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Abstract

Group-testing regression methods are effective for esti-
mating and classifying binary responses and can sub-
stantially reduce the number of required diagnostic tests.
However, there is no appropriate methodology when the
sampling process is complex and informative. In these
cases, researchers often ignore stratification and weights
that canseverelybias theestimatesof thepopulationpara-
meters. In thispaper,wedevelopgroup-testing regression
models for analysing two-stage surveys with unequal
selection probabilities and informative sampling. Weights
are incorporated into the likelihood function using the
pseudo-likelihood approach. A simulation study demon-
strates that the proposed model reduces the bias in esti-
mation considerably compared to other methods that
ignore theweights. Finally, we apply themodel for estimat-
ing the presence of transgenic corn inMexico andwegive
the SAS code used for the analysis.

Keywords: complex survey, group testing, informative
sampling, transgenic corn

Introduction

Group testing is a techniqueused to screen samples for an
attribute when samples are grouped into pools (or
batches), and each pool is tested for the presence of the
attribute; if a pool tests negative, then all samples in the
pool are cleared of having the attribute. When the

proportion of samples with the attribute is less than
10%, group testing is very attractive because it produces
significant savings in the number of diagnostic tests
required and time expended, and helps to preserve the
anonymity of the tested subjects. First used by Dorfman
(1943) for detecting soldiers with syphilis during the
Second World War, group testing has been used to esti-
mate the prevalence of a wide variety of diseases in
humans, animals and plants (Cardoso et al., 1998;
Kacena et al., 1998; Verstraeten et al., 1998;
Muñoz-Zanzi et al., 2000; Tebbs and Bilder, 2004; Chen
et al., 2009). It has also been used for analysing biomarker
data (Delaigle and Hall, 2012), detecting drugs (Xie,
2001), solving problems in information theory (Wolf,
1985) and even in science fiction (Bilder, 2009).

Group-testing regression methods are available for
fixed and mixed (fixed + random) effects (Farrington,
1992; Vansteelandt et al., 2000; Chen et al., 2009). Chen
et al. (2009) presented group-testing regression models
for imperfect diagnostic tests (with sensitivity and specifi-
city of less than 1) with fixed and random effects, which
produce the most accurate estimates when the sampling
process is in clusters. More recently, McMahan et al.
(2013) also provided group-testing regression models for
mixed effects in the presence of dilution effects. Delaigle
andMeister (2011) and Delaigle and Hall (2012) presented
non-parametric group-testing regression models.

All the group-testing regression methods developed
so far are based on the assumption that selection prob-
abilities are the same for all clusters and individuals,
and sampling weights are not required. Thus these
methods are only valid when clusters are of the same
size, and simple random samples of clusters and indi-
viduals are taken. Also, they do not take into account
stratification at the cluster or individual levels. In the
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non-group-testing context for two-level linear (or linear
mixed) and generalized linear mixed models,
Graubard and Korn (1996), Pfeffermann et al. (1998),
Korn and Graubard (2003), Grilli and Pratesi (2004),
and Rabe-Hesketh and Skrondal (2006) discussed the
proper use of sampling weights. However, no work
has been done on incorporating sampling weights in
group-testing regression models. Appropriate group-
testing methodologies for a complex survey can result
in substantial savings without significant loss of preci-
sion and can be used for estimating the prevalence of a
rare attribute, such as transgenic corn or human dis-
eases. For this reason, the aim of the present paper is
to bring together the ideas of Chen et al. (2009) and
Grilli and Pratesi (2004), which means generalizing
the group-testing methodology to take into account
the weights when a two-stage survey is performed,
and we perform an application for detecting and esti-
mating the presence of transgenic corn in Mexico.
Researchers use complex sampling schemes (e.g. two
or three stages with clusters and stratification and
unequal selection probabilities) for collecting corn
plants in a field and, to save resources, they use
group testing on samples containing s plants to deter-
mine whether a transgene is present (Piñeyro-Nelson
et al., 2009). However, due to the lack of an appropriate
methodology for analysing data, they ignore the com-
plex sampling design, which violates the basic assump-
tions underlying multilevel models.

A sampling process is informative when the sam-
pling probabilities are related to the values of the out-
come variable after conditioning on the model
covariates (Pfeffermann et al., 2006). For example,
assume that a two-stage sampling design is used for
estimating the prevalence of transgenic corn in
Mexico with fields as the primary sampling units and
plants as the secondary sampling units. If fields are
sampled with a probability that is proportional to
field size (PPS), the sample of fields will tend to contain
mostly large fields, and if field size is related to preva-
lence but not included among the model covariates, the
sample of fields will not accurately represent the fields
in the population and the sampling is informative
(Pfeffermann et al., 2006). In the context of estimating
transgenic corn in Mexico, this makes sense because
most commercial corn fields are larger and more likely
to contain transgenic corn than non-commercial corn
fields. More examples of an informative sampling
scheme being ignored in the inference process can be
found in Kasprzyk et al. (1989), Skinner et al. (1989)
and Pfeffermann (1993). In general terms, informative
sampling results when the probability density of the
sample data is different from the density of the popu-
lation before sampling. Ignoring the sampling process
in such cases may yield severely biased estimates of
population model parameters, possibly leading to
false inferences.

In theory, the effect of sample selection can be con-
trolled by including all of the design covariates.
However, this is often not practical because the design
variables may not be available or known, or because
theremay be toomany of them,making fitting and valid-
ation of such models a formidable task (Pfeffermann
and Sverchkov, 2007). One approach for dealing with
informative sampling that commonly produces good
results is to include design (sampling) weights to
account for unequal selection probabilities. Because
the weights are incorporated in the likelihood function,
this approach is called pseudo-maximum likelihood
(PML). Another approach for dealing with this prob-
lem is the sample model; it consists of extracting the
model for the sample data given the selected sample
(Pfeffermann et al., 2006). However, with this approach
it is sometimes not possible to extract the probability
density function (pdf) for the sample data. For this rea-
son, the PML approach is still the most popular
approach and produces good results.

Before the PML approach, Grizzle et al. (1969) pro-
posed using weighted least squares (WLS) for estimat-
ing logistic regression model parameters and standard
errors for complex sample survey data (Landis et al.,
1976). However, Binder (1981, 1983) presented the
PML framework for fitting logistic regression and
other generalized linear models to complex sample
survey data as a technique for estimating model para-
meters. The PML approach to parameter estimation
was combined with a linearized estimator of the vari-
ance–covariance matrix for the parameter estimates
that accounted for complex sample design features.
Further development and evaluation of the PML
approach were presented in Roberts et al. (1987),
Morel (1989) and Skinner et al. (1989). The PML
approach is now the standard method for logistic
regression modelling in all of the major software sys-
tems that support the analysis of complex sample sur-
vey data (Heeringa et al., 2010).

The prominent feature of this approach is that it uti-
lizes the sampling weights to estimate the likelihood
equations that would have been obtained in the case
of a census. However, for mixed models, the PML
approach needs the sampling weights for the sampled
elements (level 1) and clusters (level 2). Because level 1
and level 2 weights appear in separate places within
the PML estimator function, it is not sufficient to
know the product of the level 1 and level 2 weights,
as happens in conventional analyses. Also, level 1
weights have to be scaled to produce precise estimates
of the variance components. For this reason, some
rescaling methods have been proposed. Pfeffermann
et al. (1998) and Korn and Graubard (2003), in the con-
text of linear mixed models, point out that scaling the
weights at level 1 produces estimates of the variance
components (particularly the random-intercept vari-
ance) with little bias even in small samples.
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The goal of this paper is to generalize the group-
testing methodology to surveys conducted in two
stages with stratification and different cluster sizes
when sampling is informative. We solve this problem
by using the PML approach and incorporating sam-
pling weights at both levels to estimate the population
likelihood equations that would have been obtained in
the case of a census.

Why is it important to make inferences about the
proportion of transgenic corn?

