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This paper presents a magnetohydrodynamic model that describes the small-amplitude
fluctuations with wavelengths comparable to ion inertial length in the presence of a
relativistically strong mean magnetic field. The set of derived equations is virtually
identical to the non-relativistic Hall reduced magnetohydrodynamics (Schekochihin et al.,
J. Plasma Phys., vol. 85, 2019, 905850303), differing only by a few constants that take into
account the relativistic corrections. This means that all the properties of kinetic Alfvén
turbulence and ion cyclotron turbulence inherent in the non-relativistic Hall regime persist
unchanged even in a magnetically dominated regime.
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1. Introduction

Turbulence of relativistically magnetized plasmas (here defined as the magnetic field
energy exceeding the rest mass energy of particles) can be found in a number of
astrophysical systems, e.g. pulsar and black hole magnetospheres, coronae of accretion
disks, and jets from active galactic nuclei. The turbulent fluctuations of the magnetic field
in these systems can be dissipated and converted into the thermal and non-thermal energy
of particles (Zhdankin et al. 2017; Comisso & Sironi 2018; Zhdankin et al. 2019; Nättilä &
Beloborodov 2022), which are potential sources of the bright electromagnetic radiation we
observe on the Earth. As the reservoir of magnetic energy is huge, even small-amplitude
fluctuations give rise to significant heating and acceleration. Thus, understanding the
properties of turbulent fluctuations in relativistically magnetized plasmas (also known
as magnetically dominated plasmas) is one of the most important themes in modern
high-energy astrophysics.

In the vast majority of studies of relativistic turbulence, either ideal magnetohydro-
dynamics (MHD) or fully kinetic Vlasov–Maxwell equations are used (with a few
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exceptions that used the resistive MHD to describe proper reconnection (e.g. Ripperda,
Bacchini & Philippov 2020; Ripperda et al. 2022) and that used relativistic Braginskii
equations to include weakly collisional effects (e.g. Foucart et al. 2016, 2017)). Ideal MHD
is, by definition, only able to describe the large-scale dynamics, and thus, it is not suitable
for studying the dissipation of fluctuations, which usually occurs on scales smaller than the
ion inertial length or the ion Larmor radius. Vlasov–Maxwell equations, on the other hand,
can properly describe the dissipation processes, but it is a rather too complex model. In
fact, when Vlasov–Maxwell equations are used for relativistic turbulence, they are solved
only by means of ab initio particle-in-cell (PIC) simulations, while the analytical study
of small-scale physics of relativistic plasmas is underdeveloped. The aim of this study is
to formulate a comprehensive and useful relativistic magnetohydrodynamic model that is
valid even at small scales.

The extension of relativistic ideal MHD to incorporate the small-scale effects was
first proposed by Koide (2009) (which was then rederived using a variational principle
(Kawazura, Miloshevich & Morrison 2017)). The model is often called relativistic
extended MHD (XMHD), which includes the Hall effect, the rest mass inertia of electrons
and the thermal inertia of electrons. When the inertia effects of electrons are neglected,
this set of equations is referred to as relativistic Hall MHD (HMHD). To date, relativistic
XMHD and relativistic HMHD have been widely used, e.g. for studying magnetic
reconnection (Comisso & Asenjo 2014, 2018; Asenjo & Comisso 2019; Yang 2019b,a),
magnetofluid topological connection (Asenjo & Comisso 2015; Asenjo, Comisso &
Mahajan 2015; Comisso & Asenjo 2020) and linear wave propagation (Kawazura 2017,
2022). However, these models have not been used for turbulence.1 Since the set of
relativistic XMHD equations is much more complicated than that of non-relativistic
XMHD or relativistic ideal MHD, it may be too difficult to solve relativistic XMHD as it is,
even using direct numerical simulations. Alternatively, in this work, we reduce relativistic
HMHD to make it more tractable by assuming the presence of a mean magnetic field – a
technique commonly used for non-relativistic models.

