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Abstract. We develop a theory of group actions and coverings on Brauer graphs
that parallels the theory of group actions and coverings of algebras. In particular, we
show that any Brauer graph can be covered by a tower of coverings of Brauer graphs
such that the topmost covering has multiplicity function identically one, no loops, and
no multiple edges. Furthermore, we classify the coverings of Brauer graph algebras
that are again Brauer graph algebras.
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Secondary 14E20, 16W50, 58E40.

1. Introduction. In this paper, we introduce the theory of group actions and
coverings on Brauer graphs that parallels the theory of group actions and coverings
of algebras. In particular, we show that any Brauer graph can be covered by a tower
of coverings, the topmost of which is a Brauer graph with no exceptional vertices, no
loops, and no multiple edges (Theorem 7.7). This allows many homological questions
related to Brauer graph algebras to be simplified by considering Brauer graphs with
no exceptional vertices, no loops and no multiple edges. Specifically, we know from
covering theory that, for a finite group G, the category of G-graded modules over a
Brauer graph algebra is equivalent to the module category of the covering algebra
associated with the group G. In a subsequent paper ([10]), we use this fact and
Theorem 7.7 to compute a minimal set of generators for the Ext algebra of any Brauer
graph algebra. In this current paper, we also classify the coverings of Brauer graph
algebras that are again Brauer graph algebras (Theorem 7.1). One reason this result
is of interest is that it is difficult, in general, to determine if a covering comes from a
Brauer graph simply from knowledge of the quiver and relations.

Since their introduction by Riedtmann in [19], coverings of algebras have been
extensively studied and they have rapidly proven to be of interest in the representation
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theory of algebras (see, for example, [4, 7, 8, 9, 22] and references therein). In the
case of self-injective algebras of finite or tame type – including Brauer graph algebras
– this is also well demonstrated in the survey article [21]. The results in [8] and [9],
relating the coverings of algebras given by quivers with relations on the one hand,
and the group-gradings of algebras on the other hand, lead to an equivalence of
categories; namely given a G-grading of a quiver with relations, then the category of
finite-dimensional modules of the covering of the algebra is equivalent to the category
of finite-dimensional G-graded modules.

Brauer graphs are a generalization of Brauer trees. A Brauer tree is a finite tree,
with a cyclic ordering of the edges at each vertex and a multiplicity assigned to exactly
one of its vertices, which is called the exceptional vertex. These trees were defined by
Brauer in [5] in the study of block algebras of finite groups with cyclic defect groups. The
entire algebra structure of a block with cyclic defect groups can be read directly from
its Brauer tree. For example, in [12], Janusz gives a description of the non-projective,
non-simple indecomposable modules of a block with cyclic defect groups in terms of
paths in its Brauer tree, and in [11], Green defined ‘walking around the Brauer tree’,
giving projective resolutions of certain modules of a block with cyclic defect groups.

It is well known (see for example [1] or [3]) that Brauer graph algebras are tame
special biserial self-injective algebras and that those of finite representation type are
the Brauer tree algebras. Furthermore, the derived equivalence classes of Brauer
graph algebras have been extensively studied, beginning with Brauer tree algebras
(for example, [18], and, for stable equivalence classes, see [17]), generalized Brauer tree
algebras (see [16]) and finally Brauer graph algebras (see [13, 14, 15, 20] and [21] and
the references therein).

We briefly summarize the results of the paper. In Section 2, we begin by recalling
the definitions of a Brauer graph and a Brauer graph algebra together with some
essential notation. In Section 3, we define a free Brauer action of a finite abelian group
on a Brauer graph and construct the Brauer orbit graph. A free Brauer action of a
finite abelian group G on a Brauer graph � induces a free action of G on the quiver
of the associated Brauer graph algebra and the section culminates with Theorem 3.12,
which relates the Brauer graph algebras of � and its orbit graph �.

Section 4 introduces a Brauer weighting on a Brauer graph which is analogous
to a weight function on a quiver. Given a Brauer weighting W to a finite abelian
group G on a Brauer graph �, we define the Brauer covering graph �W and show that
there is a canonical action of G on �W . Theorem 4.9 proves that this action is a free
Brauer action and that � ∼= �W as Brauer graphs. We apply the results of Section 4 in
Section 5 to Brauer graph algebras. If A� (respectively, A�W , A�W

) is the Brauer graph
algebra of � (respectively, �W , �W ), then Theorem 5.6 shows that there are K-algebra
isomorphisms

A�
∼= A�W

∼= A�W ,

where A�W denotes the orbit algebra of A�W .
The main result of Section 6 is Theorem 6.3, which shows that if G is a finite

abelian group with free Brauer action on �, then there is a Brauer weighting W on
� such that the Brauer graphs � and �W are isomorphic, as are their corresponding
Brauer graph algebras.

Applications of the theory presented are given in Section 7. The Appendix provides
a brief survey of covering theory for path algebras and their quotients.
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2. Notation. Let � be a finite connected graph with at least one edge. We
denote by �0 the set of vertices of � and by �1 the set of edges of �. We equip
� with a multiplicity function m : �0 → � \ {0} and, for each vertex in �, we fix
a cyclic ordering of the edges incident with this vertex. We call such a graph a
Brauer graph. Thus, a Brauer graph is a triple (�, o, m) where o denotes the cyclic
ordering and m the multiplicity function. Note that in the Brauer tree case, the
multiplicity function has value 1 at all but possibly one vertex, called the exceptional
vertex. Although the convention in the literature is to denote a Brauer graph by
�, where the choice of cyclic ordering and multiplicity function are suppressed, we
usually write (�, o, m). In all examples a planar embedding of � is given and we
choose the cyclic ordering to be the clockwise ordering of the edges around each
vertex.

We say that an edge j in � is the successor of the edge i at the vertex μ if both
i and j are incident with μ and edge j directly follows edge i in the cyclic ordering
around μ. For each μ ∈ �0, let val(μ) denote the valency of μ, that is, the number of
edges incident with μ where we count each loop as two edges. If val(μ) = 1 with edge
i incident with the vertex μ then we say that i is a successor of itself. If μ is a vertex
with val(μ) = 1 and m(μ) = 1 so that i is the only edge incident with μ then we call i a
truncated edge at the vertex μ.

Following [3] and [14], we let K be a field and introduce the Brauer graph algebra
of a Brauer graph �. We associate to � a quiver Q� and a set of relations ρ� in the
path algebra KQ�, which we call the Brauer graph relations. Let I� be the ideal of KQ�

which is generated by the set ρ�. We define the Brauer graph algebra A� of � to be the
quotient A� = KQ�/I�.

If the Brauer graph � is μ ν with m(μ) = m(ν) = 1, then Q� is • x
��

and ρ� = {x2} so the Brauer graph algebra is K [x]/(x2).
We now define Q� for a general Brauer graph (excluding the above case, so if edge

i is truncated at vertex μ and the endpoints of i are μ and ν then m(ν) val(ν) ≥ 2). The
vertices of Q� correspond to the edges of �, that is, for every edge i ∈ �1 there is a
corresponding vertex vi in Q�. If edge j is the successor of edge i at the vertex μ and
edge i is not a truncated edge at μ then there is an arrow from vi to vj in Q�. For each
vertex μ and edge i incident with μ, let i = i1, i2, . . . , ival(μ) be the edges incident with
μ listed in the cyclic ordering, where the loops are listed twice and the other edges
precisely once. We call this the successor sequence of i at μ. We set ival(μ)+1 = i, noting
that i is the successor of ival(μ).

In case � has at least one loop, care must be taken. In such circumstances, for
each vertex μ, we choose a distinguished edge, iμ, incident with μ. If � is a loop at
μ, � occurs twice in the successor sequence of iμ. We distinguish the first and second
occurrences of � in this sequence and view the two occurrences as two edges in �1.
Thus, �1 is the set of all edges with the proviso that loops are listed twice and have
different successors. In particular, if � is μ i then, since i is viewed as two edges,
say i and î, the successor sequence of i at vertex μ is i, î and the successor sequence of
î at μ is î, i. These sequences imply that there are two arrows in the quiver Q�, and
Q� = •�� ��

.

In order to define the Brauer graph relations ρ� we need a quantizing
function q. Let X � = {(i, μ) | i ∈ �1 is incident with μ ∈ �0 and i is not truncated at
either of its endpoints} and let q : X � → K \ {0} be a set function. We denote q((i, μ))
by qi,μ. With these additional data we call (�, o, m, q) a quantized Brauer graph. We
remark that if the Brauer graph � is μ ν then X � = ∅. Furthermore, if the
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Brauer graph algebra is assumed to be symmetric and if the field is algebraically
closed, then we can set q = 1 (see [3]).

There are three types of relations for (�, o, m, q). Note that we write our paths
from left to right.