Mexico is the centre of origin and diversification of
corn and many other plant species. The presence of
transgenes in some corn landraces in Mexico has
been confirmed by some studies (Quist and Chapela,
2001, 2002; Ortiz-García et al., 2005; Dyer et al., 2009;
Piñeyro-Nelson et al., 2009). For this reason, there is
great concern regarding possible gene flow as a result
of outcrossing between transgenic crops and their
landraces and wild relatives. However, the effects of
transgenic maize outcrossing with traditional maize
landraces and wild relatives such as Tripsacum and teo-
cinte are virtually unknown (Hernández-Suárez et al.,
2008). Although some studies have detected the pres-
ence of transgenes in maize landraces in Mexico, an
estimate of the proportion of transgenic corn that is
present in native corn landraces is needed to have a
clear idea of the magnitude of the gene flow through
outcrossing between transgenic crops and native
maize. However, obtaining such an estimate is challen-
ging for three reasons: (1) a diagnostic test is required
to classify each plant as positive or negative; (2) it is
impractical to use simple random sampling since we
do not have a sampling frame for plants; and (3) diag-
nostic tests are expensive. Group testing is an excellent
alternative for avoiding these problems, since instead
of performing individual tests, a diagnostic test is per-
formed on each pool (group of plants), which reduces
the required number of diagnostic tests by 80%.
However, as noted above, existing group-testing meth-
ods are not designed for complex surveys. For this rea-
son, in the present paper we extend the group-testing
methodology to an informative two-stage survey that
takes into account the weights at the cluster and indi-
vidual levels to obtain appropriate estimates of the par-
ameter of interest.

Materials and methods

Sampling design and generalized linear model

Suppose that we have a population of Mh clusters in
strata h (level 2 units, primary sampling units or fields)
with h = 1, 2. By strata we mean the separation of the

total target population into different groups based on
certain categorical variables (i.e. moisture levels, spatial
heterogeneity, fertility levels, regions, type of irrigation
used, type of producer, etc.). These groups should be
as homogeneous as possible, while the population
between strata should be as heterogeneous as possible.
We also define h* as substrata (homogeneous groups)
inside each cluster. Nih elementary units in the ith clus-
ter at the hth strata (level 1 units, subjects or plants) are
sampled following a two-stage sampling scheme. In
the first stage, mh <Mh fields are selected with πih inclu-
sion probabilities (i = 1, 2, . . ., Mh) that are correlated
with the cluster random effect (bi). In the second
stage, nihh* plants are selected within the ith field,
hth strata and substratum h* with probabilities πj|ihh*

(j = 1,2, . . ., Nih) that may be correlated with the out-
comes after conditioning on the regressors xihh*j. Since
the cluster random effect and the response variable
are viewed as random under the model, so are the
selection probabilities under informative sampling.
The unconditional sample inclusion probabilities are
then πihh*j = πj|ihh*πih.

Given that group testing will be used, plants must
be assigned to pools in some way, and each pool is
tested for a transgene. Suppose that nihh* plants from
the ith field, hth strata and substratum h* are random-
ly assigned to one of the gihh* pools, such that there are
sihh*j plants in pool j from field i, hth strata and sub-
stratum h*. Further, let yihh*jk = 1 if the kth plant in
the jth pool from field i, hth strata and substratum
h* is transgenic, and yihh*jk = 0 otherwise, for i = 1, 2, . . .,
mh, j = 1, 2, . . ., gihh* and k = 1, 2, . . ., sihh*j. Since we are
using group testing and will only observe the response
of each pool, we define the random variable Zihh*j = 1, if
the jth pool in the ith field, hth strata and substratum h*
tests positive for transgenes, and Zihh*j = 0 otherwise.
Therefore, the two-level generalized linear mixed
model for the response Zihh*j can be specified with the
linear predictor of a generalized linear mixed model
(Breslow and Clayton, 1993; Rabe-Hesketh and
Skrondal, 2006):

hihh∗jk = b0 + b1xihh∗jk + bi. (1)

Here β0 is the intercept, xihh*jk is a px1 covariate vector
associated with fixed effects at the individual level, β1
is the slope, and bi is the random effect of the ith field
or cluster, which is Gaussian iid with mean zero and
variance s2

b . The conditional distribution of yihh*jk is
Bernoulli (pihh*jk) which, assuming the logit link function
log(pihh∗jk/1− pihh∗jk), gives:

pihh∗jk = pihh∗jk b0,b1,sb
( )

= exp
(
hihh∗jk

)
/
[
1+ exp

(
hihh∗jk

)]
. (2)

Chen et al. (2009) assumed that, conditional on the
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random effect [bi], the probability of a positive pool tak-
ing into account the sensitivity (Se) and specificity (Sp) of
the diagnostic test is given as:

P Zihh∗j = 1 bi|( ) = Se + 1− Se − Sp
( )∏sihh∗ j

k=1

(1− pihh∗jk). (3)

Se is the probability of a positive test given that a plant
is transgenic (i.e. the ability of a test to correctly iden-
tify transgenic plants). Sp is the probability of a nega-
tive test given that the plant is not transgenic (i.e. the
ability of the test to correctly identify non-transgenic
plants). Se and Sp are assumed to be constant and
close to 1.

Incorporating weights in the PML

The PML approach is required when the sampling
mechanism is informative. However, incorporating
weights in the likelihood is complicated by the fact
that the population log-likelihood is not a simple sum
of elementary unit contributions, but rather a function
of sums across level 2 and level 1 units. In addition,
the implementation of the PML approach requires
knowing the inclusion probabilities at both levels.
Using only second-level weights or only first-level
weights may yield poor results (Grilli and Pratesi, 2004).

Now let θ = (β0, β1, σb) denote the vector of all estim-
able parameters. The multilevel likelihood is calculated
for each level of nesting and takes into account the
weights. First, the conditional likelihood for pool j in
field i is given by:

Lij(u bi)= P Zihh∗j=1 bi|( )[ ]Zihh∗ j
∣∣∣ 1−P Zijhh∗ =1 bi|( )[ ] 1−Zihh∗ j( )

where P(Zihh*j = 1|bi) is defined in equation (3). We also
assume two substrata. Next, to obtain the independent
contribution of a field to the likelihood, field-level ran-
dom effects are integrated out, as follows:

Li u( ) =
∫1
−1

∏2
h∗=1

∏gihh∗
j=1

{Lij(u bi)| }w
∗
j ihh∗| w bi

( )
dbi

⎡
⎣

⎤
⎦w

∗
ih

where gihh* is the number of pools in cluster i, strata h
and substrata h*, where w∗

j ihh∗| is the scaled weight for
pool j in stratum h, field i and substratum h*, w∗

ih is
the field weight in stratum h, ϕ(bi) is the N 0, s2

b

( )
,

with the final likelihood being the product of field like-
lihoods:

L =
∏2
h=1

∏mh

i=1

Li u( ).

Finally, combining the expression for all the fields
(clusters), the overall marginal likelihood is

L =
∏2
h=1

∏mh

i=1

∫1
−1

∏2
h∗=1

∏gihh∗
j=1

{Lij(u bi)| }w∗
j ihh∗| w bi

( )
dbi

⎡
⎣

⎤
⎦w∗

ih

. (4)

Here the weights enter the log-pseudo-likelihood as if
they were frequency weights, representing the number
of times that each unit was replicated to estimate the
likelihood that would have been obtained in a census.
However, when survey data have been collected under
a complex sample design, straightforward application
of maximum likelihood estimator (MLE) procedures
is no longer possible, for several reasons. First, the
probabilities of selection of each cluster or individual
are generally no longer equal. Sampling weights are
thus required to estimate the finite population values
of logistic regression model parameters. Second, the
stratification and clustering of complex sample obser-
vations violates the assumption of independence of
observations that is crucial to the standard MLE
approach for estimating the sampling variances of the
model parameters and choosing a reference distribu-
tion for the likelihood ratio test statistic (Heeringa
et al., 2010). Also, when the sampling weights are
related to the values of the model’s outcome variable
after conditioning on the model covariates, sampling
is informative and the observed outcomes are no
longer representative of the population outcomes.
Thus the appropriate model for the sample data is dif-
ferent from the model for the finite population
(Pfeffermann and Sverchkov, 2009).