When the spatial scale of the turbulent fluctuations is much smaller than the scale of
energy injection (which is macroscopic in many astrophysical systems), the large-scale
magnetic field effectively behaves like a mean field for the fluctuations (Kraichnan 1965;
Howes et al. 2008). Therefore, as the turbulent cascade progresses, the fluctuations become
smaller amplitude and more elongated along the mean field. Consequently, the ideal MHD
asymptotically becomes reduced MHD (RMHD) (Kadomtsev & Pogutse 1974; Strauss
1976). While non-relativistic RMHD has been widely used in studies of magnetically
confined fusion, solar wind (e.g. Chen et al. 2011), planetary magnetospheres (e.g.
Watanabe 2010) and accretion flows (Kawazura et al. 2022), relativistic RMHD was
formulated only recently (Chandran, Foucart & Tchekhovskoy 2018; TenBarge et al. 2021).
Remarkably, relativistic RMHD and non-relativistic RMHD are formally identical except
for the definition of Alfvén speed which is modified such that it never exceeds the speed
of light. This means that all the properties of turbulence described by non-relativistic
RMHD are true even in the relativistic regime (for example, the Alfvén and slow waves
are energetically decoupled (Schekochihin et al. 2009) while the fast waves are entirely
ordered out; see TenBarge et al. (2021) for a detailed discussion on relativistic RMHD).

In the non-relativistic regime, the same reduction procedure can be adopted for
Hall MHD, and the resulting model is called Hall reduced MHD (HRMHD) (Gómez,
Mahajan & Dmitruk 2008), which is valid at the ion inertial length. The HRMHD

1Note that the non-relativistic version of XMHD (Kimura & Morrison 2014; Abdelhamid, Kawazura & Yoshida
2015) was used for turbulence of solar wind (Abdelhamid, Lingam & Mahajan 2016).
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can also be derived by gyrokinetics when ions are cold, and the electron beta is order
unity (Schekochihin, Kawazura & Barnes (2019), hereafter S19). The Alfvén waves and
slow waves (which are decoupled in RMHD) are reorganized into the kinetic Alfvén
waves (KAW) and oblique ion cyclotron waves (ICW) in HRMHD.

Now, it is quite natural to ask whether the relativistic effects alter the properties of
KAW and ICW turbulence in the HRMHD limit. Here, we formulate the relativistic
version of HRMHD (i.e. the relativistic extension of S19, or equivalently, the inclusion
of the Hall effect in Chandran et al. (2018) and TenBarge et al. (2021)). This is a simple
and comprehensive model that is valid at the microscopic scales when the background
magnetic field is relativistically strong. We find that the relativistic HRMHD is almost
identical to the non-relativistic HRMHD (S19), and thus the properties of KAW and ICW
in a non-relativistic regime are also true in a magnetically dominated regime.

2. Derivation of relativistic HRMHD

Consider quasineutral relativistic ion and electron fluids with infinitely small
electron-to-ion mass ratio. To describe the time evolution of such plasmas, we use
relativistic HMHD (Kawazura 2017), which consists of the mass conservation law

∂

∂t
(nγ ) + ∇ · (nγ u) = 0, (2.1a)

the momentum equation

∂

∂t

(
nhγ 2u

)+ ∇ · (nhγ 2uu
) = −c2∇p + c2ρqE + cJ × B, (2.1b)

the generalized Ohm’s law

E + u
c

× B = 1
γ en

(
ρqE + J

c
× B − ∇pe

)
(2.1c)

and Maxwell’s equations

∇ · E = 4πρq, (2.1d)

−∂E
∂t

+ c∇ × B = 4πJ , (2.1e)

∇ · B = 0, (2.1f )

∂B
∂t

+ c∇ × E = 0, (2.1g)

where e is the elementary charge, c is the speed of light, n is the rest frame number density,
h is the total thermal enthalpy, p is the total thermal pressure, pe is the thermal pressure of
electrons, u is the flow velocity, γ = 1/

√
1 − |u|2/c2 is the Lorentz factor, J is the electric

current, ρq is the charge density, E is the electric field and B is the magnetic field. The
relativistic ideal MHD is recovered when the right-hand side of (2.1c) is neglected.

