Properties of some Groups of Wallace Lines.

> By R. Tucker, M.A.

1. Take the point P in the arc $A B$, and let $\angle A B P=\theta$, then the trilinear equation of the Wallace line of $\mathrm{P}(p$ say $)$ is

$$
\begin{align*}
a \alpha \cos (\mathrm{C}-\theta) \cos (\mathrm{B}+\theta) \sin \theta & -b \beta \cos \theta \sin (\mathrm{C}-\theta) \cos (\mathrm{B}+\theta) \\
& +c \gamma \cos (\mathrm{C}-\theta) \sin (\mathrm{B}-\theta) \cos \theta=0 \tag{A}
\end{align*}
$$

2. (a) The lines $A P, b Q, C R$ drawn parallel to the sides $B C, C A, A B$ of the triangle $A B C$.

In this case p, q, r, by $[\$ 17]^{*}$ are readily. seen to be concurrent. To find the point, we must solve the equations

$$
\begin{aligned}
& \text { for } \mathbf{P}(\theta=\mathbf{C}-\mathrm{B}) \text {, for } \mathbf{Q}(\theta=\mathrm{A}) \text {, } \\
& a \alpha \cos \mathrm{~B} \cos \mathrm{C} \sin (\mathrm{~B}-\mathrm{C})-b \beta \cos (\mathrm{~B}-\mathrm{C}) \sin \mathrm{B} \cos \mathrm{C} \\
& +c \gamma \cos B \sin C \cos (\mathbf{B}-\mathbf{C})=\mathbf{0}, \\
& -a \alpha \cos (\mathbf{C}-\mathbf{A}) \cos \mathbf{A} \sin \mathbf{A}+b \beta \cos \mathbf{A} \sin (\mathbf{C}-\mathbf{A}) \cos \mathbf{C} \\
& +c \gamma \cos (C-A) \sin C \cos A=0 .
\end{aligned}
$$

The point is given by

$$
a / \cos ^{2} \mathrm{~A} \cos (\mathrm{~B}-\mathrm{C})=\beta / \cos ^{2} \mathrm{~B} \cos (\mathrm{C}-\mathrm{A})=\gamma / \cos ^{2} \mathrm{C} \cos (\mathrm{~A}-\mathrm{B}) . \dagger
$$

3. (b) $P Q$ drawn parallel to $A B$.

Then $\mathbf{P}(\theta), \mathbf{Q}(\mathbf{C}-\theta)$ have for W allace lines, viz., p, equation (A),

$$
\text { and } q \text {, }
$$

$$
\begin{aligned}
-a u \cos \theta \cos (\mathrm{~A}+\theta) \sin (\mathrm{C}-\theta) & +b \beta \cos (\mathrm{C}-\theta) \sin \theta \cos (\mathrm{A}+\theta) \\
& +c \gamma \cos \theta \sin (\mathbf{A}+\theta) \cos (\mathrm{C}-\theta)=0 .
\end{aligned}
$$

These lines intersect in c^{\prime} (say) given by

$$
\frac{\alpha}{\cos \mathrm{B}}=\frac{\beta}{\cos \mathrm{A}}=\frac{\gamma \cos (\mathrm{C}-\theta) \cos \theta}{\cos (\mathrm{A}+\theta) \cos (\mathrm{B}+\theta)},
$$

hence $\mathbf{A} a^{\prime}, \mathrm{B} b^{\prime}, \mathbf{C} c^{\prime}$ meet in the orthocentre of ABC , or the loci of $a^{\prime}, b^{\prime}, c^{\prime}$ are the respective perpendiculars from $\mathrm{A}, \mathrm{B}, \mathrm{C}$ on the opposite sides.

[^0]
117

4. Take $\mathrm{AP}=\mathrm{BQ}=\mathrm{BR}=\mathrm{CS}=\mathrm{CT}=\mathrm{AV}$ and suppose they subtend the angle θ at the circumference and let the Wallace lines of $\mathrm{P}, \mathrm{Q}, \mathrm{R}, \mathrm{S}, \mathrm{T}, \mathrm{V}, i . e ., p, q, r, s, t, v$ intersect in $a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}, e^{\prime}, f^{\prime}$, then [$\$ 17$] angles at
$a^{\prime}, c^{\prime}, e^{\prime}=2 \theta$, acute angles at $b^{\prime}=\mathrm{C}-2 \theta$, at $d^{\prime}=\mathrm{A}-2 \theta$, and at $f^{\prime} \mathrm{B}-2 \theta$.
Then $\quad r, s ; q, t$ intersect on \perp^{r} from A,
and $\quad p, q ; r, v \quad " \quad ", \mathrm{C}$;
and the intercepts on the respective perpendiculars are