Relations of type one. For each vertex μ and edge i incident with μ, which is not
truncated at the vertex μ, let i = i1, i2, . . . , ival(μ) be the successor sequence of i at μ.
From this we obtain a cycle Ci,μ = a1a2 · · · aval(μ) inQ�, where the arrow ar corresponds
to the edge ir+1 being the successor of the edge ir at the vertex μ. With this notation,
for each edge i ∈ � with endpoints μ and ν so that i is not truncated at either μ or ν,
ρ� contains either qi,μCm(μ)

i,μ − qi,νCm(ν)
i,ν or qi,νCm(ν)

i,ν − qi,μCm(μ)
i,μ . We call this a type one

relation. Note that since one of these relations is the negative of the other, the ideal I�

does not depend on this choice.
Relations of type two. The second type of relations occurs if i is a truncated edge at

the vertex μ and the endpoints of i are μ and ν. Let Ci,ν = b1b2 · · · bval(ν) be the cycle
associated with edge i incident with vertex ν. In this case, we have a relation Cm(ν)

i,ν b1.
Relations of type three. The third type of relations are quadratic monomial relations

of the form ab in KQ� where ab is not a subpath of any Ci,μ.

EXAMPLE 2.1.

(1) The graph (�, o, m)

μ

1

��
��

��
�

λ
2

ν

ξ

3

��������

with m(λ) = m(μ) = m(ν) = 1 and m(ξ ) = 2 has edge 1 truncated at vertex
μ and edge 2 truncated at vertex ν. Then X � = {(3, λ), (3, ξ )}. Let q : X � →
K \ {0} be a quantizing function. The Brauer graph algebra associated with
the quantized Brauer graph (�, o, m, q) has quiver

v1
α �� v2

β����
��

��
��

v3

γ

����������

δ

��

and ρ� = {q3,ξ δ
2 − q3,λγ αβ, αβγα, βγαβ, βδ, δγ }.

(2) The graph (�, o, m)

μ

1

��
��

��
��

3

��
��

��
��

ξ
2

ν
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with m(μ) = 3 and m(ν) = m(ξ ) = 1 has X � = {(1, μ), (1, ν), (2, ξ ),
(2, ν), (3, ξ ), (3, μ)}. Let q : X � → K \ {0}. The Brauer graph algebra of
(�, o, m, q) has quiver

v1

a1 ��

ā3

		�
��

��
��

� v2

a2����
��

��
��

ā1





v3

a3

����������

ā2

����������

and ρ�={q1,μ(ā3a3)3−q1,νa1ā1, q2,ξ a2ā2−q2,ν ā1a1, q3,ξ ā2a2−q3,μ(a3ā3)3,

a1a2, a2a3, a3a1, ā1ā3, ā3ā2, ā2ā1}.

3. Group actions on Brauer graphs and Brauer graph algebras. We assume
throughout this paper that G is a finite abelian group. We note here that G being
abelian is a necessary condition for the main results of this paper, though is not
explicitly required in the current section. However, since we require G to be abelian in
Section 4 onwards, we keep this assumption throughout the paper.

Suppose that G is a finite abelian group which acts on a finite connected graph

. Let 
 = 
/G be the orbit graph of 
 under G, and let μ̄ = {μg | g ∈ G} and
ī = {ig | g ∈ G} where μ ∈ 
0 and i ∈ 
1. If the action of G on 
 is not faithful, then
let N be the normal subgroup of G consisting of those elements that fix every vertex
and every edge of 
. Then G/N acts faithfully on 
. Without loss of generality, we
assume throughout this paper that our group actions are faithful.

Since a Brauer graph comes equipped with a cyclic ordering and multiplicity
function we now define a Brauer action of a finite abelian group on a Brauer graph as
follows.

DEFINITION 3.1. Let G be a finite abelian group and let (�, o, m) be a Brauer graph.
We say that there is a Brauer action of G on (�, o, m) if

(1) G acts (faithfully) on the graph �,
(2) the action of G on � is orientation preserving, that is, if j is the successor of

i at the vertex μ, then, for all g ∈ G, jg is the successor of ig at the vertex μg,
and

(3) m(μ) = m(μg) for all g ∈ G, μ ∈ �0.

If there is a Brauer action of a finite abelian group G on a Brauer graph (�, o, m)
then val(μ) = val(μg) for all g ∈ G and μ ∈ �0, since successors are preserved by the
G-action. In particular, by property (3), val(μ)m(μ) = val(μg)m(μg) for all g ∈ G and
μ ∈ �0.

We now define a free Brauer action.

DEFINITION 3.2. Let G be a finite abelian group and let (�, o, m) be a Brauer graph.
A Brauer action of G on (�, o, m) is a free Brauer action if G acts freely on the edge set
�1 of �, that is, if i ∈ �1 and ig = i then g = idG, the identity in G.

We remark that if there is a Brauer action of G on (�, o, m) and if there exists g ∈ G
such that ig = i for some i ∈ �1 then, since the action of G is orientation preserving
and � is connected, it follows that jg = j for all j ∈ �1. Moreover, if there is a Brauer
action of a non-trivial finite abelian group G on (�, o, m) and if |�0| ≥ 3, then there
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is a free Brauer action of G on (�, o, m) if and only if whenever i ∈ �1 then there is
some g ∈ G with ig �= i. We emphasize that the group G need not act freely on the set
of vertices of � for the Brauer action of G on (�, o, m) to be a free Brauer action.

The next results show that if there is a free Brauer action of G on the Brauer graph
(�, o, m), then there is a multiplicity function m on � which is compatible with m and
an induced cyclic ordering o which makes (�, o, m) a Brauer graph.

LEMMA 3.3. Suppose there is a free Brauer action of G on (�, o, m). Then val(μ̄) |
val(μ) for all μ ∈ �0. Moreover, if i ∈ �1 is incident with μ, then there exist 1 ≤ k ≤
val(μ), s ≥ 0 and g ∈ G such that

(1) val(μ̄) = k;
(2) the successor sequence of i at μ is

i = i1, i2, . . . , ik, ig
1, ig

2, . . . , ig
k, . . . , igs

1 , igs

2 , . . . , igs

k = ival(μ);

(3) val(μ) = val(μ̄)(s + 1).

Proof. Let μ ∈ �0 and i ∈ �1 be incident with μ. If val(μ) = 1 then clearly val(μ̄) =
1 and we are done. So assume that val(μ) > 1. Consider the successor sequence of i at
μ, i = i1, i2, . . . , ival(μ). Recall that ival(μ)+1 = i since i is the successor of ival(μ). There
is k minimal with 1 ≤ k ≤ val(μ) and ik+1 = ig for some g ∈ G. If 1 ≤ α < β ≤ k and
iα = ih

β+1 for some h ∈ G then α = 1 and β = k. To see this, if α = 1 then β = k from
the choice of k. On the other hand, if α > 1 and there exists h with iα = ih

β+1, using
Definition 3.1(2) we see that i1 = ih

β−α+2. Therefore, β − α + 2 = k + 1 by definition of
k and hence β − α = k − 1. But this contradicts α ≥ 2 and β ≤ k. From this it follows
that val(μ̄) = k.

Repeating this argument shows that the successor sequence of i at μ can be written
as

i = i1, i2, . . . , ik, ig
1, ig

2, . . . , ig
k, . . . , igs

1 , igs

2 , . . . , igs

k = ival(μ)

for some s ≥ 0. Hence, val(μ̄)(s + 1) = val(μ) and we are done. �
PROPOSITION 3.4. Suppose there is a free Brauer action of G on (�, o, m). Let m be

the function

m : �0 → � \ {0}, μ̄ 
→ val(μ)m(μ)/ val(μ̄).

Then there is a cyclic ordering o induced by o such that (�, o, m) is a Brauer graph.

Proof. We begin by showing that the cyclic ordering o induces a cyclic ordering o.
Let μ ∈ �0 and i ∈ �1 be incident with μ. If val(μ) = 1 so that val(μ̄) = 1, then the
cyclic ordering on � is the only one possible. So assume that val(μ) > 1. Consider
the successor sequence of i at μ, i = i1, i2, . . . , ival(μ). Let k be as in Lemma 3.3. We
take the successor sequence for ī at μ̄ to be ī1, ī2, . . . , īk. This gives the desired cyclic
ordering o. In particular, if j is the successor of i at vertex μ then j̄ is the successor of ī
at vertex μ̄.

The set function m is well defined by Definition 3.1(3) and Lemma 3.3. �
We call the Brauer graph (�, o, m) in Proposition 3.4 the Brauer orbit graph of

(�, o, m) associated with the action of G.
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PROPOSITION 3.5. Suppose there is a free Brauer action of G on (�, o, m). Then the
following properties hold.

(1) m(μ̄) val(μ̄) = m(μ) val(μ) = m(μg) val(μg) for all μ ∈ �0 and g ∈ G.
(2) Edge i ∈ �1 is truncated at vertex μ if and only if ī ∈ �1 is truncated at vertex

μ̄.
(3) Edge i ∈ �1 is truncated at vertex μ if and only if ig ∈ �1 is truncated at vertex

μg for all g ∈ G.

Proof. (1) is immediate from the definition of m. For the proof of (2) we recall that
the edge i ∈ �1 is truncated at vertex μ if and only if m(μ) val(μ) = 1. Now, from (1),
this holds if and only if m(μ̄) val(μ̄) = 1, which is precisely the condition that ī ∈ �1 is
truncated at vertex μ̄. Hence, property (2) holds. The proof of (3) is similar to that of
(2), since m(μ) val(μ) = 1 if and only if m(μg) val(μg) = 1 from Definition 3.1(3) and
the subsequent remark. �

EXAMPLE 3.6. Let (�, o, m) be the Brauer graph

•
i1

��
��

��
� •

i2

��
��

��
�

• i6 μ
i3 •

•
i5

������� •
i4

�������

where each vertex has multiplicity 1. Let G be the cyclic group G = �2 = 〈g | g2 = id〉
so that G acts on � with ig

1 = i4, ig
2 = i5, ig

3 = i6. Then necessarily ig
4 = i1, ig

5 = i2, ig
6 = i3.