Also, it is clear from the form of the likelihood
(equation 4) that we cannot simply use one set of
weights based on the overall inclusion probabilities;
instead, we must use separate weights at each level,
which implies that the self-weighting property of
multistage designs is lost. The log-pseudo-likelihood
is given as:

ℓ u( ) =
∑2
h=1

∑mh

i=1

w∗
ih ℓ

2 y 2( ); u
( ) (5)

where ℓ2(y(2);u)=log
{�1

−1exp
[∑2

h∗=1
∑gihh∗

j=1 w
∗
j ihh∗| log

(
Lij

(u bi)| )]w bi
( )

dbi
}
. Maximization of the weighted

log-likelihood (equation 5) involves computing several
integrals that do not have a closed-form solution, so a
numerical approximation technique is required. A stand-
ard solution to this problem is provided by using
Gaussian quadrature (Pinheiro and Bates 2000;
Rabe-Hesketh and Skrondal, 2006). However, since this
method is based on a summation over an appropriate
set of points, it is only efficient when the dimensionality
of the integrals is low. The NLMIXED procedure of SAS
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(SAS, 2014) is a general procedure for fitting non-linear
random effects models using adaptive Gaussian quadra-
ture. For this reason, it will be implemented for maximiz-
ing the expression (equation 5). Another very important
point is that inserting the weights in the log-likelihood
implies using a consistent design estimator of the popu-
lation score function.

The NLMIXED procedure of SAS (2014) has various
optimization techniques to carry out maximization.
The default, used in the simulations below, is a dual
quasi-Newton algorithm, using the Cholesky factor of
an approximate Hessian (SAS, 2014). Although the
NLMIXED procedure does not include an option for
PML estimation, Grilli and Pratesi (2004) show how
to insert level 1 and 2 weights in the likelihood, as
explained in the Illustrative example (Table 7). The
sandwich estimator of the standard errors is provided
in Appendix A.

Probability of selection

As mentioned earlier, when the sampling design is
informative, maximizing the likelihood function given
in equation (4), without weights, to obtain the MLEs
of the parameters of interest may be seriously biased.
For this reason, it is of paramount importance to
incorporate design weights in the likelihood function.
Considering two strata [i.e. M = (M1 +M2)] at the clus-
ter level and that mh clusters from each stratum are
sampled with probabilities that are proportional to
their sizes Nih (number of units in the ith cluster at
the hth strata), then the probability of selection of a
cluster is

pih = mhNih/
∑Mh

i=1

Nih. (6)

Also, assume that in each cluster, the individuals are
classified into two strata [i.e. nihh* = (ni1h* + ni2h*)], h* =
1, 2; and that a number of units nihh* is subsequently
sampled from each cluster at each stratum, which
implies that the probabilities of selection are:

p j ihh∗| = nihh∗/Nihh∗ . (7)

Such designs are self-weighting in the sense that all
units have the same unconditional probability of selec-
tion. As an example of stratification of genetically
modified corn plants, sampling fields at stage 1 could
be stratified by irrigation (yes/no) or producer type
(small or commercial), and while sampling plants at
stage 2, strata could be based on plant or soil character-
istics (e.g. moisture levels, spatial heterogeneity, fertil-
ity levels, etc.), which would correlate with the plant-
level residuals. In this case, the unconditional

probabilities are:

pihh∗j = p j ihh∗| pih = nihh∗mhNih/Nihh∗
∑Mh

i=1

Nih.

‘Raw’ design weights are obtained as the inverse of
the probabilities of selection (wih = 1/πih, wj|ihh* = 1/πj|ihh*

and wihh*j = 1/πihh*j). However, these ‘raw’ weights need
to be scaled to be used under a mixed model approach
to avoid significant bias in the parameter estimates
(Pfeffermann et al., 1998). For this reason, some scaling
methods have been proposed. In general, most scaling
methods produce better estimates than unweighted
analyses. However, for the purpose of this research,
we only consider three methods of scaling, which are
reported as providing the least biased estimates in gen-
eral. Due to the two-stage sampling process, we will
have scaled weights for the two levels.

Level 1 scaling methods

Pfeffermann et al. (1998) and Korn and Graubard
(2003) showed that scaling the weights is very import-
ant to obtain estimates with little bias even in small
samples. However, they also state that it is not relevant
for cluster weights, since multiplying the log-likelihood
by a constant does not change the PML estimates
(it simply inflates the information matrix by that
constant). However, scaling level 1 weights on the
small sample behaviour of the PML estimator is vital
(Grilli and Pratesi, 2004). The most popular types
of scaling are method A (or type 2), method B (or
type 1) (Pfeffermann et al., 1998; Grilli and Pratesi,
2004; Rabe-Hesketh and Skrondal, 2006) and method
D (Rabe-Hesketh and Skrondal, 2006). These three
types of scaling methods are used in the simulation
study (see below). At level 1 (elementary units)
under method A (type 2), the scaled weight is obtained
as:

w∗
j|ihh∗ = wj|ihh∗/�wj|ihh∗ (8)

where �wj ihh∗| =
∑

j
wj ihh∗|
ni

and ni is the number of sample
units in cluster i. With this scaling method, the new
within-cluster weights add up to the cluster sample
size

∑
j w

∗
j ihh∗| = ni. The scaled weight for method B

(type 1) for level 1 is given by:

w∗
j|ihh∗ = wj|ihh∗/n∗i (9)

where n∗i is the effective cluster sample size for cluster i,

n∗i =
∑

j
w2

j ihh∗|∑
j
wj ihh∗|

. With this scaling method, the new

within-cluster weights add up to the effective cluster
sample size n∗i . Simulations in Pfeffermann et al.
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(1998) suggest that method B works better than
method A for informative weights. Such a scaling fac-
tor was also used by Clogg and Eliason (1987) in a dif-
ferent context. Instead of scaling the level 1 weights,
Graubard and Korn (1996) suggest a ‘method D’
which does not use any weights at level 1. This method
D scales cluster weights as:

w∗
ih =

∑nih
j=1

wj|ihh∗ wih,

and level 1 weights are w∗
j ihh∗| = 1. This method seems

appealing for pooled samples because we are mixing
the information of s individuals. This implies that
the weight of the pool is not required. Korn and
Graubard (2003) pointed out that moment estimators
of the variance components using these weights are
approximately unbiased under non-informative sam-
pling at level 1. The three methods proposed have
an intuitive meaning, but do not always produce
good results (Pfeffermann et al., 1998). Also, it is
important to recall that we have conditional weights
(wj|ihh*) at the individual level; however, since we
are pooling the material of s plants per pool, the
weights for each pool can be incorporated in three
ways: using the average weight of the individuals
forming a particular pool, using the individual
weights or using the sum of the s individual weights
to form the pool weight.

Examples

Simulation example

A Monte Carlo experiment was carried out to assess
the performance of PML estimation and the sandwich
estimator under group testing. This experiment
reflected the two-stage scheme explained above. First,
finite population values with dichotomous responses
were generated from the two-level superpopulation
model with linear predictor ηij = β0 + bi, with i = 1,2,. . .,
M; bi � N 0,s2

b

( )
, response variable Yij|bi � binary pi

( )
,

j = 1,2, . . ., Ni; and logit link log pi
1−pi

( )
; we used β0

=−4.4631, s2
b = 0.9888 as our true model parameter

values. Therefore, we simulated the individual
responses, Yij, according to a Bernoulli distribution
with mean pi = 1/(1 + exp(− β0− bi). There were M =
300 clusters (level 2 units) that composed the finite
population. These clusters were stratified into two
strata by generating a normal random variable,
ai � N(0, 1), independent of Yij, from which, if |ai| >1,
cluster i was assigned to stratum 1, and to stratum 2
otherwise. This stratification of clusters resulted in 83
clusters belonging to stratum 1 and 217 to stratum 2.
The size of each cluster (Nih) was determined by

Nih = 350 exp b̃i
( )

, with b̃i generated fromN 0,s2
b

( )
, trun-

cated below by− 0.1σb and above by 0.3σb. Therefore, the
values of Ni in our finite population have a mean of
389.89 and a range between 317 and 472 individuals.
We adopted an informative sampling process at both
levels. For this reason, mh clusters were selected with a
probability proportional to a ‘measure of size’ Xih, i.e.
pih = mhXih/

∑Mh
i=1 Xih, where the measured Xih was

determined in the same way as Nih but with b̃i replaced
by bi, the random effect at level 2. Also, the individuals
in each cluster were partitioned into two individual
level strata such that if exp (1.6 + 0.1 *Yij + eij) > 5.73, the
individual was assigned to stratum 1; otherwise it was
assigned to stratum 2, where eij ≈ Gamma 1, 0.16( ).
Simple random samples were selected of 0.5nih1 and
0.5nih2 from the respective strata. The variable Xih was
used instead of the variable Nih (in equation 6) and
stratification at the individual level was performed to
simulate a sampling process that is informative at both
levels. It is important to point out that if we want an
experiment that is informative only at level 2 (cluster
level), stratification at level 1 (individual level) is not
required. However, if we desire a process that is not
informative, we need to use Nih = 350 exp d̃i

( )
instead

of Xih (equation 6), where d̃i is generated from N(0,1),
truncated below by−0.1 and above by 0.3, and stratifica-
tion at the individual level is not required.