$$
a \sin 2 \theta, \quad b \sin 2 \theta, \quad c \sin 2 \theta .
$$

5. I get these results from the equations referred to BC, BA as axes. They are

$$
\begin{array}{cc}
\text { p. } & y \cos (\mathrm{~B}+\theta)+x \cos \theta=2 \mathrm{R} \cos \theta \cos (\mathrm{~B}+\theta) \sin (\mathrm{C}-\theta) \\
q . & y \cos (\mathrm{~A}+\theta)-x \cos (\mathrm{C}-\theta)=2 \mathrm{R} \cos (\mathrm{C}-\theta) \cos (\mathrm{A}+\theta) \sin \theta \\
r . & -y \cos (\mathrm{~A}-\theta)+x \cos (\mathrm{C}+\theta)=2 \mathrm{R} \cos (\mathrm{C}+\theta) \cos (\mathrm{A}-\theta) \sin \theta \\
s . & y \cos \theta+x \cos (\mathrm{~B}+\theta)=2 \mathrm{R} \cos (\mathrm{~B}+\theta) \cos \theta \sin (\mathrm{A}-\theta) \tag{iv.}
\end{array}
$$

t. and v. may be similarly obtained.
p. and s. intersect in $y \sin B=2 R \cos \theta \cos (B+\theta) \cos C$,

$$
x \sin \mathrm{~B}=2 \mathrm{R} \cos \theta \cos (\mathrm{~B}+\theta) \cos \mathrm{A}
$$

hence they intersect on the \perp^{r} from B at m (say), i.e. \perp^{r} from m on BC is $\quad 2 R \cos \theta \cos (\mathrm{~B}+\theta) \cos \mathrm{C}$, hence

$$
m \mathrm{E}=2 \mathrm{R}[\sin \mathrm{~A} \sin \mathrm{C}-\cos \theta \cos (\mathrm{B}+\theta)]
$$

6. Again r, s intersect in d^{\prime} so that

$$
d^{\prime} \mathrm{D}=2 \mathrm{R} \cos (\mathrm{~B}+\theta) \cos (\mathrm{C}+\theta) ;
$$

hence $\quad d^{\prime} \mathrm{D} \cos (\mathrm{A}+\theta)=f^{\prime} \mathrm{E} \cos (\mathrm{B}+\theta)=b^{\prime} \mathrm{F} \cos (\mathrm{C}+\theta)$, and also $m f^{\prime}$
$=2 \mathrm{R}[\sin \mathrm{A} \sin \mathrm{C}-\cos \theta \cos (\mathbf{B}+\theta)-\cos (\mathrm{C}+\theta) \cos (\mathrm{A}+\theta)]$
$=\mathrm{R}[\cos (\mathrm{C}-\mathrm{A})+\cos \mathrm{B}-\cos \mathrm{B}-\cos (\mathrm{B}+2 \theta)-\cos (\mathrm{C}+\mathrm{A}+2 \theta)-\cos (\mathrm{C}-\mathrm{A})]$
$=b \sin 2 \theta$.
Hence $\quad l d^{\prime}: m f^{\prime}: n b^{\prime}=a: b: c$.

Again $\quad m \mathrm{H}=m \mathrm{E}-\mathrm{EH}=2 \mathrm{R} \sin \theta \sin (\mathrm{B}+\theta)$,
i.e. $\mathrm{H} l: \mathrm{H} m: \mathrm{H} n=\sin (\mathrm{A}+\theta): \sin (\mathrm{B}+\theta): \sin (\mathrm{C}+\theta)$;
and

$$
\mathrm{H} f^{\prime}=2 \mathrm{R} \sin \theta \sin (\mathbf{B}-\theta)
$$

$$
\therefore \mathrm{H} d^{\prime}: \mathrm{H} f^{\prime}: \mathrm{H} b^{\prime}=\sin (\mathbf{A}-\theta): \sin (\mathrm{B}-\theta): \sin (\mathrm{C}-\theta) .
$$

7. By the cosine method we readily get

$$
b^{\prime} m=a \sin \theta \text { and } \therefore b^{\prime} m: d^{\prime} n: f^{\prime} l=a: b: c \text {; }
$$

also

$$
b^{\prime} l=b \sin \theta \text { and } \therefore f^{\prime} n: b^{\prime} l: d^{\prime} m=a: b: c
$$