This is a free Brauer action of G on � and � is the Brauer graph

•
i1

��
��

��
��

•
i2

		
		

		
		

μ̄
i3 •

where μ̄ has multiplicity 2 and the other vertices have multiplicity 1.

We now extend the concept of a Brauer action by defining a Brauer action on a
quantized Brauer graph (�, o, m, q).

DEFINITION 3.7. A Brauer action of a finite abelian group G on the Brauer graph
(�, o, m) is a Brauer action of G on the quantized Brauer graph (�, o, m, q) if

qi,μ

qi,ν
= qig,μg

qig,νg
,

for all g ∈ G and μ i
ν in � such that i is not truncated at either of its endpoints.

To understand the importance of the quotients above, we note that the relation
of type one qi,μCm(μ)

i,μ − qi,νCm(ν)
i,ν may be replaced by either Cm(μ)

i,μ − qi,ν
qi,μ

Cm(ν)
i,ν or

Cm(ν)
i,ν − qi,μ

qi,ν
Cm(μ)

i,μ without altering the ideal I�. These last two relations distinguish
between the endpoints of the edge i. We formalize this as follows. Let Y = {i ∈ �1 |
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i is not truncated at either of its endpoints}. Let E1 : Y → �0 be a set function such
that E1(i) is an endpoint of i. Let E2 : Y → �0 be the set function with the property
that E1(i) and E2(i) are the two endpoints of i. We note that i is a loop if and only if
E1(i) = E2(i). From the above remarks, we see that, for each i ∈ Y , the relation of type
one may be replaced by

Cm(E1(i))
i,E1(i) − qi,E2(i)

qi,E1(i)
Cm(E2(i))

i,E2(i) .

LEMMA 3.8. Suppose there is a free Brauer action of G on (�, o, m, q). Then there is
a choice of set functions E1 and E2 such that

(E j(i))g = E j(ig)

for all i ∈ Y, g ∈ G, j = 1, 2.

Proof. It suffices to prove this for j = 1. Proposition 3.5(3) implies that Y is a
disjoint union of orbits. For each orbit, choose some edge i in the orbit and arbitrarily
select an endpoint; define E1(i) to be this endpoint. For all other ig in the orbit of i,
define E1(ig) = (E1(i))g. This yields a choice of E1 that satisfies the desired property. �

If there is a free Brauer action of G on a quantized Brauer graph (�, o, m, q), then
we henceforth assume that the functions E1 and E2 satisfy (E j(i))g = E j(ig), for all i ∈
Y, g ∈ G, and j = 1, 2. We are now in a position to define a quantizing function q for the
Brauer orbit graph (�, o, m) and thus extend Proposition 3.4. Recall that X � = {(ī, μ̄) |
ī ∈ �1 is incident with μ̄ ∈ �0 and ī is not truncated at either of its endpoints}. Define
q : X � → K \ {0} by

q((ī, μ̄)) = qi,μ

qi,E1(i)
.

We denote q((ī, μ̄)) by qī,μ̄ and note that, by the above discussion, q is well defined.
Summarizing, we have the following result.

PROPOSITION 3.9. Suppose there is a free Brauer action of G on (�, o, m, q). Then
there is a quantizing function q so that (�, o, m, q) is a quantized Brauer graph satisfying
the property that if i ∈ Y with endpoints μ and ν, then

qi,μ

qi,ν
= qī,μ̄

qī,ν̄
.

We call the quantized Brauer graph (�, o, m, q) in Proposition 3.9 the quantized
Brauer orbit graph of (�, o, m, q) associated with the action of G.

Now we turn our attention to the Brauer graph algebra associated with a Brauer
graph on which there is a free Brauer action.

LEMMA 3.10. Suppose there is a free Brauer action of G on the Brauer graph (�, o, m).
Then there is an induced free group action of G on the quiver Q�. Moreover, if (�, o, m, q)
is a quantized Brauer graph then the induced G-action satisfies

x ∈ I� if and only if xg ∈ I� for all g ∈ G.
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Proof. Let vi be a vertex in the quiver Q� so that vi corresponds to the edge i in
�. We define the action of G on the vertices of Q� by (vi)g = vig for g ∈ G. Let a be
an arrow from vi to vj in the quiver Q�; then i and j are two edges in � incident with
the same vertex and such that j is the successor of i. By Definition 3.1(2), the edge
jg is the successor of the edge ig for all g ∈ G. So, for g ∈ G, we define ag to be the
arrow from vig to vjg in Q�. It is now straightforward to show, for all g, h ∈ G, that
((vi)g)h = (vig )h = v(ig)h = vi(gh) = (vi)(gh) and, similarly, that (ag)h = a(gh).

To show that this is a free action on Q�, suppose that, for a vertex vi in Q�

(which corresponds to an edge i in �) and g in G, we have (vi)g = vi. Then vig = vi so
by definition of Q� we have that ig = i. Hence, by Definition 3.2 we have g = idG. It
follows that G acts freely on Q�.

Now suppose that we have a type one relation

Cm(E1(i))
i,E1(i) − qi,E2(i)

qi,E1(i)
Cm(E2(i))

i,E2(i) .

From Definition 3.7 and Lemma 3.8 we have that(
Cm(E1(i))

i,E1(i) − qi,E2(i)

qi,E1(i)
Cm(E2(i))

i,E2(i)

)g

= Cm(E1(ig))
ig,E1(ig) − qig,E2(ig)

qig,E1(ig)
Cm(E2(ig))

ig,E2(ig)

which is in I�. It is easy to see that if x is a relation of type 2 or type 3, then xg is also
a relation of type 2 or type 3, respectively, for all g ∈ G. This completes the proof. �

We remark that there is a concept of a free group action on a category, see [2, 6],
which specializes to a free group action on a quiver, as is given in the previous lemma.

Suppose there is a free Brauer action of G on (�, o, m). The induced action of G on
Q� given in Lemma 3.10, allows us to consider the orbit quiver Q�, which is defined
in the Appendix.

PROPOSITION 3.11. Suppose there is a free Brauer action of G on (�, o, m). Then
Q�

∼= Q� as quivers.

Proof. We prove that (Q�)0
∼= (Q�)0 and (Q�)1

∼= (Q�)1.
The set (Q�)0 corresponds to the orbits of vertices of Q� under the action of G.

The set (Q�)0 is the set of vertices of Q� and so corresponds to the set of edges of
�, that is, to the orbits of edges of � under the action of G. By definition of Q�, the
vertices of Q� correspond to the edges of �. From the definition of the action of G on
Q� in Lemma 3.10, the two sets of orbits are in bijection. Thus, (Q�)0

∼= (Q�)0.
The set (Q�)1 is the set of arrows of Q�, and so corresponds to the orbits under the

action of G of a vertex μ ∈ � with two incident edges i and j, where j is the successor
of i. By Definition 3.1(2), the edges ig and jg are incident with the vertex μg and jg

is the successor of ig. Thus, the orbit of this action on an arrow vi
α �� vj in Q�

corresponds to an arrow vī
ᾱ �� vj̄ in (Q�)1. On the other hand, an element of (Q�)1

corresponds to an orbit vi
α �� vj under the action of G of an arrow vi

α �� vj

in Q�. It is now easy to see that there is a bijection between elements vī
ᾱ �� vj̄ of

(Q�)1 and elements vi
α �� vj of (Q�)1. �
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Suppose there is a free Brauer action of G on the quantized Brauer graph
(�, o, m, q). Then, from the Appendix and Lemma 3.10, we have that G acts freely
on Q� and A� = KQ�/I�.

THEOREM 3.12. Let G be a finite abelian group with a free Brauer action on the
quantized Brauer graph (�, o, m, q). Let (�, o, m, q) be the associated quantized Brauer
orbit graph. Let A� be the Brauer graph algebra associated with (�, o, m, q) and A� the
Brauer graph algebra associated with (�, o, m, q). Then

A�
∼= A� .

Proof. From the discussion above and Proposition 3.11, it suffices to show that
I�

∼= I�. Given our choice of E1 and E2 as in Lemma 3.8, we see that E1 and E2 induce
set functions E1 and E2 for �.

First, we consider a relation x of type one in I�. For this, suppose i is an edge in
�1 which is not truncated at either of its endpoints and let E1(i) = μ and E2(i) = ν.
Let i = i1, i2, . . . , ival(μ) (respectively i = j1, j2, . . . , jval(ν)) be the successor sequence for
i at vertex μ (respectively i at vertex ν) with associated cycle Ci,μ = a1a2 · · · aval(μ)

(respectively Ci,ν = b1b2 · · · bval(ν)) in Q�. Thus, x = Cm(μ)
i,μ − qi,ν

qi,μ
Cm(ν)

i,ν . By Lemma 3.3,
there exist 1 ≤ k ≤ val(μ), 1 ≤ l ≤ val(ν), g, h ∈ G and s, t ≥ 0 such that the successor
sequence for i at μ is

i1, i2, . . . , ik, ig
1, ig

2, . . . , ig
k, . . . , igs

1 , igs

2 , . . . , igs

k

and the successor sequence for i at ν is

j1, j2, . . . , jl, jh
1, jh

2, . . . , jh
l , . . . , jht

1 , jht

2 , . . . , jht

l .