In what follows, we assume that all fields are separable into spatiotemporally constant
background (symbols with a subscript 0) and fluctuations (symbols with δ in front), viz.
n = n0 + δn, B = (B0 + δB‖)ẑ + δB⊥, and so on. Electrons are assumed to be isothermal,
i.e. δpe = Te0δn, where Te0 is the background electron temperature. Here, ẑ = B0/|B0|,
and ‖(⊥) denotes the parallel (perpendicular) component to B0. We also assume that the
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mean flow is absent, i.e. u0 = 0. Plugging the constant background fields into (2.1c), (2.1d)
and (2.1e), one finds E0 = J 0 = ρq0 = 0. Then, we impose the reduced MHD ordering

δn
n0

∼ δB
B0

∼ u
vA

∼ δpe

pe0
∼ k‖

k⊥
∼ ε � 1,

∂

∂t
∼ ω ∼ k‖vA, (2.2)

where ω and k are the frequency and wavenumber of the fluctuations, respectively. Here,
we have defined the relativistic Alfvén speed,

vA = cB0√
4πn0h0 + B2

0

=
√

σ

1 + σ
c, (2.3)

where σ = B2
0/4πn0h0 is the magnetization parameter. When σ � 1 (equivalently vA ≈

c), the plasma is relativistically magnetized. Since u is small, the relativistic effect of
bulk flow is absent, i.e. γ ≈ 1, but this is acceptable because we are interested in the
microscopic scales where bulk flow is generally small while the thermal energy and/or
magnetic energy can be relativistic. We also assume that the ions are cold while the
electron can be relativistically hot,

Ti0 � Te0 �
√

mi

me
mec2 ≈ 20 MeV, (2.4)

where Ts0 and ms are temperature and mass of the species s. The upper bound for the
electron temperature is required so that the relativistic thermal inertia of electrons is
negligible at the ion inertial scale. Since the ions are cold, the thermal inertia of the ions
is also negligible, i.e. h0 ≈ mic2. These conditions enforce the restriction,

βe =
(

2Te0

mic2

)
1
σ

�
√

me

mi
, (2.5)

where βe = 8πpe0/B2
0 is the electron beta. This is different from the assumptions Ti0 � Te0

and βe ∼ 1 that are used in the non-relativistic HRMHD (S19) because they cannot be
satisfied when the magnetization is relativistic, i.e. σ � 1. In this work, we consider
the electron beta to be lower than that of non-relativistic HMHD, which is formally
allowed as long as ε � βe. In other words, we treat βe as order unity, although it is
much smaller than

√
me/mi, because ε is assumed to be even smaller than βe. However,

βe may not be too small because when βe ∼ me/mi, electron rest mass inertia becomes
non-negligible, and thus the HMHD approximation breaks down (Zocco & Schekochihin
2011). To summarize, we assume the range of βe and ε as

ε ∼ me

mi
� βe �

√
me

mi
. (2.6)

We, then, follow the derivation of non-relativistic RMHD by Schekochihin et al. (2009).
We explicitly keep vA/c and k⊥di in the ordering so that one can take the non-relativistic
and/or long-wavelength limit simply by neglecting the corresponding terms. First, we
adopt the expansion u = u(1) + u(2) + O(ε3vA) and substitute it into (2.1a). The O(ε0n0ω)
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terms yield

∇⊥ · u(1)

⊥ = 0. (2.7)

This allows us to use a stream function leading to u(1)

⊥ = ẑ × ∇⊥Φ, where Φ = (c/B0)φ,
and φ is the electrostatic potential. From the O(ε1n0ω) terms, one obtains

(
∂

∂t
+ u(1)

⊥ · ∇⊥

)
δn
n0

= −
(

∇⊥ · u(2)

⊥ + ∂u(1)

‖
∂z

)
. (2.8)

From the lowest-order terms in (2.1f ), one can use a magnetic flux function leading to
vA(δB(1)

⊥ /B0) = ẑ × ∇⊥Ψ , where Ψ = −(vA/B0)A‖, and A‖ is the parallel component of
the vector potential. The O(ε0ω) terms in (2.1b) give the pressure balance

B0

4π
δB‖ = −δpe = −Te0δn. (2.9)

Up to this point, the derivation is the same as the non-relativistic RMHD.
Next, we expand E = E(1) + E(2) + O(ε3vAB0/c). Using electromagnetic potentials, the

first- and second-order terms become

E(1) = −∇⊥φ, E(2) = −1
c

∂A
∂t

− ẑ
∂φ

∂z
. (2.10a,b)

We also expand J = J (1) + J (2) + O(ε3ck⊥B0), plug it into (2.1c) and remove ρq using
(2.1d) to yield

c
vAB0

⎛
⎝E(1)︸︷︷︸

∼ε

+ E(2)︸︷︷︸
∼ε2

⎞
⎠+ c

vA

⎛
⎜⎜⎜⎝ δn

n0︸︷︷︸
∼ε2

− ∇⊥ · E(1)