The areas of $m b^{\prime} l f^{\prime}$ and $m d^{\prime} n f^{\prime}$ are respectively
$\mathrm{R}^{2} \sin ^{2} \theta[2 \sin \mathrm{~A} \sin \mathrm{~B} \sin \mathrm{C}(1+2 \cos 2 \theta)-(\cos 2 \mathrm{C}-\cos 2 \mathrm{~A}) \sin 2 \theta]$
and $\mathrm{R}^{2} \sin ^{2} \theta[2 \sin \mathrm{~A} \sin \mathrm{~B} \sin \mathrm{C}(1+2 \cos 2 \theta)+(\cos 2 \mathrm{C}-\cos 2 \mathrm{~A}) \sin 2 \theta]$,
hence area of hexagon $\quad=4 \sin A \sin B \sin ^{2} \mathrm{CR}^{2} \sin ^{2} \theta(1+2 \cos 2 \theta)$.
8. We may note that the angles are

$$
\left.\left.\begin{array}{l}
\mathrm{H} b^{\prime} l=\mathrm{H} f^{\prime} l=\mathrm{A}+\theta, \\
\mathrm{H} b^{\prime} m=\mathrm{H} d^{\prime} m=\mathrm{B}+\theta, \\
\mathrm{H} d^{\prime} n=\mathrm{H} f^{\prime} n=\mathrm{C}+\theta,
\end{array}\right\} \quad \text { and } \quad \begin{array}{l}
\mathrm{H} m d^{\prime}=\mathrm{H} n d^{\prime}=\mathrm{A}-\theta, \\
\mathrm{H} l f^{\prime}=\mathrm{H} n f^{\prime}=\mathrm{B}-\theta, \\
\mathrm{H} l b^{\prime}=\mathrm{H} m b^{\prime}=\mathrm{C}-\theta
\end{array}\right\}
$$

9. The intersection of p, v, i.e., a^{\prime} lies on the line

$$
y / b \cos (\mathrm{~B}-\mathrm{C})+x / b \cos \mathrm{C}=1
$$

which cuts $B C$ at a distance from B, towards $C,=C D$, and so for the analogous lines.
10. PQRS is a square, and p, q, r, s are the Wallace lines of P, Q, R, S.
p, q meet in $a ; q, r$ in $b ; r, s$ in $c ;$ and s, p in d.
Then since $\mathrm{P}, \mathrm{R} ; \mathrm{Q}, \mathrm{S}$ are diametral points, b, d are on the nine-point circle of the triangle, [$\$ 19]$ and, from the symmetry of the figure, $b d$ is a diameter.
$p, r ; q, s$; cut at right angles [$\$ 19$] and the angles formed by $p, q ; r, s ;$ respectively are half right angles [$\$ 17$].
Hence a, b, c, d are concyclic.
Now $\quad \angle a c b=\angle a d b=-y f k \quad \therefore y f \| a c$, and as g is mid point of $a k \therefore f$ is mid point of $c k$,
$\therefore d f$ bisects $c k$ at right angles, and $a c=2 f \dot{f}=\rho \sqrt{2,}$ where $\rho=$ radius of nine-point circle.

Again since $\quad \therefore b e d=$ right angle $=2^{c e} \angle b c d$, and $a c$ is a diameter, $\therefore e$ is centre of circle $a b c d$.

Hence

 $e g, e m \|$ to $b c, c d$.We have

$$
a \mathrm{~N}^{2}+c \mathrm{~N}^{2}=2 \mathrm{~N} e^{2}+2 e a^{2}=6 \rho^{2}
$$

11. Let $a b, b c, c d, d a$ be represented by $a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}$ respectively, and take
$\therefore c a d=\phi$,
then

$$
\begin{array}{ll}
c^{\prime}=2 \sqrt{2 \rho} \sin \phi, & d^{\prime}=2 \sqrt{2 \rho} \cos \phi, \\
a^{\prime}=2 \rho(\sin \phi-\cos \phi), & b^{\prime}=2 \rho(\sin \phi+\cos \phi) .
\end{array}
$$

From the figure we see $a^{\prime 2}+b^{\prime 2}=a c^{2}=c^{\prime 2}+d^{\prime 2}$, and rectangle $b g d l=\frac{1}{2} a^{\prime} b^{\prime}, \quad$ rectangle $b f d m=\frac{1}{2} c^{\prime} d^{\prime}$, \therefore sum of rectangles $=a b c d ;$

$$
\begin{aligned}
& a \mathrm{~N}^{2}=d^{\prime 2}+\rho^{2}-2 d^{\prime} \rho \cos \left(\phi-\frac{\pi}{4}\right)=\rho^{2}[3+2(\cos 2 \phi-\sin 2 \phi)], \\
& c \mathrm{~N}^{2}= \\
& \rho^{2}[3-2(\cos 2 \phi-\sin 2 \phi)] .
\end{aligned}
$$