It now follows that x̄ ∈ I� is given by

x̄ = (ā1ā2 · · · āk)m(μ)(s+1) − qi,ν

qi,μ
(b̄1b̄2 · · · b̄l)m(ν)(t+1).

From Lemma 3.3 we have val(μ) = val(μ̄)(s + 1) and val(ν) = val(ν̄)(t + 1), and, from
Proposition 3.5(1), we have m(μ̄) val(μ̄) = m(μ) val(μ). Thus, m(μ)(s + 1) = m(μ̄) and
m(ν)(t + 1) = m(ν̄). Finally by Proposition 3.9,

x̄ = (ā1ā2 · · · āk)m(μ̄) − qī,ν̄

qī,μ̄
(b̄1b̄2 · · · b̄l)m(ν̄),

which is the relation of type one in KQ� corresponding to ī under the isomorphism of
Proposition 3.11.

The remaining relations of types two and three are monomial and a similar
argument holds for these cases. �

4. Weightings on Brauer graphs. Throughout this section, (�, o, m) will denote
a Brauer graph and G will continue to be a finite abelian group. For each μ ∈ �0, we
define Zμ to be the set Zμ = {(i, j) | i, j ∈ �1, j is the successor of i at vertex μ}. Let
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Z� be the disjoint union

Z� =
•⋃

μ∈�0

Zμ .

DEFINITION 4.1. A set function W : Z� → G is called a successor weighting of the
Brauer graph (�, o, m). For μ ∈ �0 we define the order of μ, denoted ord(μ), to be the
order in G of the element

ωμ =
∏

(i,j)∈Zμ

W (i, j).

Let W : Z� → G be a successor weighting of (�, o, m). The aim of this section
is to construct a new Brauer graph (�W , oW , mW ) and a free Brauer action of G on
(�W , oW , mW ) such that the Brauer orbit graph (�W , oW , mW ) associated with W is
isomorphic to (�, o, m). We begin with the construction of �W .

Suppose μ is a vertex in �. Let Hμ denote the subgroup of G generated by the
element ωμ, and Hμ \ G the set of cosets of Hμ in G. We define an equivalence relation
on the set {(i, L) | i ∈ �1 is incident with μ, L ∈ Hμ \ G} to be the equivalence relation
generated by

(i, L) ∼ (j, L′) if j is the successor of i at vertex μ and L′=LW (i, j), for L, L′ ∈ Hμ\G.

Let Dμ be the set of equivalence classes under this equivalence relation; we denote the
equivalence class of (i, L) by [i, L].

We recall that if an edge i is a loop at the vertex μ, then, by the remarks in Section 2,
i is viewed as two edges, say i and î, having different successors. It can easily occur that
(i, L) is not equivalent to (î, L), for all cosets L ∈ Hμ \ G.

Suppose i ∈ �1 is incident with vertex μ in � and let i = i1, i2, . . . , ival(μ) be the
successor sequence of i at vertex μ with our usual convention that ival(μ)+1 = i1.
Define ω(i1, ir) = W (i1, i2)W (i2, i3) · · · W (ir−1, ir) for 1 ≤ r ≤ val(μ) + 1. Then ωμ =
ω(i1, ival(μ)+1). In the rest of the paper and in order to emphasize the vertex μ, we
denote a coset of Hμ in G by Hμ,s (for some 1 ≤ s ≤ |G|/ ord(μ)).

LEMMA 4.2. Let W : Z� → G be a successor weighting of (�, o, m), i ∈ �1 be
incident with μ ∈ �0 and i = i1, i2, . . . , ival(μ) be the successor sequence of i at μ. Let
Hμ,s be a coset of Hμ in G and j an edge in �. Then, [i, Hμ,s] = [j, Hν,t] if and only if
ν = μ, j = ir, and Hμ,t = Hμ,sω(i1, ir)ωθ

μ for some 1 ≤ r ≤ val(μ) and 0 ≤ θ < ord(μ).

Proof. Suppose first that [i, Hμ,s] = [j, Hν,t]. By the definition of the equivalence
relation, μ = ν, so that j is incident with μ in �. Hence, j = ir for some 1 ≤ r ≤ val(μ).
Now (i1, Hμ,s) is equivalent to (i2, Hμ,sW (i1, i2)), so inductively (i1, Hμ,s) is equivalent
to (ir, Hμ,sW (i1, i2) · · · W (ir−1, ir)) = (ir, Hμ,sω(i1, ir)). However, Hμ = 〈ωμ〉 so Hμ,s =
Hμ,sω

θ
μ for all 0 ≤ θ < ord(μ). Thus, Hμ,t = Hμ,sω(i1, ir)ωθ

μ for some 0 ≤ θ < ord(μ).
Conversely, suppose that j = ir and Hμ,t = Hμ,sω(i1, ir)ωθ

μ for some 1 ≤ r ≤
val(μ), 0 ≤ θ < ord(μ). A similar argument to that given above shows that (i, Hμ,s)
is equivalent to (ir, Hμ,t) and hence [i1, Hμ,s] = [ir, Hμ,t]. �

DEFINITION 4.3. We define �W to be the graph with vertex set {μd | μ ∈ �0, d ∈
Dμ} and edge set {ig | g ∈ G, i ∈ �1}. If i is an edge in �1 with endpoints μ and ν in
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�0 then the edge ig in (�W )1 has endpoints μ[i,Hμ,s] and ν[i,Hν,t], where Hμ,s (respectively
Hν,t) is the unique coset of Hμ in G (respectively Hν in G) containing g.

If i is a loop in � incident with vertex μ, then consider i as two edges i and î. Let
g ∈ G. The edge ig has endpoints μ[i,Hμ,s] and μ[î,Hμ,s], and the edge îg has endpoints
μ[î,Hμ,s] and μ[i,Hμ,s], where Hμ,s is the unique coset of Hμ in G containing g.

Suppose that j is the successor of i at the vertex μ in �, let g ∈ G, and let Hμ,s be
the coset of Hμ in G containing g. Then, both ig and jgW (i,j) are incident with vertex
μ[i,Hμ,s] in �W .

PROPOSITION 4.4. Let W : Z� → G be a successor weighting of (�, o, m). For each
μ ∈ �0 and d ∈ Dμ we have val(μd) = ord(μ) val(μ).

Proof. Let μ ∈ �0 and d = [i, Hμ,s] ∈ Dμ. Suppose that h ∈ G and jh is incident
with μd in �W . Since one endpoint of jh is μd it follows from Definition 4.3 that
μ[i,Hμ,s] = μ[j,Hμ,t], where h ∈ Hμ,t. Thus, [i, Hμ,s] = [j, Hμ,t] and, by Lemma 4.2, j is
in the successor sequence i = i1, i2, . . . , ival(μ) of i at vertex μ in �. For g′ ∈ G we
have hg′ ∈ Hμ,t if and only if g′ = ωθ

μ for some 0 ≤ θ < ord(μ). Thus, there are val(μ)
choices for j and ord(μ) choices for h. Hence, val(μd) = ord(μ) val(μ). �

In order to construct a multiplicity function mW for �W , we need to place an
additional condition on our successor weightings.

DEFINITION 4.5.

(1) A successor weighting W : Z� → G of the Brauer graph (�, o, m) is called
a Brauer weighting if ord(μ) | m(μ) for all μ ∈ �0.

(2) If W : Z� → G is a Brauer weighting, we define the function mW by

mW : (�W )0 → � \ {0}, μd 
→ m(μ)/ ord(μ).

We remark that ord(μ) | m(μ) if and only if ω
m(μ)
μ = idG.

PROPOSITION 4.6. Let W : Z� → G be a Brauer weighting of (�, o, m). Suppose
that j is the successor of i at the vertex μ in �, let g ∈ G, and let Hμ,s be the coset of
Hμ in G containing g. Defining jgW (i,j) to be the successor of ig at vertex μ[i,Hμ,s] induces
a cyclic ordering oW so that (�W , oW , mW ) is a Brauer graph.

Proof. Let i = i1, j = i2, i3, . . . , ival(μ) be the successor sequence of i at the vertex
μ in �. From Lemma 4.2 and Proposition 4.4, the successor sequence of ig at vertex
μ[i,Hμ,s] is

(i1)g, (i2)gω(i1,i2), (i3)gω(i1,i3), . . . , (ival(μ))gω(i1,ival(μ)),

(i1)gωμ
, (i2)gω(i1,i2)ωμ

, . . . , (ival(μ))gω(i1,ival(μ))ωμ
, . . . ,

(i1)gω
ord(μ)−1
μ

, (i2)gω(i1,i2)ωord(μ)−1
μ

, . . . , (ival(μ))gω(i1,ival(μ))ω
ord(μ)−1
μ

.

