε > 0 is arbitrary, lim infn→∞ f (xn) = lim supn→∞ f (xn) = m = f (x). Thus,
f is continuous at x, which is a contradiction.

To complete the proof, suppose that x ∈
⋃
α<m Fα. If f (x) < m, we already know

that f is not continuous at x, so we may assume f (x) ≥ m. Let α < m be such that
x ∈ Fα and let (xn) ⊂ Fα be a sequence tending to x. Since f (xn) < α < m ≤ f (x),
it is obvious that f (xn) does not tend to f (x). This proves that x is not a point of
continuity of f .

Remark 4.3 The above proof shows that in Theorem 4.2(ii), the condition x ∈⋃
α<m Fα is equivalent to the seemingly stronger condition x ∈ F ′m ∩ (

⋃
α<m Fα),

where F ′m := {x ∈ RN : f (x) ≤ m}. Otherwise, a contradiction arises from f
not being continuous at x when x ∈

⋃
α<m Fα and f being continuous at x when

f (x) > m.

For completeness, we give an example when
⋃
α<m Fα 6= Fm.

Example 4.4 In R2 with x = (x1, x2), let f (x) = |x1| if x2 ≥ 0 or if x2 < 0, x1 6= 0
and let f (0, x2) = x2 if x2 < 0. Then f is quasiconvex, m = 0, and

⋃
α<0 Fα =

{0} × (−∞, 0), but F0 = {0} × (−∞, 0]. Observe that f is continuous at (0, 0).
This is no longer true if f is modified by setting f (0, x2) = −1 if x2 < 0, but f is still
approximately continuous at (0, 0).

The next corollary generalizes Lemma 4.1(i). The proof is mostly a rephrasing
of Theorem 4.2. The only extra technicality is to show that if f and g are (approxi-
mately) continuous at the same point x, they must coincide at that point. Since f = g
a.e., this is obvious, but we spell out the argument in the approximately continuous
case: If f (x) 6= g(x), there is a density neighborhood W of x such that f (y) 6= g(y)
for every y ∈ W. Since W has positive measure (Section 2), a contradiction arises
with f = g a.e.
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Corollary 4.5 Let f , g : RN → R be quasiconvex functions such that f = g a.e., so
that ess infRN f = ess infRN g := m (≥ −∞).

(i) Every point of approximate continuity of g is a point of approximate continuity of
f if and only if g has no point of approximate continuity x such that g(x) = m
and f (x) < m (always true if m = −∞). If so, f (x) = g(x) at every point x of
approximate continuity of g.

(ii) Every point of continuity of g is a point of continuity of f if and only if g has no
point of continuity x such that g(x) = m and x = limn→∞ xn where (xn) is a
sequence such that f (xn) < α < m for some α ∈ R and every n ∈ N (always true
if m = −∞). If so, f (x) = g(x) for every point of continuity x of g.

Clearly, infRN f = m ≥ −∞ is only an especially simple special case when the
conditions given in Corollary 4.5(i) and (ii) hold. If also infRN g = m, the roles of
f and g can be exchanged in Corollary 4.5 so that f and g have the same points of
continuity and Lemma 4.1(i) is recovered.
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