⊥
4πen0︸ ︷︷ ︸

∼ε2(k⊥di)(vA/c)2

⎞
⎟⎟⎟⎠ E(1)

B0
+ 1

vA

⎛
⎜⎜⎝ u(1)︸︷︷︸

∼ε

− J (1)

en0︸︷︷︸
∼ε(k⊥di)

⎞
⎟⎟⎠× ẑ

+ 1
vA

⎛
⎜⎜⎜⎝ u(1)︸︷︷︸

∼ε2

− J (1)

en0︸︷︷︸
∼ε2(k⊥di)

⎞
⎟⎟⎟⎠× δB

B0
+ 1

vA

⎡
⎢⎢⎢⎣
(

δn
n0

)
u(1) + u(2)

︸ ︷︷ ︸
∼ε2

+
(

δn
n0

)
J (1)

en0
− J (2)

en0︸ ︷︷ ︸
∼ε2(k⊥di)

⎤
⎥⎥⎥⎦× ẑ

+ c
vAen0B0

⎡
⎢⎢⎢⎣∇⊥δpe︸ ︷︷ ︸

∼εβe(k⊥di)

+
(

δn
n0

)
∇⊥δpe + ẑ

∂

∂z
δpe︸ ︷︷ ︸

∼ε2βe(k⊥di)

⎤
⎥⎥⎥⎦ = 0, (2.11)
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where di = √
mic2/4πn0e2 is the ion inertial length. As we mentioned above, βe is

assumed to be O(ε0) because ε � βe. We then manipulate (2.1e) to get

4πJ
cB0

= − 1
c2

ẑ × ∂

∂t

⎛
⎜⎜⎜⎝ u(1)

⊥︸︷︷︸
∼ε2k⊥(vA/c)2

− J (1)

⊥
en0︸︷︷︸

∼ε2k⊥(k⊥di)(vA/c)2

⎞
⎟⎟⎟⎠+ 1

cen0B0

∂

∂t
∇⊥δpe︸ ︷︷ ︸

∼ε2βek⊥(k⊥di)(vA/c)2

+ ẑ × ∂

∂z
δB⊥
B0︸ ︷︷ ︸

∼ε2k⊥

+∇⊥

(
δB‖
B0

)
× ẑ︸ ︷︷ ︸

∼εk⊥

+∇⊥ × δB⊥
B0︸ ︷︷ ︸

∼εk⊥

+O(ε3k⊥). (2.12)

Collecting the terms order-by-order, one obtains

J (1)

⊥ = c
4π

∇⊥δB‖ × ẑ, J(1)

‖ = c
4π

ẑ · (∇⊥ × δB⊥),

J (2)

⊥ = c
4π

[
−B0

c2
ẑ × ∂

∂t

(
u(1)

⊥ − J (1)

⊥
en0

)
+ 1

cen0

∂

∂t
∇⊥δpe + ẑ × ∂

∂z
δB⊥

]
, J(2)

‖ = 0.

(2.13)
The terms including ∂/∂t in J (2)

⊥ originated from the displacement current, which
disappears in the non-relativistic limit, and all the other terms are the same as the
non-relativistic case. Plugging J (1)

⊥ into the O(ε) terms in (2.11), one obtains the pressure
balance (2.9) again, where the isothermal electrons are assumed. Then, we can further
manipulate J (2)

⊥ as

J (2)

⊥ = c
4π

(
B0

c2

∂

∂t
∇⊥Φ + ẑ × ∂

∂z
δB⊥

)
. (2.14)

This is notable because the Hall term and the electron pressure gradient term, both of
which becomes finite at the di scale, are cancelled, and therefore, the electric current (up to
the second order) is identical to that of relativistic RMHD. The reason for this cancellation
is rather straightforward. We evaluate the electric field E in the displacement current by
using Ohm’s law, which is the momentum equation of electrons. Therefore, the pressure
balance cancels some of the terms of the electric current exactly in the same way as the
first order of the momentum equation in the relativistic RMHD (which is identical to (2.16)
shown below).