This explicitly describes the cyclic ordering oW . �
LEMMA 4.7. There is a canonical group action of G on �W given by

(μ[i,Hμ,s])
h = μ[i,Hμ,sh] and (ig)h = igh

for all h ∈ G.
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Proof. We prove first that the action of G on a vertex of �W is well defined.
Suppose [i, Hμ,s] = [j, Hμ,t] and that j is the successor of i at the vertex μ. By definition,
Hμ,sW (i, j) = Hμ,t so that Hμ,sW (i, j)h = Hμ,th for all h ∈ G. Since G is abelian, it
follows that Hμ,sh · W (i, j) = Hμ,th and hence [i, Hμ,sh] = [j, Hμ,th]. Thus, the action
of G respects the generators of the equivalence relation and hence the action of G on
(�W )0 is well defined.

We leave it to the reader to show that if ig has endpoints μ[i,Hμ,s] and ν[i,Hν,t] then
(ig)h has endpoints (μ[i,Hμ,s])

h and (ν[i,Hν,t])
h, where h ∈ G. �

DEFINITION 4.8. A map ϕ : (�, o, m) → (�′, o′, m′) is an isomorphism of Brauer
graphs if ϕ : � → �′ is a graph isomorphism such that

(1) if j is the successor of i at vertex μ in �, then ϕ(j) is the successor of ϕ(i) at
vertex ϕ(μ) in �′, and

(2) m(μ) = m′(ϕ(μ)) for all μ ∈ �0.
In this case, we say that (�, o, m) and (�′, o′, m′) are isomorphic as Brauer graphs.

It is easy to see that if ϕ : (�, o, m) → (�′, o′, m′) is an isomorphism of Brauer
graphs, then ϕ induces an isomorphism of the associated quivers Q� and Q�′ , and
hence induces a K-algebra isomorphism of the path algebras KQ� and KQ�′ .

THEOREM 4.9. Let (�, o, m) be a Brauer graph, G be a finite abelian group,
W : Z� → G be a Brauer weighting and (�W , oW , mW ) be the Brauer graph associated
with W. Then the canonical action of G on (�W , oW , mW ) is a free Brauer action.
Moreover, if (�W , oW , mW ) is the Brauer orbit graph under this action, then (�, o, m)
and (�W , oW , mW ) are isomorphic as Brauer graphs.

Proof. We first show that the action is a free Brauer action on (�W , oW , mW ). Let i ∈
�1 and g, h ∈ G. Since (ig)h = igh, the action of G on �W is free on the edge set (�W )1. If
j is the successor of i at the vertex μ in � and g ∈ Hμ,s, then jgW (i,j) is the successor of ig at
the vertex μ[i,Hμ,s] in �W and jghW (i,j) is the successor of igh at the vertex μ[i,Hμ,sh]. Since G
is abelian, ghW (i, j) = gW (i, j)h, and we see that (jgW (i,j))h is the successor of (ig)h. Now
we show that mW (μd) = mW (μg

d) for all g ∈ G, where μd ∈ (�W )0. By Definition 4.5,
mW (μd) = m(μ)/ ord(μ). However, μ

g
d = μd ′ for some d ′ ∈ Zμ since Hμ,sg = Hμ,t for

some 1 ≤ t ≤ |G|/ ord(μ). Hence, mW (μg
d) = m(μ)/ ord(μ) and mW (μd) = mW (μg

d).
Thus, the canonical action of G on (�W , oW , mW ) is a free Brauer action.

We form the Brauer orbit graph (�W , oW , mW ) under this free Brauer action. The
next step is to show that �W ∼= � as graphs. Suppose μ is a vertex in � and d ∈ Dμ.
If μd = νe for some ν ∈ �0 and e ∈ Dν then, from Lemma 4.2, we have that μ = ν,
so the orbit of the vertex μd ∈ (�W )0 is contained in the set {μd ′ | d ′ ∈ Dμ}. Now
let d ′ ∈ Dμ and suppose d = [i, Hμ,s], d ′ = [j, Hμ,t] for some i, j ∈ �1 incident with μ.
Let i = i1, i2, . . . , ival(μ) be the successor sequence of i at μ. By Lemma 4.2, j = ir and
Hμ,t = Hμ,sω(i1, ir)ωθ

μ for some 1 ≤ r ≤ val(μ), 0 ≤ θ < ord(μ). Thus, (μd)ω(i1,ir)ωθ
μ =

(μ[i1,Hμ,s])
ω(i1,ir)ωθ

μ = μ[i1,Hμ,sω(i1,ir)ωθ
μ] = μ[ir,Hμ,t] = μd ′ . Hence, μd ′ is in the orbit of μd ,

and so the orbit of μd is {μd ′ | d ′ ∈ Dμ}. Thus, the vertices μd in (�W )0 are in one-to-
one correspondence with the vertices μ in �0.

Now, suppose that i is an edge in � and g ∈ G. We show that the orbit of the
edge ig in (�W )1 is the set {ih | h ∈ G}. Let j be an edge in � and h ∈ G such that jh is
in the orbit of ig. Then there is some g′ ∈ G with jh = (ig)g′ = igg′ so that j = i. Since
(ig)g−1h = ih, it follows that the orbit of ig is precisely the set {ih | h ∈ G}. Hence, the
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edges ig in (�W )1 are in one-to-one correspondence with the edges i in �1. It is now
straightforward to show that there is an isomorphism of graphs ϕ : �W → � given by
ϕ(μd) = μ and ϕ(ig) = i.

It is clear that the induced cyclic ordering oW is the cyclic ordering o

under this isomorphism ϕ. Finally, from Propositions 3.5(1) and 4.4, we have
that mW (μd) val(μd) = mW (μd) val(μd) = mW (μd) ord(μ) val(μ). From Definition 4.5,
mW (μd) = m(μ)/ ord(μ) so it follows that mW (μd) val(μd) = m(μ) val(μ). It remains to
show that val(μd) = val(μ), for then we have that mW (μd) = m(μ) and hence mW = mϕ

as required. To see this, let μ ∈ �0, d = [i, Hμ,s] and g ∈ G, where i is incident with
μ, g ∈ Hμ,s and 1 ≤ s ≤ |G|/ ord μ. If the element (ir)h is in the orbit of (ir′ )h′ , for
some h, h′ ∈ G, then r = r′, and so, from the successor sequence of ig at μd given
in the proof of Proposition 4.6, we see that val(μd) ≥ val(μ). However, noting that

(ir)gω(ii,ir)ωθ
μ

= (
(ir)gω(ii,ir)

)ωθ
μ is in the orbit of (ir)gω(ii,ir), we conclude that val(μd) ≤ val(μ)

and the proof is complete. �
DEFINITION 4.10. Let W : Z� → G be a Brauer weighting of (�, o, m) and let

(�W , oW , mW ) be the Brauer graph associated with W . We call (�W , oW , mW ) the
Brauer covering graph of (�, o, m) associated with W .

EXAMPLE 4.11. Let G be the cyclic group G = �3 = 〈g | g3 = id〉 and let � be the
graph

•
a

��
��

��
�

b

��
��

��
�

• c •

with weighting W given by

W (a, b) = id, W (b, a) = g, W (b, c) = id, W (c, b) = id, W (c, a) = id, W (a, c) = id.

Following the above construction, �W is

• cg

ag

��
��

��
� •

bg

��
��

��
�

• bid • ag2 •

•

aid
�������

cid

�������
•

cg2
�������

bg2
�������

Moreover, �W = �.

In the next section, we investigate coverings of Brauer graph algebras associated
with a Brauer covering graph.

5. Brauer graph algebras arising from weightings on Brauer graphs. Let (�, o, m)
be a Brauer graph, (�, o, m, q) be a quantization of (�, o, m) and G be a finite abelian
group. Let W : Z� → G be a Brauer weighting and (�W , oW , mW ) be the Brauer graph
associated with W . The quantizing function q : X� → K \ {0} induces a quantizing

https://doi.org/10.1017/S0017089513000372 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089513000372


GROUP ACTIONS AND COVERINGS OF BRAUER GRAPH ALGEBRAS 453

function qW : X�W → K \ {0} given by qW ((ig, μd)) = qi,μ. It is clear that this map is
well defined since if (ig, μd) ∈ X�W then (i, μ) ∈ X�. We call (�W , oW , mW , qW ) the
quantized Brauer covering graph (associated with W ).

Let W : Z� → G be a Brauer weighting for (�, o, m, q) and let (�W , oW , mW , qW )
be the quantized Brauer covering graph associated with W . The weighting W
induces a weight function W ∗ : (Q�)1 → G of the arrows of Q� as follows. If j is
the successor of i at the vertex μ in � and vi

a−→ vj is the associated arrow in
(Q�)1, then we define W ∗(a) = W (i, j). For a path p = a1a2 · · · aσ in Q�, we define
W ∗(p) = W ∗(a1)W ∗(a2) · · · W ∗(aσ ). Furthermore, W ∗ induces a G-grading on KQ�

by p = a1a2 · · · aσ being homogeneous of degree W ∗(p).
Recall that if i ∈ �1 is incident with μ ∈ �0 with successor sequence i =

i1, i2, . . . , ival(μ) then Ci,μ = a1a2 · · · aval(μ) in Q�, where the arrow ar corresponds to
the edge ir+1 being the successor of the edge ir and ival(μ)+1 = i1.

LEMMA 5.1. If i ∈ �1 is incident with μ ∈ �0 then W ∗(Cm(μ)
i,μ ) = idG.

Proof. We have W ∗(Ci,μ) = W (i1, i2)W (i2, i3) · · · W (ival(μ)−1, ival(μ))W (ival(μ), i1) =
ωμ and ω

m(μ)
μ = idG. �

COROLLARY 5.2. The ideal I� can be generated by elements of KQ� which are
homogeneous in the G-grading induced by W ∗.