To gain a clear understanding of the role of
weighting methods in the accuracy of the results,
six estimation methods were used for each simulated
data set: (1) unweighted maximum likelihood; (2)
PML using raw weights at the cluster level; (3) PML
using raw weights at both levels; (4) PML using raw
weights at the cluster level and scaling method A at
the individual level; (5) PML using raw weights at
the cluster level and scaling method B; and (6) PML
using method D that only uses weights at the cluster
level.

A two-stage sampling design for the finite popu-
lation was implemented. In Table 1 (without covari-
ates) and Table 2 (with a covariate), 100 individuals
were selected from each cluster using stratified ran-
dom sampling (50 from stratum 1 and 50 from stra-
tum 2), and we used 24 clusters (8 from stratum 1
and 16 from stratum 2). In Table 3, we compared
three sample sizes at individual levels (40, 80 and
120) per cluster with 24 clusters (8 from stratum 1
and 16 from stratum 2). The pools were formed
with the individuals inside each cluster. For each
combination of level 1 (plants) and level 2 (fields
or cluster) samples, we simulated 600 data sets and
estimated parameters using the weighting methods
proposed. We observed that the sampling fraction
at cluster level was 0.25 for stratum 1 and 0.75 for
stratum 2. Computations were mostly performed in
NLMIXED of SAS 9.4.
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Table 1. Comparison of informative sampling at both levels, at the cluster level and at the individual level, and non-informative
sampling. Simulation means and standard deviations (Std) of point estimators of the intercept (β0 =−4.4631 true value) and the
second-level standard deviation (σb = 0.9944 true value). Cluster sample m = 36 (12 from stratum 1 and 24 from stratum 2) under
PPS. Elementary unit size nj = 100 (50 from stratum 1 and 50 from stratum 2) under SRS. Pool size (s). 600 simulations were per-
formed for each scenario. Method 1: unweighted maximum likelihood; method 2: PML using raw weights at the cluster level;
method 3: PML using raw weights at both levels; method 4: PML using raw weights at the cluster level and scaling Method
A at the individual level; method 5: PML using raw weights at the cluster level and scaling method B; and method 6: PML
using method D with weights at the cluster level

Weighting method

s Parameter 1 2 3 4 5 6

Informative at both levels 1 β0 Mean −3.3529 −4.362 −4.8967 −4.46 −4.4484 −4.3549
σb Mean 1.0187 1.0032 1.5317 0.983 0.9712 0.9929
β0 Std 0.1709 0.4276 0.6816 0.4143 0.4093 0.4347
σb Std 0.1349 0.2602 0.5198 0.2451 0.24 0.2635
β0 Std/SE 0.8134 1.1188 1.1322 1.1152 1.1153 1.1377
σb Std/SE 0.9048 1.0673 1.1126 1.0597 1.0568 1.0821

5 β0 Mean −3.3823 −4.3608 −4.8995 −4.4605 −4.4485 −4.3542
σb Mean 0.9398 0.9545 1.5111 0.9312 0.9179 0.9452
β0 Std 0.1656 0.4244 0.6779 0.4111 0.4061 0.4316
σb Std 0.1408 0.2712 0.5207 0.2579 0.2531 0.2741
β0 Std/SE 0.8170 1.1201 1.1327 1.1171 1.1169 1.1394
σb Std/SE 0.9604 1.0831 1.1169 1.0832 1.0802 1.0951

10 β0 Mean −3.428 −4.3632 −4.9066 −4.4665 −4.4538 −4.3563
σb Mean 0.8637 0.8854 1.4927 0.8657 0.848 0.872
β0 Std 0.1611 0.4192 0.6727 0.4059 0.4013 0.4269
σb Std 0.156 0.2947 0.5199 0.278 0.2775 0.3066
β0 Std/SE 0.8296 1.1194 1.1317 1.1148 1.1160 1.1417
σb Std/SE 0.9836 1.1042 1.1176 1.0893 1.0955 1.1445

Informative at the cluster level 5 β0 Mean −3.626 −4.5247 −5.0152 −4.4988 −4.4988 −4.5152
σb Mean 0.8593 0.9554 1.62 0.9515 0.9515 0.9437
β0 Std 0.1588 0.4561 0.8319 0.454 0.454 0.4592
σb Std 0.1463 0.3044 0.6548 0.3032 0.3032 0.3076
β0 Std/SE 0.7956 1.1701 1.2487 1.1671 1.1671 1.1829
σb Std/SE 0.8936 1.1970 1.2705 1.1942 1.1942 1.2120

10 β0 Mean −3.626 −4.5724 −5.0325 −4.5142 −4.5142 −4.5605
σb Mean 0.8593 0.8789 1.5884 0.8694 0.8694 0.848
β0 Std 0.1588 0.4499 0.8211 0.4474 0.4474 0.4569
σb Std 0.1463 0.3213 0.6488 0.3262 0.3262 0.3618
β0 Std/SE 0.8045 1.1738 1.2460 1.1685 1.1685 1.2005
σb Std/SE 0.9242 1.1896 1.2694 1.1927 1.1927 1.3253

Informative at the individual level 5 β0 Mean −4.3489 −4.3611 −4.8936 −4.4586 −4.4459 −4.3538
σb Mean 0.9054 0.9151 1.5096 0.8828 0.8653 0.9059
β0 Std 0.2277 0.2312 0.3471 0.2278 0.2258 0.23
σb Std 0.2484 0.2548 0.303 0.2707 0.2765 0.2573
β0 Std/SE 0.9309 0.9270 0.9371 0.9283 0.9285 0.9353
σb Std/SE 1.1723 1.1758 0.9844 1.2349 1.2444 1.2023

10 β0 Mean −4.3555 −4.3666 −4.9 −4.4679 −4.4548 −4.3602
σb Mean 0.8472 0.8556 1.4921 0.8256 0.8055 0.8478
β0 Std 0.2239 0.2275 0.3456 0.2242 0.222 0.2269
σb Std 0.2599 0.2659 0.3059 0.2797 0.2851 0.2661
β0 Std/SE 0.9325 0.9290 0.9399 0.9295 0.9293 0.9392
σb Std/SE 1.1862 1.1849 0.9951 1.2338 1.2472 1.1938

Non-informative 5 β0 Mean −4.5074 −4.5198 −4.9846 −4.494 −4.494 −4.5134
σb Mean 0.8978 0.9105 1.5979 0.9053 0.9053 0.9022
β0 Std 0.2433 0.2473 0.3943 0.2464 0.2464 0.246
σb Std 0.2602 0.2647 0.3292 0.268 0.268 0.2662
β0 Std/SE 0.9716 0.9668 0.9707 0.9633 0.9633 0.9735
σb Std/SE 1.1930 1.1897 0.9847 1.2023 1.2023 1.2062

10 β0 Mean −4.5564 −4.5677 −5.0017 −4.5105 −4.5105 −4.5622
σb Mean 0.8332 0.8432 1.5727 0.8338 0.8338 0.8378
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Estimating the proportion of transgenic corn in maize
landrace accessions

A data set provided by one of the authors of the pre-
sent paper was used for the application. The objective
of this study was to estimate the adventitious presence
of GMOs (transgenic corn) at the Mexico’s National
Genetic Resources Center in the region of
Guanajuato, Mexico. This study is very important for
reducing the risk of unknowingly storing maize land-
race accessions with the adventitious presence of
GMOs. Since it was not possible to do a census, a sam-
ple of 193 accessions of subtropical landraces was

studied. However, weights at the cluster level (acces-
sion) were not obtained since these data were original-
ly obtained under simple random sampling (SRS), but
for purpose of the application we constructed the
weight of each accession proportional to the accession’s
native area. Each accession was grown under field con-
ditions at Celaya Experiment Station (Guanajuato,
Mexico) of Mexico’s National Forestry, Agricultural,
and Livestock Research Institute (INIFAP) during the
summer of 2012. Each accession consisted of 7 rows
with 40 plants each. Then 3 of the 7 rows were selected
at random; leaf tissue from each plant in these rows
was harvested before anthesis. Forty leaf discs were