Next, we substitute (2.10a,b) and (2.13) into (2.1b) to get the equations for Φ and u‖. As
we found in the previous paragraph, both E and J do not contain corrections due to the
Hall effect, meaning that (2.1b) ends up with the same equations as the relativistic RMHD.
The z component of O(ε1ω) terms give

∂u‖
∂t

+ {
Φ, u‖

} = (1 + σ)v2
A

[
∂

∂z

(
δB‖
B0

)
+ 1

vA

{
Ψ,

δB‖
B0

}]
, (2.15)

while multiplying ẑ · ∇⊥× to O(ε1ω) terms gives

∂

∂t
∇2

⊥Φ + {
Φ,∇2

⊥Φ
} = vA

(
∂

∂z
∇2

⊥Ψ + 1
vA

{
Ψ,∇2

⊥Ψ
})

, (2.16)

where {f , g} = (∂xf )(∂yg) − (∂xg)(∂yf ).
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Next, we derive the equations for Ψ and δB‖. This time, unlike the momentum equation,
there will be the corrections due to the Hall effect and electron pressure gradient. The
O(ε2) terms in (2.11) are

E(2)

B0
+
(

δn
n0

− ∇⊥ · E(1)

⊥
4πen0

)
E(1)

B0
+ 1

c

(
u(1) − J (1)

en0

)
× δB

B0

+ 1
c

[(
δn
n0

)
u(1) + u(2) − J (2)

en0

]
× ẑ + 1

en0B0

(
ẑ

∂

∂z
δpe

)
= 0. (2.17)

Note that a few terms have been cancelled out using the pressure balance (2.9). The
z-component of (2.17) yields

∂Ψ

∂t
= vA

[
∂

∂z

(
Φ +

√
(1 + σ) divA

δB‖
B0

)
+ 1

vA

{
Ψ, Φ +

√
(1 + σ) divA

δB‖
B0

}]
.

(2.18)
Meanwhile, (2.8) and (2.9) are rearranged as

∇⊥ · u(2)

⊥ + ∂u(1)

‖
∂z

= σc2

c2
S

d
dt

(
δB‖
B0

)
, (2.19)

where cS = √
(ni0Te0)/(ne0mi) � (me/mi)

1/4c is the sound speed, and (2.13) and (2.14) are
rearranged as

1
en0

(
∇⊥ · J (2)

⊥ + ∂J(1)

‖
∂z

)
=

√
(1 + σ) divA

c2

∂

∂t
∇2

⊥Φ. (2.20)

Note that the right-hand side of (2.20) is equal to zero in the non-relativistic limit (i.e.
∇ · J = 0). Combining (2.19) and (2.20) with ẑ · ∇⊥× to (2.17) yields

−
(

1 + σc2

c2
S

)[
∂

∂t

(
δB‖
B0

)
+
{
Φ,

δB‖
B0

}]
+

√
(1 + σ) divA

c2

(
∂

∂t
∇2

⊥Φ + {
Φ, ∇2

⊥Φ
})

+ ∂u‖
∂z

+ 1
vA

{
Ψ, u‖

}−
√

(1 + σ) di

(
∂

∂z
∇2

⊥Ψ + 1
vA

{
Ψ, ∇2

⊥Ψ
}) = 0. (2.21)

The time derivative of ∇2
⊥Φ can be eliminated by substituting (2.16), which results in

(
1 + σc2

c2
S

)[
∂

∂t

(
δB‖
B0

)
+
{
Φ,

δB‖
B0

}]

= ∂u‖
∂z

+ 1
vA

{
Ψ, u‖

}−
√

(1 + σ) di

(
1 − v2

A

c2

)(
∂

∂z
+ 1

v2
A

{
Ψ, ∇2

⊥Ψ
})

. (2.22)
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Finally, (2.15), (2.16), (2.18) and (2.22) are reorganized into

d
dt

∇2
⊥Φ = vA∇‖∇2

⊥Ψ, (2.23a)

∂Ψ

∂t
= vA∇‖ (Φ + vAρHB) , (2.23b)

dU
dt

= vS∇‖B, (2.23c)

dB
dt

= ∇‖
(
vSU − ρH∇2

⊥Ψ
)
, (2.23d)

where
d
dt

= ∂

∂t
+ u⊥ · ∇⊥ = ∂

∂t
+ {Φ, . . .} , ∇‖ = ∂

∂z
+ δB⊥

B0
· ∇⊥ = ∂

∂z
+ 1

vA
{Ψ, . . .} ,

(2.24a)

U = u‖
vA

, B =
√

(1 + σ)
[
1 + (1 + σ)v2

A/c2
S

] δB‖
B0

, (2.24b)

vA =
√

σ

1 + σ
c, vS =

√
σ

1 + (1 + σ)v2
A/c2

S
c, ρH =

√
1

1 + (1 + σ)v2
A/c2

S
di.