12. Let h be the mid point of the third diagonal $k n$,
then

$$
\begin{gathered}
b h=\frac{1}{2} k n=d h, \\
=\frac{1}{2} \sqrt{a^{\prime 2}+b^{\prime 2}}=a e=\rho \sqrt{2}
\end{gathered}
$$

hence, since we know that $e \mathrm{~N} h$ is a straight line, h is on the Ninepoint circle.
13. PQRSTV is a regular six-side in the circle and the Wallace lines are indicated by $p^{\prime}, q^{\prime}, r^{\prime}, s^{\prime}, t^{\prime}, v^{\prime}$ respectively.

The angles [$\$ 17]$ at f, b, d are each 30°, and at a, c, e, are supplements of 30°.

By $[\$ 19] p^{\prime}, s^{\prime} ; q^{\prime}, t^{\prime} ; r^{\prime}, v^{\prime}$ intersect at right angles in g, h, k respectively, on the nine-point circle.

From the symmetry of the figure $g h k$ is an equilateral triangle, or we may prove this by finding the projections of $y h$ on BC and at right angles thereto.

The projections will be found to be respectively

$$
\begin{aligned}
& \qquad \frac{\mathrm{R} \sqrt{ } 3}{2} \cos \left(\mathrm{~B}-\mathrm{C}+4 \theta+\frac{\pi}{3}\right), \quad \frac{\mathrm{R} \sqrt{ } 3}{2} \sin \left(\mathrm{~B}-\mathrm{C}+4 \theta+\frac{\pi}{3}\right) \text {, } \\
& \text { hence } \quad!/ h=\mathrm{R} \sqrt{3 / 2}=\rho \sqrt{3 .}
\end{aligned}
$$

14. Since $\angle k q h=-k g h=60^{\circ}, \quad \therefore q h=q b=q s$, and $q h \| f g$. Now $\angle c l h=\angle g k h . \therefore l$ is mid point of $w d$, and similarly m of $b z$, and n of $f x$.
The $\angle c f g=\angle c k y=\angle q h y=\angle h g f$,

$$
\therefore c f \text { is bisected in } h \text { and }=2 \rho \sqrt{3 .}
$$

Also q is mid point of $c t$.
15. It is seen that the arcs $p h, q y, r k$ are equal, and if we suppose the \angle they subtend at the circumference to be ϕ, then
$\begin{array}{cc}\text { Since } & h g \text { bisects } \angle c h y \text { and is } \| h y \\ \therefore c h=g h \text { and } c w=g l, \\ \text { hence } & \quad \therefore d=e f=u b \text { and } b c=d e=a f \\ & \therefore b d f \text { is equilateral, as also is } s t v\end{array}$
$\begin{array}{cc}\text { Since } & h g \text { bisects } \angle c h y \text { and is } \| h y \\ \therefore c h=g h \text { and } c w=g l, \\ \text { hence } & \quad \therefore d=e f=u b \text { and } b c=d e=a f \\ & \therefore b d f \text { is equilateral, as also is } s t v\end{array}$

$$
w d=2 l h=4 \rho \cos \phi=x f=\approx b .
$$

$\therefore b d f$ is equilateral, as also is stv.
[Note.-The reader is requested to draw the figures. The following details, which refer to the figures which accompanied the paper, will render the text more intelligible:

In $\S 4, \quad A=60^{\circ}, B=45^{\circ}, C=75^{\circ}, \theta=18^{\circ}$. $\left.\begin{array}{l}v p \text { meet in } a^{\prime} \\ p q \text { " } b^{\prime} \\ \text { and so on to } t v \text { in } f^{\prime} .\end{array}\right\}$ angle $m=100^{\circ}$,
In $\S 10, \quad A=61^{\circ}, B=39^{\circ}, \mathbf{C}=80^{\circ}, \theta=20^{\circ}$, $b c, a d$ meet in $k ; a b, c d$ in n.
the N.P. circle meets the sides again, viz., $b c$ in $f, c d$ in $l, d a$ in $g, a b$ in m.

$\mathrm{H}, \mathrm{O}, \mathrm{N}$ are the orthocentre, circumcentre, and N.P. centre.]

[^0]: * The references in [] are to a paper in vol. iii. (pp. 77-93) by Mr J. Alison, entitled The so-called Simson Linc. To [\$§ 19, 27] should be added the further reference Ed. Times Reprint, vol. xxxix., p. 121.
 \dagger Cf. Educational Timcs Reprint, vol. xxxviii., p. 29.