Table 1. Continued

Weighting method

s Parameter 1 2 3 4 5 6

β0 Std 0.2398 0.2438 0.3897 0.2429 0.2429 0.2418
σb Std 0.2642 0.2693 0.3241 0.2806 0.2806 0.2661
β0 Std/SE 0.9780 0.9736 0.9687 0.9689 0.9689 0.9766
σb Std/SE 1.1758 1.1729 0.9783 1.2017 1.2017 1.1666

Table 2. Simulation means and standard deviations (Std) of the model with a covariate at the individual level (β0 =−4.7598, β1 =
0.8290 and σb = 0.9820 true values). Cluster sample m = 24 (8 from stratum 1 and 16 from stratum 2) under PPS. Elementary unit
size nj = 100 (50 from stratum 1 and 50 from stratum 2) under SRS. Pool size (s). 600 simulations were performed for each scen-
ario. Method 1: unweighted maximum likelihood; method 2: PML using raw weights at the cluster level, method 3: PML using
raw weights at both levels; method 4: PML using raw weights at the cluster level and scaling method A at the individual level;
method 5: PML using raw weights at the cluster level and scaling method B; and method 6 PML using method D with weights at
the cluster level

Weighting method

s Parameter Estimate 1 2 3 4 5 6

1 β0 Mean −3.6895 −4.6399 −5.2553 −4.7382 −4.7253 −4.6362
β1 Mean 0.8444 0.8223 0.8391 0.8225 0.8222 0.8266
σb Mean 0.9494 0.9731 1.568 0.9395 0.9267 0.9722
β0 Std 0.2301 0.5562 0.9252 0.538 0.5298 0.556
β1 Std 0.1297 0.199 0.2064 0.2004 0.1993 0.2002
σb Std 0.1806 0.3389 0.6829 0.3263 0.3191 0.3513

5 β0 Mean −3.7669 −4.678 −5.9855 −4.684 −4.6393 −4.6657
β1 Mean 0.9157 0.8185 0.8073 0.8278 0.8276 0.8228
σb Mean 0.8888 0.9227 0.7719 0.9127 0.8822 0.8817
β0 Std 0.249 0.5762 0.5789 0.5751 0.5765 0.5789
β1 Std 0.2589 0.4308 0.4075 0.436 0.4352 0.4335
σb Std 0.1853 0.3514 0.4974 0.3519 0.3947 0.4264

10 β0 Mean −3.8508 −4.7389 −6.0572 −4.7451 −4.7061 −4.7233
β1 Mean 0.9309 0.7341 0.7198 0.7359 0.737 0.7252
σb Mean 0.8084 0.8445 0.7068 0.8028 0.7964 0.7901
β0 Std 0.3006 0.6063 0.5992 0.6092 0.6069 0.6128
β1 Std 0.4554 0.734 0.7109 0.7493 0.75 0.7447
σb Std 0.2064 0.3904 0.4948 0.4257 0.425 0.4688
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collected from each plant and pooled (bulked) by row.
In group testing notation this means that the pool size
was 40 plants and that 3 pools were analysed for each
accession. This pool size was chosen based on tests
performed in the laboratory. The resulting pool of
tissue samples was ground with liquid nitrogen and
pulverized prior to deoxyribonucleic acid (DNA) extrac-
tion, which was performed according to the protocol of
Saghai-Maroof et al. (1984), with the addition of 1%
polyvinyl pyrrolidone (PVP) to the cetyltrimethylam-
monium bromide (CTAB) buffer. DNA quality was
checked and concentrations were adjusted to 10 ng μl−1.
Detection of the 35S promoter was carried out with
the TaqMan® GMO Maize 35S Detection Kit from
Life Technologies (Thermo Fisher Scientific, Waltham,
Massachussetts, USA) following the manufacturer’s
recommendations. We considered a pool to be positive
(presence of the 35S promoter in the tested pool) when
both the endogenous gene and the 35S gene were amp-
lified in the sample, the amplification curve had a Ct
value between 20 and 30, and the amplification curve
presented the three typical phases: exponential, linear
and plateau. Also, each pool was tested with polymer-
ase chain reaction (PCR) in real time for the amplifica-
tion of the α-zein gene, but here we only report the
analysis for the presence of the 35S promoter. It is
important to point out that we are interested in esti-
mating the proportion of the adventitious presence of
GMOs (transgenic corn) in the native maize landrace
accessions currently stored in Mexico’s National
Genetic Resources Center in Guanajuato, Mexico.

Results

Simulation study

Results of the simulation with and without covariates
are given in Tables 1–3. Without covariates, the true
values of the parameters are β0 =−4.4631 and
s2
b = 0.9888. We reported the mean and standard

deviations for the estimated parameters resulting
from the 600 simulations.

For a sample of 36 clusters, Table 1 (informative at
both levels) shows that ignoring the weights at both
levels (method 1) produced a considerable overesti-
mation of the β0 parameter, and an underestimation
of the second-level standard deviation (σb). Method 3,
using raw weights at both levels, underestimated the
fixed parameter, β0, and significantly overestimated
the second-level standard deviation (σb). However,
using only raw weights at the cluster level and no
weighting at the individual level (method 2) overesti-
mated β0 and underestimated σb, but to a lesser degree
than ignoring the two weights (method 1). Scaling the
weights produces better results than method 1 (ignor-
ing the weights) and method 3 (raw weights at both
levels). Method 2 and the three scaled methods 4, 5
and 6 generally produce the least biased results of all
methods. Estimates of β0 were reasonable and very
close to the true values, but σb was still underestimated.
Using a sample of 48 clusters, there is no clear
improvement in the parameter estimates compared to
using a sample of 36 clusters (data are not shown).

Table 3. Comparison using three different elementary unit sizes (nj) selected under SRS. Simulation means and standard devia-
tions (Std) of point estimators of the intercept (β0 =−4.4631 true value) and the second-level standard deviation (σb = 0.9944 true
value). Cluster sample m = 24 (8 from stratum 1 and 16 from stratum 2) under PPS. Pool size (s). 600 simulations were performed
for each scenario. Method 4: PML using raw weights at the cluster level and scaling method A at the individual level; method 5:
PML using raw weights at the cluster level and scaling method B; and method 6: PML using method D with weights at the clus-
ter level

nj = 40 nj = 80 nj = 120

Weighting methods Weighting methods Weighting methods

s Parameter Estimate 4 5 6 4 5 6 4 5 6

1 β0 Mean −4.450 −4.429 −4.367 −4.483 −4.468 −4.388 −4.4727 −4.4614 −4.3645
σb Mean 0.969 0.948 0.998 1.002 0.988 1.020 1.0093 0.9981 1.0159
β0 Std 0.609 0.599 0.641 0.536 0.528 0.561 0.5301 0.5232 0.5413
σb Std 0.390 0.385 0.417 0.333 0.326 0.353 0.3213 0.3144 0.339

5 β0 Mean −4.426 −4.403 −4.342 −4.477 −4.462 −4.381 −4.477 −4.466 −4.367
σb Mean 0.841 0.809 0.880 0.933 0.916 0.951 0.9577 0.945 0.966
β0 Std 0.602 0.592 0.637 0.530 0.522 0.557 0.5225 0.516 0.535
σb Std 0.452 0.454 0.477 0.351 0.345 0.380 0.3307 0.324 0.352

10 β0 Mean −4.413 −4.389 −4.322 −4.477 −4.461 −4.376 −4.483 −4.471 −4.371
σb Mean 0.690 0.648 0.734 0.847 0.825 0.849 0.888 0.873 0.892
β0 Std 0.591 0.579 0.627 0.526 0.517 0.554 0.517 0.511 0.529
σb Std 0.531 0.527 0.548 0.394 0.390 0.442 0.359 0.353 0.385
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Table 1 also shows that the ratio of the standard devi-
ation of the parameter estimates in the simulation of
the average standard errors converges to 1, which is
expected when the sample size is large; this implies
that the sandwich estimator is correct. Based on these
results, scaled weights decreased the bias in the estima-
tion of both parameters compared to no scaling; how-
ever, even when the weights were scaled, the results
were biased, but to a much lesser degree. Also, using
group testing produced results as precise as those of
individual testing, but with the advantage that it con-
siderably reduce the number of required diagnostic
tests.