(2.24c)

Note that v2
A/c2

S ≈ 2/βe when Ti0/Te0 � 1. We find that (2.23a)–(2.23d) are identical
to non-relativistic HRMHD ((5.14)–(5.17) of S19), except for the definition of constants
(2.24c) which become those of S19 in the limit of σ → 0. Thereby, all the physical
properties of the non-relativistic HRMHD (e.g. the conservation of energy and
helicity ((5.24) and (5.68) of S19) and the linear dispersion relation ((5.26) of S19)
are valid even in a magnetically dominated regime σ � 1. Meanwhile, one retrieves
the relativistic RMHD by taking the limit of ρH → 0. Note that RMHD of Chandran
et al. (2018) and TenBarge et al. (2021) are written in the Elsässer variables while
(2.23a)–(2.23d) are not; as is shown by Galtier (2006) that introducing the Elsässer for
HMHD is complicated.

There are three important facts that make relativistic HRMHD and non-relativistic
HRMHD formally identical. The first is that the electric current of relativistic HRMHD
is identical to that of relativistic RMHD due to the electron pressure balance (see (2.13)).
The second is that the displacement current only appears in the second order of the electric
current. The third is that the Lorentz force due to the displacement current (i.e. J (2) × B0)
is the time derivative of E(1) × B0 drift, which happens to be the left-hand side of the
momentum equation (2.1b) and balances the non-relativistic Lorentz force J (1) × δB in
the right-hand side (given the pressure balance). Thus, the relativistic Lorentz force ends
up with merely proportional to the non-relativistic Lorentz force, and its prefactor does
not include di.

Lastly, one finds that the Hall transition scale ρH becomes smaller and vanishes
eventually as the magnetization σ increases, meaning that the fluctuations behave like
those of RMHD at di scale when the magnetization is strong. This behaviour was first
discovered by Kawazura (2017), and the reason for it is that the Hall transition happens
at the scale of ∼ vA/Ωi (which is equal to di in the non-relativistic limit) where Ωi is ion
cyclotron frequency, and this scale becomes smaller as the magnetization becomes larger
because vA → c and Ωi → ∞ as σ → ∞.
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3. Discussion

In this paper, we have shown that the properties of fluctuations in the sub-Hall transition
scale (k⊥ρH � 1) found by non-relativistic HRMHD remain the same even when the mean
magnetic field is relativistically strong and/or the electron temperature is relativistically
hot (but much less than (mi/me)

1/2mec2). More specifically, for example, S19 theoretically
showed that the Alfvénic and compressive cascades in the RMHD range (k⊥ρH � 1) are
rearranged into KAW and ICW cascades below the Hall transition scale (k⊥ρH 
 1),
and the scalings of KAW cascade are k−7/3

⊥ for the magnetic energy and k−13/3
⊥ for the

kinetic energy while those of ICW cascade are k−5/3
⊥ for the magnetic energy and k−11/3

⊥
for the kinetic energy. These scalings are consistent with the numerical simulation of
non-relativistic HMHD (Meyrand & Galtier 2012). We find that the same scalings apply to
the relativistic regime, although there have been no simulation of turbulence in relativistic
ion and electron plasmas that elucidated the scalings at the transition scale. Note that the
relativistic PIC simulation of ion and electron plasma turbulence found the presence of
the spectral break at the ion Larmor scale (Zhdankin et al. 2019). Furthermore, S19 also
showed that the KAW and ICW cascades eventually turn into electron and ion heating,
respectively, and we have shown that this scenario of energy partition between ions and
electrons is also true in the relativistic regime.

In closing, we admit that the ordering assumptions we have made in this study,
namely (2.4) and (2.6), are rather restrictive and may not be directly relevant to realistic
astrophysical objects. However, even though HMHD is consistent with kinetic theory only
for the cold ion limit (Ito et al. 2004; Howes 2009), the simulations of turbulence at the
transition scale via HMHD and through the hybrid PIC with Ti = Te demonstrated nearly
the same results (Papini et al. 2019), suggesting that the predictions made by HMHD are
practically useful beyond its theoretical limitations. We think the same holds true for our
relativistic HRMHD.
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