Proof. The relations of type one in I� are of the form qi,μCm(μ)
i,μ − qi,νCm(ν)

i,ν . By
Lemma 5.1, these are homogeneous of degree idG. The relations of types two and three
are homogeneous since they are paths. �

The weight function W ∗ : (Q�)1 → G gives rise to a covering quiver QW∗ with
vertex set (Q�)0 × G = {vg | v ∈ (Q�)0, g ∈ G} and arrow set (Q�)1 × G = {ag | a ∈
(Q�)1, g ∈ G} such that if v

a ��w is an arrow in Q� then vg
ag ��wgW∗(a) is an

arrow in QW∗ . Define the map π : QW∗ → Q� by π (vg) = v and π (ag) = a. We extend
π to paths a1a2 · · · aσ in KQW∗ by setting π (a1a2 · · · aσ ) = π (a1)π (a2) · · · π (aσ ). Hence,
we may linearly extend π to a map KQW∗ → KQ�, which we also denote by π . Define
IW∗ = π−1(I�). Then KQW∗/IW∗ is the covering algebra of A� = KQ�/I� and we
have the following theorem, whose proof is obtained from a careful analysis of the
definitions and is left to the reader.

THEOREM 5.3. Let (�, o, m, q) be a quantized Brauer graph, G a finite abelian
group and W : Z� → G a Brauer weighting. Let (�W , oW , mW , qW ) be the quantized
Brauer covering graph and W ∗ : (Q�)1 → G the induced weight function. Then A�W

∼=
KQW∗/IW∗ .

The next result extends Theorem 4.9 and shows that the canonical action of G on
(�W , oW , mW ) is a free Brauer action on (�W , oW , mW , qW ).

PROPOSITION 5.4. Let (�, o, m, q) be a quantized Brauer graph and W : Z� → G a
Brauer weighting. Then the canonical action of G on �W is a free Brauer action on the
quantized Brauer covering graph (�W , oW , mW , qW ).

Proof. Suppose that i ∈ �1 has endpoints μ and ν, g ∈ G, and the cosets Hμ,s and
Hν,t both contain g. Then the endpoints of ig are μd and νe, where d = [i, Hμ,s] and
e = [i, Hν,t]. By Theorem 4.9 there is a free Brauer action of G on (�W , oW , mW ). It

https://doi.org/10.1017/S0017089513000372 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089513000372


454 EDWARD L. GREEN, SIBYLLE SCHROLL AND NICOLE SNASHALL

remains to show that

qW ((ig, μd))
qW ((ig, νe))

= qW ((ig, μd)h)
qW ((ig, νe)h)

for all h ∈ G. Let h ∈ G. Then (ig, μd)h = ((ig)h, (μd)h) = (igh, μd ′ ), where d ′ =
[ig, Hμ,sh] and (ig, νe)h = ((ig)h, (νe)h) = (igh, νe′ ), where e′ = [ig, Hν,th]. It follows from
the definition of qW that

qW ((ig, μd))
qW ((ig, νe))

= qi,μ

qi,ν
= qW ((ig, μd)h)

qW ((ig, νe)h)
.

This completes the proof. �
DEFINITION 5.5. A map ϕ : (�, o, m, q) → (�′, o′, m′, q′) is an isomorphism of

quantized Brauer graphs if ϕ : (�, o, m) → (�′, o′, m′) is an isomorphism of Brauer
graphs, and the isomorphism from KQ� to KQ�′ induced by ϕ, restricts to an
isomorphism from the ideal of relations I� to I�′ . In this case, we say that (�, o, m, q)
and (�′, o′, m′, q′) are isomorphic as quantized Brauer graphs.

We are now in a position to prove the main result of this section.

THEOREM 5.6. Let (�, o, m, q) be a quantized Brauer graph, G be a finite abelian
group and W : Z� → G be a Brauer weighting. Let (�W , oW , mW , qW ) be the quantized
Brauer covering graph with the canonical action of G and (�W , oW , mW , qW ) be the
associated quantized Brauer orbit graph. Then (�, o, m, q) and (�W , oW , mW , qW ) are
isomorphic as quantized Brauer graphs and there are algebra isomorphisms

A�
∼= A�W

∼= A�W .

Proof. The second isomorphism holds by Theorem 3.12. By Theorem 4.9, (�, o, m)
and (�W , oW , mW ) are isomorphic as Brauer graphs. We need to show that the induced
isomorphism from KQ�W

to KQ� restricts to an isomorphism from I�W
to I�. First, we

consider relations of type one. Let i be an edge in � such that i is not truncated at either
of its endpoints μ and ν, and let g ∈ G with g ∈ Hμ,s and g ∈ Hν,t. By Proposition 3.9
we have

qW ((ig, μd))
qW ((ig, νe))

= qW ((ig, μd))
qW ((ig, νe))

and, by definition of the quantizing function qW , we have qW ((ig, μd)) = qi,μ and
qW ((ig, νe)) = qi,ν . Thus,

qW ((ig, μd))
qW ((ig, νe))

= qi,μ

qi,ν
.

Hence, a relation of type one in I�W
restricts to a relation of type one in I�. We leave

it to the reader to verify the corresponding statement for relations of types two and
three. Hence, (�, o, m, q) and (�W , oW , mW , qW ) are isomorphic as quantized Brauer
graphs and A�

∼= A�W
. �
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6. From actions to orbits to coverings. Throughout this section, we assume that
G is a finite abelian group with free Brauer action on the quantized Brauer graph
(�, o, m, q). We denote the quantized Brauer orbit graph associated with the action
of G by (�, o, m, q). We show that there is a Brauer weighting W : Z� → G such
that the quantized Brauer covering graph ((�)W , (o)W , (m)W , (q)W ) is isomorphic to
(�, o, m, q). In particular, the Brauer graph algebras A� and A(�)W

are isomorphic
algebras.

We begin with the construction of W : Z� → G. If i (respectively μ) is an edge
(respectively a vertex) in � then, as before, we denote the orbit of i (respectively μ)
under the action of G by ī (respectively μ̄) and view ī (respectively μ̄) as both an edge
(respectively a vertex) in � and as an orbit set in �. For each edge ī in �, we fix an edge
i∗ ∈ � in the orbit ī. Next, suppose that μ̄ and ν̄ are the endpoints of ī in �. Choose μ∗
(respectively ν∗) in the orbit of μ̄ (respectively ν̄) so that i∗ is incident with μ∗ and ν∗.
Note that there is a unique choice for μ∗ and ν∗ unless ī is a loop and i∗ is not a loop.
Now let j̄ be the successor of ī at vertex μ̄ in �. Then there is an unique edge l ∈ j̄ such
that l is the successor of i∗ at vertex μ∗ in �. Hence l = (j∗)g, for some g ∈ G. We define
W (ī, j̄) = g. We note that W is dependent on the choices of i∗ and μ∗. We call W the
successor weighting associated with the action of G on (�, o, m).

LEMMA 6.1. Let W : Z� → G be the successor weighting associated with the free
Brauer action of G on (�, o, m). Suppose that i is an edge of � incident with the vertex
μ and that i = i1, i2, . . . , ik, ig

1, . . . , ig
k, . . . , igs

1 , . . . , igs

k is the successor sequence of i at μ,
where g ∈ G. Then

(1) g = ωμ̄ = W (i1, i2)W (i2, i3) · · · W (ik, ik+1), where ik+1 = i1.
(2) The order of ωμ̄ = ord(μ̄) = s + 1.
(3) ord(μ̄) | m(μ̄).
(4) If h, h′ ∈ G then μh = μh′

if and only if h(h′)−1 ∈ Hμ̄, where Hμ̄ is the subgroup
of G generated by ωμ̄.

(5) The index of Hμ̄ in G equals the number of vertices in the orbit of μ.

Proof. From our hypothesis, we see that i1, i2, . . . , ik is the successor sequence of ī
at vertex μ̄. From the definitions of the successor weight function W and ω(i1, ij), we
conclude that the successor sequence of i∗ = (i1)∗ at μ∗ is

(i1)∗, (i2)ω(i1,i2)
∗ , . . . , (ik)ω(i1,ik)

∗ , (i1)ωμ̄∗ , . . . , (ik)ωμ̄∗ , . . . , (i1)ωμ̄
s

∗ , . . . , (ik)ωμ̄
s

∗ .

Since the action of G is free on the edges of �, and since the smallest positive integer
l such that ((i1)∗)l = (i1)∗ is ωs+1

μ̄ , we conclude that the order of ωμ̄ is s + 1. Similarly,
since ((i1)∗)g = ((i1)∗)ωμ̄ , we see that g = ωμ̄ and we have shown that (1) and (2) hold.

From Proposition 3.5, we have that m(μ̄) = m(μ) val(μ)/ val(μ̄), and from
Lemma 3.3, we have that val(μ) = val(μ̄)(s + 1). So m(μ̄) = m(μ)(s + 1), and (3) now
follows from (2).