When the design is informative only at the cluster
level (Table 1), method 1 produced highly biased
results (serious overestimation of β0 and underestima-
tion of σb). Using the raw weights at both levels is not
recommended because the estimates are still highly
biased (Table 1). When only the raw cluster weights
(method 2) are included, there is still considerable
bias, and using scaled weights at the individual
level and raw weights at the cluster level (methods 4
and 5) produced almost identical results and with
small bias. This implies that using scaled weights is
preferable.

When the design is informative only at the individ-
ual level (Table 1), using the raw weights (method 3) is
not a good choice because the results still are highly
biased. However, methods 1, 2, 4, 5 and 6 produced
results with small bias (Table 1). This can be attributed
to the way the informative sampling process was

induced at each level. On the subject of regression of
binary responses in a two-stage sampling, Grilli and
Pratesi (2004) reported that when the sampling process
is informative at the individual level, it is important to
incorporate scaled weights. However, in their simula-
tion they used β0 = 0 and a second-level standard devi-
ation of 0.632 with the probit link.

When the sampling process is not informative,
Table 1 shows that method 3 (raw weights at both
levels) again underestimates β0 and overestimates σb.
However, methods 1, 2, 4, 5 and 6 produced estimates
of both parameters that are very close to the true values
of β0 and σb, which corroborates that when the sam-
pling process is not informative, weights are not
required. In general, method 4 produced the best
results.

For a fixed sample of clusters (Table 3, m = 24), we
studied the behaviour of the parameter estimates (β0
and σb) for three different sample sizes at the individ-
ual level (ni). Both parameters are considerably biased
even with individual testing when the number of indi-
viduals per cluster is equal to ni = 40. A considerable
improvement occurs when the number of individuals
per cluster is equal to ni = 80. In this scenario, the esti-
mate of β0 is close to the true value, but the estimate
of the second-level standard deviation is still biased
with group testing, and the problem is even worse
when pool size s = 10. Finally, using 120 individuals
per cluster produces less biased results than using 40
or 80, but the second-level standard deviation is still
underestimated when using group testing.

Table 4. Population data including two regions, eight fields (clusters) and two strata per field (fertility levels, FL). The binary
response of each plant is y, nihh* denotes total plants per combination of region, field and FL, Nih denotes total plants per
field in each stratum and Nh denotes total plants per region

Region Field FL Binary response (y) Nihh* Nih Nh

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 13
1 1 2 0 0 0 0 0 0 0 0 0 . . . . 9 22
1 2 1 0 0 0 1 0 0 0 0 1 0 . . . 10
1 2 2 0 0 0 0 0 0 0 0 . . . . . 8 18
1 3 1 0 0 0 0 0 0 0 0 . . . . . 8
1 3 2 0 0 0 0 0 1 0 0 0 0 0 0 0 13 21
1 4 1 0 0 0 0 0 0 0 0 0 0 0 0 . 12
1 4 2 0 0 0 0 0 0 0 0 0 0 0 . . 11 23 84
2 5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 13
2 5 2 0 0 0 0 0 0 . . . . . . . 6 19
2 6 1 0 0 0 0 0 0 0 0 0 0 0 . . 11
2 6 2 0 0 0 0 0 0 0 0 0 . . . . 9 20
2 7 1 0 0 0 0 0 0 0 . . . . . . 7
2 7 2 0 0 0 0 0 0 0 0 0 0 0 0 . 12 19
2 8 1 0 0 0 0 0 0 0 0 . . . . . 8
2 8 2 0 0 0 0 0 0 0 0 0 0 0 0 0 13 21 79

Total plants 163 163 163
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Results from simulations used to study the perform-
ance of the model with a covariate at the individual
level are given in Table 2. The model is the same as
the model given in equation (1) described above,
except that to include a covariate at the individual
level, we generated data from a normal distribution
with mean zero and variance 0.64, and used values
of β0 =−4.7598, β1 = 0.8290 and σb = 0.9820 (the code
for the analysis is given in Appendix B). Table 2 indi-
cates that the use of scaled weights (methods 4, 5 and
6) is effective for removing bias due to informative
sampling. However, it is important to point out that
the results are somewhat more biased than in the no
covariate case. In general, the overall performance of
the scaled weights is satisfactory.

Illustrative example

To illustrate the implementation of the analysis using
NLMIXED of SAS 9.4, we present simulated data for
a finite population of eight clusters within two regions
(strata) and two substrata [which could be the fertility
levels (FL) in each field]. On a smaller scale, these
population data represent a typical population in
which we can use PPS and stratified sampling for
selecting the study units (Table 4). This population
has a total of 163 plants distributed in 16 subgroups
derived by combining region, field and FL levels. The
total number of plants per region, field and subgroups
are also given in Table 4.

Suppose that a stratified sampling of two fields
within each region and stratified sampling within
each field at a fixed sample size of six plants per stra-
tum are selected (πih = 2Nih/Nh, πj|ihh* = 6/Nihh*), where
Nh =

∑Mh
i=1 Nih. Table 5 shows the sample that resulted

from using this sampling procedure. Note that the total
sample size is equal to 48 plants, which is obtained by
multiplying 2 regions × 2 fields × 2 FL × 6 plants. First
we will explain how the field raw weights are calcu-
lated. In Table 4 we see that the total number of plants
in region 1 is N1 = 84, while the total numbers of plants

in clusters 2 and 3 are N21 = 18 and N31 = 21, respective-
ly. Therefore, the selection probabilities
are p21 = 2 18( )

84 = 0.4286, p31 = 2 21( )
84 = 0.5 and the corre-

sponding sampling weights are w21 = 1
0.4286 = 2.33 and

w31 = 1
0.5 = 2.0. The remaining weights for the other

fields are calculated in a similar manner.
The conditional raw weights for each plant in the

first row in Table 5, corresponding to region 1, field 2
and FL = 1, are calculated as follows. Here N211 is the
total number of plants per combination of field 2,
region 1, and FL 1, which is equal to 10 (see Table 4).
Therefore, pj 211| = 6

10 = 0.6, and wj 211| = 1
0.6 = 1.67.

For the conditional weight of the second row in
Table 5, N212 = 8 (corresponding to field 2, region 1
and FL 2). Therefore, pj 212| = 6

8 = 0.75, and
wj 212| = 1

0.75 = 1.33. To verify that the calculations
of the raw weights are correct, it is important to
calculate the raw unconditional weight of each
individual, which is the product of the raw cluster
weight multiplied by the conditional raw weights
(wijhh∗ = wih ∗ wi ihh∗| ), and the sum of the individual
total weights should be exactly (or very close to) the
total number of individuals in the population. In this
example, each calculated weight given in Table 5 is
for six individuals in the sample, since the six plants
that appear in each row of Table 5 have the same
weight. This means that the sum of the unconditional
raw weights (wijhh*) should be 163 (the total number
of individuals in the population given in Table 4),
and the unconditional raw weights for each row in
Table 5 should be multiplied by 6 (last column of
Table 5), since our total sample size is 48 individuals.
Therefore, by obtaining the sum for the last column
in Table 5, we verified that the sum is exactly 163.
For more details on how to calculate raw weights,
the reader should consult Lohr (2010) since the calcula-
tion of these weights is done using conventional
methods.

Since raw conditional weights are not the best
option, as was observed previously, we will now
show how to scale the weights. For scaling method A

Table 5. Sample obtained by taking two fields within each region under PPS and doing stratified sampling within each field
using a fixed sample size of six plants per stratum under SRS

Region Field FL wih wj|ihh** wijhh* awj|ihh* bwj|ihh* dwih Response per plant (y) 6*wj|ihh*

1 2 1 2.33 1.67 3.89 1.11 1.10 42 0 0 1 0 0 1 23.3
1 2 2 2.33 1.33 3.11 0.89 0.88 42 0 0 0 0 0 0 18.67
1 3 1 2.00 1.33 2.67 0.76 0.72 42 0 0 0 0 0 0 16.00
1 3 2 2.00 2.17 4.33 1.24 1.17 42 0 0 0 1 0 0 26.00
2 5 1 2.08 2.17 4.50 1.37 1.20 39.5 0 0 0 0 0 0 27.03
2 5 2 2.08 1.00 2.08 0.63 0.56 39.5 0 0 0 0 0 0 12.47
2 6 1 1.98 1.83 3.62 1.10 1.09 39.5 0 0 0 0 0 0 21.72
2 6 2 1.98 1.50 2.96 0.90 0.89 39.5 0 0 0 0 0 0 17.78
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(awj|ihh*), first we obtain the average of the raw condi-
tional weights (wj|ihh*) in each cluster; then we divide
each conditional weight by this average. For example,
for field 2, the average conditional raw weight is
equal to 6∗1.67+6∗1.33

12 = 1.5 (this was calculated as a
weighted average since 6 elements of each stratum in
each cluster have the same weights). Therefore, the
scaled weight using this method for the first condi-
tional weight (row 1 in Table 5) is equal to
awj 211| = 1.67

1.5 = 1.11. The corresponding conditional
scaled A weight for the second row is equal to
awj 212| = 1.33

1.5 = 0.89. The conditional scaled A weights
for the other observations in the sample are obtained
in exactly the same way. One way to check that these
scaled conditional A weights are correct is that the
sum of scaled conditional A weights in each cluster
must be the same as the obtained sample size in each
cluster (in this case, 12; for field 2 this is equal to
[6(1.11) + 6(0.89)] = 12), and the sum of all the scaled
weights must be the same as the total sample size
(in this case, 48).

To obtain the conditional scaled B weights, we must
first calculate the sum of all the conditional raw

weights (
∑

j wj/ihh∗), then obtain n∗i =
∑

j
w2

j ihh∗|∑
j
wj ihh∗|

and,

finally, the scaled B weights as w∗
j ihh∗| = wj ihh∗| /n∗i .

For cluster two,
∑

j wj 211| = 6 ∗ 1.67+ 6 ∗ 1.33 = 18
and

∑
j w

2
j 211| = 6 ∗ 1.672 + 6 ∗ 1.332 = 27.35; then

n∗2 = 27.35
18 = 1.52. Therefore, bwj 211| = 1.67

1.52 = 1.10, while
bwj 212| = 1.33

1.52 = 0.88. Finally, the scaled D weights are
obtained as w∗

ih =
∑ni

j=1 wj ihh∗| wih. For field 2, this is
equal to dw21 = 6*1.67*2.33 + 6*1.33*2.33 = 42. Scaled
method D is calculated in the same way for the other
clusters.

Now we have the complete sample (48 plants) and
its corresponding weights. Since we will use group
testing to classify the plants (positive or negative), we
will form pools of size 3 at random in each cluster.
For simplicity, let’s assume that from each row (con-
taining 6 plants) in Table 5 we form two pools; the
first three plants go to pool 1, the second three to
pool 2, and so on. Since we are forming the pools
with the elements of the subgroup that resulted from
the combination of region, field and FL, we will get
exactly the same estimates if we use the average (of
the three weights that form each pool) or individual
weights. However, since we can form pools of size s
at random with the elements of each cluster, this
means that the weights in each pool are not always
the same. Therefore, in Table 6 we present the data
including the results in terms of pools and the average
weights for each method. Here, of course, we are
assuming that the diagnostic test used to classify
each pool is perfect (Se = Sp = 1). In Table 6, we show
how to arrange the data resulting from any two-stage
stratified cluster survey for analysis using group
testing.

For analysis, the data should be prepared as in
Table 6. That is, we need a column for region, a column
for field (cluster), a column for FL, a column for the
pool number (from 1 to 16 in this case), a column for
the binary response of each pool (yp), a column for
the level 1 raw conditional weight by pool (wijp), a col-
umn for the level 2 raw weight (wip) and three more
columns for the scaled weights in terms of pools
(awp, bwp and dwp). All different weights given in
Table 6 are in terms of pools because the average of
the three weights is used. Note that the finite popula-
tion contains 8 clusters (fields 1 to 8), but in this sample
only 4 of the 8 were selected: 2, 3, 5 and 6. We are

Table 6. Sample prepared in terms of pools for analysis

Region Field FL Pool yp wijp wip awp bwp dwp

1 2 1 1 1 1.67 2.33 1.11 1.10 42.00
1 2 1 2 1 1.67 2.33 1.11 1.10 42.00
1 2 2 3 0 1.33 2.33 0.89 0.88 42.00
1 2 2 4 0 1.33 2.33 0.89 0.88 42.00
1 3 1 5 0 1.33 2.00 0.76 0.72 42.00
1 3 1 6 0 1.33 2.00 0.76 0.72 42.00
1 3 2 7 0 2.17 2.00 1.24 1.17 42.00
1 3 2 8 1 2.17 2.00 1.24 1.17 42.00
2 5 1 9 0 2.17 2.08 1.37 1.20 39.50
2 5 1 10 0 2.17 2.08 1.37 1.20 39.50
2 5 2 11 0 1.00 2.08 0.63 0.56 39.50
2 5 2 12 0 1.00 2.08 0.63 0.56 39.50
2 6 1 13 0 1.83 1.98 1.10 1.09 39.50
2 6 1 14 0 1.83 1.98 1.10 1.09 39.50
2 6 2 15 0 1.50 1.98 0.90 0.89 39.50
2 6 2 16 0 1.50 1.98 0.90 0.89 39.50
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interested in estimating the marginal probability of a
particular transgene being present in the whole finite
population and in the probability of this transgene
being present in each cluster.

Table 7 gives the SAS NLMIXED code needed to
perform the analysis with the information in Table 6.
Note we form a data set in SAS using the names of
the input variables as in the columns in Table 6
(Region, field, FL, pool, yp, wijp, wip, awp, bwp
and dwp). The relevant output of this code is
shown in two tables. The first table is called
Parameter Estimates (b̂0 =−2.5057, denoted as b_0
estimate, and σb = 0.6230 denoted as sd estimate).
Therefore, the expected proportion of transgenic
corn for the average field, pi(bi = 0) is:
p = 1

1+exp −b̂0

( )( ) = 1
1+exp 2.5057( )( ) = 0.0755. This means

that the estimated probability of finding transgenic
plants in the whole population is 7.55%. According
to Breslow and Clayton (1993), we can approximate
the marginal estimate of the proportion of transgenic
plants in the entire population as: p =

1(
1+exp

(
−
(
1+0.346s2

b

)−0.5
b̂0

)) = 1
1+exp 1+0.346x0.62302( )−0.5

2.5057
( )( ) =

0.0869. This means that the estimated proportion of
transgenic plants in the whole population is 8.69%.
The second table, called Blups per field, contains the

predicted proportions for each field. The predicted
values are 0.112327 for cluster 2, 0.08450 for cluster
3, 0.05999 for cluster 5 and 0.05863 for cluster 6.
Since these are Blups, they should be interpreted as
the predicted probability that a particular transgene is
present in each field. Field 2 has the highest probability
of transgenes being present (0.112327) and field 6, the
lowest (0.05863). Results of the program in Table 7
show that these results were run using weighting
method 5, since we put the scaled B weights (bwp)
in the augmented log-likelihood, and the raw cluster
weights (wip) in the replicate statement. However, if
you wish to run the analysis with a different weighting
method, just replace bwp with the appropriate weight.
For example, for method 3 (raw weights at both levels)
you need to keep wip and replace bwp with wijp. One
limitation of the code in Table 7 is that it does not take
into account any covariates (see Appendix B for the
SAS code if you have covariates).