Next, consider (μ∗)h, for h ∈ G. From the successor sequence of (i1)∗ at μ∗, we have
that (μ∗)h = μ∗ if and only if h = ωθ

μ̄ for some 0 ≤ θ < ord(μ̄). Hence, if h, h′ ∈ G, then
μh

∗ = μh′
∗ if and only if h(h′)−1 ∈ Hμ̄ and (4) now follows after noting that μ = (μ∗)h′′

for some h′′ ∈ G.
That the index of Hμ̄ equals the number of vertices in the orbit of μ follows from

(4), and the proof is complete. �
As an immediate consequence of 6.1(3), we have the following result.
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COROLLARY 6.2. The successor weighting associated with the free Brauer action of
G on (�, o, m) is a Brauer weighting.

We call the successor weighting associated with a free Brauer action of G on
(�, o, m), the Brauer weighting associated with the action of G on (�, o, m).

THEOREM 6.3. Suppose that G is a finite abelian group with a free Brauer action on
the Brauer graph (�, o, m). Let (�, o, m) be the Brauer orbit graph and (�W , oW , mW )
be the Brauer covering graph obtained from the Brauer weighting W associated with the
action of G on (�, o, m). Then (�, o, m) and (�W , oW , mW ) are isomorphic as Brauer
graphs. Moreover, if (�, o, m, q) is a quantized Brauer graph with free Brauer action by
G, then (�, o, m, q) and (�W , oW , mW , qW ) are isomorphic as quantized Brauer graphs.
In particular, the associated Brauer graph algebras A� and A�W

are isomorphic.

Proof. We begin by defining an isomorphism ϕ : �W → � of graphs with cyclic
ordering on the edges. If īg is an edge in �W , we let ϕ(īg) = (i∗)g. The action of G
is free on the edges of � so ϕ is a bijection when restricted to the edge sets. For
d = [ī, Hμ̄,s] ∈ Dμ̄, we define ϕ(μ̄d) = (μ∗)h, where h is an element of the coset Hμ̄,s. By
Lemma 6.1(3) and (4), ϕ(μ̄d) is independent of the choice of h, and so ϕ is a bijection
when restricted to the vertex sets.

Let ī be an edge in � incident with μ̄ and let ī = i1, i2, . . . , ik be the successor
sequence of ī at vertex μ̄. If i ∈ �1 is in the orbit ī and is incident with vertex μ where
μ ∈ μ̄, and i has successor sequence i = i1, . . . , ik, ig

1, . . . , ig
k, . . . , igs

1 , . . . , igs

k at vertex
μ, then, since g = ωμ̄ from Lemma 6.1(1), if īh is in �W then īh has successor sequence

īh = (i1)h, (i2)ω(i1,i2)
h , . . . , (ik)ω(i1,ik)

h , (i1)ωμ̄

h , (i2)ωμ̄ω(i1,i2)
h , . . . , (ik)ωμ̄ω(i1,ik)

h , . . . ,

(i1)
ωs

μ̄

h , . . . , (ik)
ωs

μ̄ω(i1,ik)
h

at vertex μ̄d , where d = [ī, Hμ̄,s] and h ∈ Hμ̄,s. Using Lemma 6.1(3), the action of G on
the edges of �, and the definition of ϕ, we see that the successor sequence of īh at vertex
μ̄d in �W is sent, under ϕ, to the successor sequence of ih at vertex μh in �. From this
we see that ϕ is a graph isomorphism that preserves the cyclic ordering on the edges at
each vertex.

It remains to show, identifying � and �W via ϕ, that m = mW and that q and qW
generate the same ideal of relations in the associated Brauer graph algebras. From
Definition 4.5, we see that if μ is a vertex in � and μ̄d is a vertex in �W , then
mW (μ̄d) = m(μ̄)/ ord(μ̄). By Proposition 3.4, m(μ̄) = val(μ)m(μ)/ val(μ̄). However,
from Lemmas 3.3 and 6.1(2), we have that val(μ)

val(μ̄) ord(μ̄) = 1. Hence, mW (μ̄d) = m(μ).
If μ ∈ �0 and i ∈ �1 is incident with μ, then i is truncated at μ if and only if

ī is truncated at μ̄ if and only if īg is truncated at μ̄d , for all g ∈ G and d ∈ Dμ̄,
since val(μ)m(μ) = val(μ̄)m(μ̄) = val(μ̄d)mW (μ̄d). Hence, (i, μ) ∈ X � if and only if
(ī, μ̄) ∈ X � if and only if (īg, μ̄d) ∈ X �W

, for all g ∈ G and d ∈ Dμ̄. Recall from Section 3
that Y = {i ∈ �1 | i is not truncated at either of its endpoints}, and by Lemma 3.8, we
can choose a set function E1 : Y → �0 so that E1(i) is an endpoint of i ∈ �1 and
(E1(i))g = E1(ig), for all g ∈ G. Let i ∈ �1 be incident with vertex μ ∈ �0, g ∈ G, and
d ∈ Dμ̄. From Section 5, qW (īg, μ̄d) = q(ī, μ̄) and from Section 3, q(ī, μ̄) = qi,μ

qi,E1(i)
. It is

now immediate that there is a correspondence between relations of type one in KQ�

and relations of type one in KQ�W
. The reader may check the correspondences for
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relations of types two and three. Thus, the associated Brauer graph algebras A� and
A�W

are isomorphic. �

7. Applications. In this section, we provide a number of applications of the
theory. These applications lead to two of the theorems announced in Section 1, namely
the classification of the coverings of Brauer graph algebras that are again Brauer graph
algebras (Theorem 7.1), and the fact that any Brauer graph can be covered by a tower
of coverings, the topmost of which is a Brauer graph with no loops, no multiple edges
and whose multiplicity function is identically one, that is, there are no exceptional
vertices (Theorem 7.7).

7.1. Coverings of Brauer graph algebras that are Brauer graph algebras. Our first
application classifies the coverings of Brauer graph algebras that are again Brauer
graph algebras.

Let (�, o, m, q) be a quantized Brauer graph and W : Z� → G be a Brauer
weighting for some finite abelian group G. As in Section 5, we let W ∗ : (Q�)1 → G
be the weight function induced by W . Theorem 5.3 shows that the covering algebra
obtained from W ∗ is a Brauer graph algebra. We now show the converse, that is, if
the covering algebra of A�, obtained from a weight function on the arrows of Q�, is
a Brauer graph algebra, then it is isomorphic to a covering algebra obtained from a
Brauer weighting of (�, o, m, q).

Let G be a finite abelian group and W ∗ : (Q�)1 → G a weight function such that
I� is generated by weight homogeneous elements. Let i be an edge in � which is not
truncated at either of its endpoints, μ and ν. Let Ci,μ and Ci,ν be the corresponding
cycles associated with the edge i. Then x = qi,μCm(μ)

i,μ − qi,νCm(ν)
i,ν is a relation of type

one in I�. We note, by the nature of the generating relations of I�, that x must be
homogeneous, that is, W ∗(Cm(μ)

i,μ ) = W ∗(Cm(ν)
i,ν ). We also note that W ∗(Ci,μ) = ωμ. If

ω
m(μ)
μ is not idG, then, in the covering algebra, the liftings of x to KQW∗ induce

relations which are differences of paths that are not cycles. These differences are
minimal relations for IW∗ . It follows that the covering algebra associated with W ∗

has minimal generating relations that are not of types one, two, or three, and hence the
covering algebra associated with W ∗ is not a Brauer graph algebra.

On the other hand, if ω
m(μ)
μ = idG, we define the successor weighting W : Z� → G

as follows. If (i, j) ∈ Zμ, that is, if j is the successor of i at vertex μ, then we define
W ((i, j)) = W ∗(a), where a is the arrow in Q� associated with (i, j). Since ω

m(μ)
μ = idG,

we see that ord(μ) | m(μ), and hence W is the desired Brauer weighting.
Summarizing, we have the following result.

THEOREM 7.1. Let (�, o, m, q) be a quantized Brauer graph with associated Brauer
graph algebra A� = KQ�/I� and let G be a finite abelian group.

(1) If W : Z� → G is a Brauer weighting of (�, o, m, q) then there is an
associated weight function W ∗ : (Q�)1 → G such that I� is generated by
weight homogeneous elements and the covering algebra (A�)W∗ is isomorphic
to the Brauer covering algebra A�W associated with W. Moreover, for each
edge i in �, which is not truncated at either of its endpoints μ and ν, we have
that W ∗(Cm(μ)

i,μ ) = idG = W ∗(Cm(ν)
i,ν ).
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(2) Suppose that W ∗ : (Q�)1 → G is a weight function such that I� is generated by
weight homogeneous elements, and, for each edge i in � which is not truncated
at either of its endpoints μ and ν, we have that W ∗(Cm(μ)

i,μ ) = idG = W ∗(Cm(ν)
i,ν ).

Then there is a Brauer weighting W of (�, o, m, q) such that the covering
algebra (A�)W∗ is isomorphic to the Brauer covering algebra A�W associated
with W.

(3) If W ∗ : (Q�)1 → G is a weight function such that I� is generated by weight
homogeneous elements and there is an edge i in � which is not truncated at
both endpoints μ and ν, such that W ∗(Cm(μ)

i,μ ) �= idG, then the covering algebra
(A�)W∗ is not isomorphic to a Brauer graph algebra.