Application for estimating the proportion of
transgenic corn

Since the data set contains a sample of 193 accessions,
it is not practical to show all the details for the weight
construction, but the construction process was the

Table 7. NLMIXED and GLIMMIX statements for two-stage group-testing regression under PPS

proc nlmixed data = surveypool qpoints = 10
cfactor = 10000 empirical;
parms b_0 =−3.0 sd = 1; s = 3; Se = 1; Sp = 1;
bounds sd > = 0;
prod = 1; do i = 1 to s;
eta_0 = b_0 + u1;pi_0 = 1/(1 + exp(-eta_0));
prod = prod *(1 - pi_0); end;
ppool = Se – (1-Sp)*prod;
*Conditional log likelihood;
if (yp = 1) then zz = ppool;
else if (yp = 0) then zz = 1-ppool;
if (zz > 1e-8) then ll = log(zz); else ll =−1e100;
*Augmented loglikelihood;
loglink = bwp*ll;/*level one weights*/
model ypool∼ general(loglink);
random u1∼ normal([0],[sd*sd]) subject = cluster;
replicate wip;/*level two weights*/
estimate ’bo’ b_0;
estimate ’sd’ sd;
ods output
ParameterEstimates = betasnn10 ConvergenceStatus =
CS10;
predict pi_0 out = pi_0;
run;
proc means data = pi_0;
by cluster; var Pred;
output out = Bpre(drop = _TYPE_ _FREQ_);
run;proc print data = Bpre(where = (_STAT_=’MEAN’));
run;

proc glimmix data = surveypool method = quad(qpoints = 10);
class cluster;
model ypool(event = ’1’) = /solution dist = binary obsweight =
bwpool;
random intercept/subject = cluster weight = ww2pool ;
prd = 1; s = 3; Se = 1; Sp = 1;
do i = 1 to s;

p1 = exp(_linp_)/(1 + exp(_linp_));
prd = prd*(1 - p1);end;

_MU_ = Se – (1-Sp)*prd;
output out = BlupsField pred(blup ilink) = predFieldp
lcl(blup ilink) = predFieldLp ucl(blup ilink) = predFieldUp;
run;
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same as explained in detail in the illustrative example
above. However, it is important to point out that the
number of clusters (accessions) under study was 193,
that the pool size was 40 plants, the total number of
pools analysed was 664 and that for each pool we
obtained a zero (35S promoter absent) and one (35S
promoter present). We also assumed that sensitivity
and specificity are equal to 1. Unfortunately, all 664
pools were negative and for purposes of illustrating
the methodology, we added three positive pools to
this real data set; these were pools 1, 10 and 19. The
resulting parameter estimates using scaled A weights
are b̂0 =−20.173, denoted as b_0 estimate, and σb =
7.4248 denoted as sd estimate. Therefore, the expected
proportion of transgenic corn in an average accession,
pi (bi = 0) is: p = 1

1+exp −b̂0

( )( ) = 1
1+exp 20.173( )( ) = 1.73371E-09.

This means that the estimated probability of finding
transgenic plants in the whole area under study is very
low. Given that we add three positive pools to this real
data set, in any moment this result can be used as a
valid expected proportion of transgenic corn in this
area of Mexico.

Conclusions

In this paper, we present a generalization of the mixed
regression group testing methodology for a complex
survey in two stages with stratification and clusters
of different sizes, when the sampling process is inform-
ative. The estimation process was performed using the
average weights per pool for simplicity, which implied
that the pools should be randomly formed inside each
cluster. Our results are in line with those reported by
Pfeffermann et al. (1998, 2006) (for a normal response),
by Grilli and Pratesi (2004) and Rabe-Hesketh and
Skrondal (2006) (for binary outcomes in the non-group-
testing context). We found that when the sampling pro-
cess is informative, weights at both levels should be
included. However, we need to use scaled weights
because using raw weights produces more bias than
ignoring the weights altogether. Also, it is important
to point out that if the sampling process is not inform-
ative, the weights at both levels should be ignored and
the analysis can be performed using any of the previ-
ously developed packages for mixed group-testing
regression models. However, the NLMIXED and
GLIMMIX code given in this paper allows running
the analysis with the six weighting methods proposed.
From a practical point of view, if you get very similar
results by ignoring the weights and using the three
scaled weights (methods 4, 5 and 6), you should choose
method 1 (ignoring the weights) because this means
that your sampling process is not informative.

Also, it is important to stress that when covariates
are not included in the linear predictor, the results

when using group testing (with pool sizes 5 and 10)
are almost the same as when using individual testing.
This means that in this application, group-testing regres-
sion is as precise as individual regression. This result
implies that group testing can be a useful approach for
conducting complex surveys with small pool sizes
(≤10) and forming the pools in each cluster. Also, includ-
ing covariates at the individual level produced results
that are very similar to those obtained without pooling
(Table 2). However, more simulations need to be per-
formed to see how well this methodology works with
a larger pool size and more covariates. Although the
data set used for the application was not really meaning-
ful, it is important to point out that this methodology can
be very useful for estimating the proportion of transgenic
corn using a group-testing approach.

Although we can include individual weights or the
sum of weights at the pool level, this requires further
research. Using individual weights is expected to pro-
duce the same results as the average weights used in
this investigation, when pools are formed with members
of each stratum in each cluster. Since the log-likelihood
function requires the information per cluster, we always
recommend forming pools with members from the same
cluster. For this reason, to perform a correct analysis
with group testing in a two-stage sampling informative
process requires using the pools, their corresponding
outcomes (positive or negative) and raw weights at
both levels (one cluster weight and the conditional
weights of the individuals forming a pool). These raw
weights at the individual level then need to be scaled
to produce weighting methods 4, 5 and 6; finally, the
NLMIXED and GLIMMIX code given in Table 7 and
Appendix B can be used to perform the analysis. The
resulting output using this code produces an estimate
of β0 that can be used to estimate the marginal propor-
tion of the characteristic of interest (as shown in the
application). The code also produces Blups (predicted
proportions), allowing researchers to obtain estimates
not only for the whole population but for each cluster
as well. Finally, the methodology developed here can
be used to estimate any binary response using a complex
informative sampling process. The overall utility of
using our estimation approach is that it can save consid-
erable resources when group testing is used in conjunc-
tion with complex sampling designs.
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Appendices

Appendix A. Sandwich estimator of the standard
errors

The asymptotic covariance matrix of the maximum
likelihood estimator (û ) is given as:

Cov û
( ) = I−1JI−1 (A1)

Here I is the expected Fisher information and

J ; E
∂ℓ y; u
( )
∂u

∂ℓ y; u
( )
∂u′

{ }∣∣∣∣
u=u0

The expected Fisher information I is estimated by
the observed Fisher information I at the maximum like-
lihood estimates. This is why the sandwich does not
collapse, since the pseudo-likelihood is not exactly
the distribution of the population responses (Pawitan,
2001). The estimator J is obtained by exploiting the
fact that the pseudo-likelihood is a sum of independent
cluster contributions so that

∂ℓ y; u
( )
∂u

=
∑2
h=1

∑mh

i=1

w
∗
ih
∂ℓ2 y 2( ); u

( )
∂u

;
∑2
h=1

∑mh

i=1

Shi u( )

We then estimate J by:

J =
∑2
h=1

mh

mh − 1

∑mh

i=1

Shi û
( )

Shi û
( )′

;
∑2
h=1

mh

mh − 1

∑mh

i=1

shishi′

where shi is the weighted score vector of the top level
unit i in cluster h. The sandwich estimator described in
this section was implemented in NLMIXED of SAS 9.4.

Appendix B. NLMIXED code for regression group
testing for a complex two-stage survey using
average weights per pool and one covariate at the
individual level

Here we use the conditional weights under method A.

proc nlmixed data=poollisto qpoints=10
cfactor=10000 empirical;
parms b_0=−4.7 b_1=0.8 sd=1; k=10;
bounds sd >=0; array XI_i[*] XI_i1-XI_i10;
prod=1;

do i=1 to k;
eta_0=b_0+b_1*XI_i[i]+u1*sd;
pi_0=1/(1+exp(-eta_0));
prod=prod *(1 - pi_0) ; end;

ppool=1 - prod; if (ypool=1) then zz=ppool;
else if (ypool=0) then zz=1-ppool;
if (zz>1e-8) then ll=log(zz); else
ll=−1e100;
*Aumented logelikelihood;
loglink=awpool*ll; /*inclusion of level 1
weights */
model ypool ∼ general(loglink);
random u1∼ normal([0],[1]) subject=clus-
ter; /*Cluster is the subjet 2 level units*/
replicate ww2pool;/*inclusion of level 2
weights */
estimate ‘bo’ b_0; estimate ’b1’ b_1; esti-
mate ’sd’ sd;
ods output ParameterEstimates=betasnn10
ConvergenceStatus=CS10;
run;
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