7.2. Module categories and coverings. Our next application deals with module
categories.

Suppose that (�, o, m, q) is a quantized Brauer graph, A� is the associated Brauer
graph algebra, and W : Z� → G is a Brauer weighting for some finite abelian group
G. Let A�W be the covering algebra associated with W and let W ∗ : (Q�)1 → G be the
weight function induced by W . By covering theory, W ∗ induces a G-grading on A�.
Then the following result holds; see the Appendix, Theorem A.4.

THEOREM 7.2. Keeping the above notation, the category of G-graded A�-modules is
equivalent to the category of A�W -modules.

Furthermore, if S is a simple A�-module then S is gradable. If S̃ is a graded simple
A�-module which forgets to S, then a minimal graded projective A�-resolution of S̃
forgets to a minimal projective A�-resolution of S. By the above theorem, the minimal
graded projectiveA�-resolutions are precisely the minimal projectiveA�W -resolutions.
Consequently, some cohomological questions related to A�-modules can be translated
to cohomological questions concerning A�W -modules, for example, see [9, Theorem
3.2].

7.3. Towers of coverings. In this section, we consider a ‘tower’ of coverings.
More precisely, suppose that (�, o, m, q) is a quantized Brauer graph and A� is
the associated Brauer graph algebra. Let W1 : Z� → G1 be a Brauer weighting for
some finite abelian group G1 and set (�1, o1, m1, q1) to be the associated quantized
Brauer covering graph associated with W1. Let n be some positive integer. We say that
(�, o, m, q), (�1, o1, m1, q1), . . . , (�n, on, mn, qn) is a tower of quantized Brauer covering
graphs if, for 1 < i ≤ n, there are Brauer weightings Wi : Z�i−1 → Gi for finite abelian
groups Gi, where (�i, oi, mi, qi) is the quantized Brauer covering graph associated with
Wi. Applying Theorem 7.2 we have the following result.

THEOREM 7.3. Let n be a positive integer and (�0, o0, m0, q0), (�1, o1, m1, q1),
. . . , (�n, on, mn, qn) be a tower of quantized Brauer covering graphs associated with
Brauer weightings Wi : Z�i−1 → Gi, for some finite abelian groups Gi. For i = 0, . . . , n,
let A�i be the Brauer graph algebra associated with (�i, oi, mi, qi) and let Mod(A�i )
denote the category of A�i -modules. For i = 1, . . . , n, let Fi : Mod(A�i ) → Mod(A�i−1 )
be the forgetful functor and set G = F1F2 · · ·Fn : Mod(A�n ) → Mod(A�0 ). Then the
following properties hold.

https://doi.org/10.1017/S0017089513000372 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089513000372


GROUP ACTIONS AND COVERINGS OF BRAUER GRAPH ALGEBRAS 459

(i) If S is a simple A�0 -module then there is a simple A�n -module T such that
G(T) ∼= S. Moreover, if

P : · · · → P2 → P1 → P0 → T → 0

is a minimal projective A�n -resolution of T then, applying the exact functor G
to P , gives a minimal projective A�0 -resolution of S.

(ii) If S′ is a simple A�n -module, then G(S′) is a simple A�0 -module.

As an immediate consequence of Theorem 7.3, we have that if (�0, o0, m0, q0),
(�1, o1, m1, q1), . . . , (�n, on, mn, qn) is a tower of quantized Brauer covering graphs
associated with Brauer weightings Wi : Z�i−1 → Gi with associated quantized Brauer
graph algebras A�i , then some homological questions related to A�0 -modules can
be translated to homological questions concerning A�n -modules. In particular, this is
applied in [10] to determine the Ext algebra of a Brauer graph algebra. The next three
applications show how to construct coverings of Brauer graphs with specific properties.
We begin by considering multiplicities.

7.4. Coverings and multiplicities. Suppose that (�, o, m) is a Brauer graph for
which at least one vertex μ has m(μ) > 1. Let n = lcm{m(μ) | μ ∈ �0} and �n = 〈g |
gn = id〉 be the cyclic group of order n. We define W : Z� → �n as follows. For each
μ ∈ �0, choose one edge, iμ, incident with μ. Let (i, j) ∈ Zμ, and define

W ((i, j)) =
{

g
n

m(μ) if i = iμ
id otherwise.

We see that W is a Brauer weighting since ωμ = g
n

m(μ) , and hence ord(μ) = m(μ).
If (�W , oW , mW ) is the Brauer covering graph associated with W , then, for each vertex
μd in �W , mW (μd) = m(μ)/ ord(μ) = 1. It follows that (�W , oW , mW ) has the desired
property.

Noting that if (�, o, m, q) is a quantized Brauer graph, the above arguments can
be extended to the following result.

PROPOSITION 7.4. Let (�, o, m, q) be a quantized Brauer graph. Then there is a
finite abelian group G and a Brauer weighting W : Z� → G of (�, o, m, q) so that the
quantized Brauer covering graph (�W , oW , mW , qW ) satisfies mW (μ) = 1, for all vertices
μ in �W .

7.5. Coverings and the removal of loops. Our next application is the removal of
loops.

Let (�, o, m) be a Brauer graph with n loops, labelled �1, . . . , �n. Let p be an
integer greater than 1 and let G = ∏n

k=1 �p, where �p is the cyclic group of order p with
generator g. For k = 1, . . . , n, let zk = (id, . . . , id, g, id, . . . , id) ∈ G, where g occurs in
the kth component. For each vertex μ in �, choose one edge, iμ, incident with μ.

We now define a Brauer weighting W : Z� → G as follows. Suppose that (i, j) ∈
Zμ. If i is not a loop, then set W ((i, j)) = idG. If i is the loop �k and the edge i is the first
occurrence of i in the successor sequence of iμ, then set W ((i, j)) = zk. If i is the second
occurrence of i in the successor sequence of iμ, then set W ((i, j)) = z−1

k . It is immediate
that ωμ = idG, for each vertex μ, and hence W is, in fact, a Brauer weighting.

https://doi.org/10.1017/S0017089513000372 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089513000372


460 EDWARD L. GREEN, SIBYLLE SCHROLL AND NICOLE SNASHALL

Let (�W , oW , mW ) be the Brauer covering graph with respect to W . For each
vertex μ, since ωμ = idG and the order of G is pn, there are pn cosets of Hμ in G,
each of which contains a single element. Thus, for each vertex μ in �, we have pn

vertices μ[i,Hμ,1], . . . , μ[i,Hμ,pn ] in �W , where i is an edge incident with μ. These vertices
are independent of the choice of i, see Section 4. To show there are no loops in �W ,
consider the loop �k at the vertex ν in �. For ease of notation we set � = �k. Let h ∈ G
and consider �h and �̂h, where � and �̂ are the first and second occurrences of � in the
successor sequence of iν . We show that �h is not a loop in �W . A similar argument
shows that �̂h is also not a loop.

From the remark after Definition 4.3, the edge �h has endpoints ν[�,Hν,s] and ν[�̂,Hν,s],
where Hν,s is the unique coset of Hν in G containing h. From Lemma 4.2, [�, Hν,s] =
[�̂, Hν,s] if and only if Hν,s = Hν,sω(�, �̂)ωθ

ν , for some 0 ≤ θ < ord(ν). But ων = idG,
and, from the definition of W , ω(�, �̂) is not idG. Since Hν,s = {h}, we see that �h is not
a loop in �W .

Note that we could have taken G to be any finite product of n non-trivial abelian
groups in the above construction and each zk to be an n-tuple with non-identity element
in the kth component and identity elements in all other components.

Summarizing, we have the following result.

PROPOSITION 7.5. Let (�, o, m, q) be a quantized Brauer graph. Then there is a
finite abelian group G and a Brauer weighting W : Z� → G of (�, o, m, q) so that the
quantized Brauer covering graph (�W , oW , mW , qW ) has the property that �W contains
no loops.

7.6. Coverings and the removal of multiple edges. Our final application is the
removal of multiple edges. Let (�0, o0, m0, q0) be a quantized Brauer graph. By
Proposition 7.5 there is a finite abelian group G1 and a Brauer weighting W1 : Z�0 →
G1 of (�0, o0, m0, q0) so that the quantized Brauer covering graph (�W1, oW1 , mW1 , qW1 )
has the property that �W1 contains no loops.

For simplicity of notation, let (�, o, m, q) = (�W1 , oW1 , mW1 , qW1 ). Thus, �

contains no loops. We say the pair of vertices {μ, ν} is α-marked if α ≥ 2 and there are
precisely α edges with endpoints μ and ν. List the α-marked pairs {μ1, ν1}, . . . , {μn, νn},
where {μk, νk} is αk-marked. Note that a vertex in � can occur in more than one α-
marked pair. Let G be the product G = ∏n

k=1 �αk , where �αk is the cyclic group of
order αk with generator gk. For k = 1, . . . , n, let zk = (id, . . . , id, gk, id, . . . , id), where
gk occurs in the kth component. For each vertex μ in �, choose one edge, iμ, incident
with μ. For each α-marked pair {μ, ν} choose either μ or ν to be the distinguished
vertex of that pair.

We now define a successor weighting W : Z� → G as follows. Suppose that (i, j) ∈
Zμ. If the endpoints of i are the α-marked pair {μk, νk}, and μ is the distinguished
vertex of this pair, then set W ((i, j)) = zk. In all other cases, set W ((i, j)) = idG. The
reader may check that ωμ = zαk

k = idG, for each vertex μ, and hence W is, in fact, a
Brauer weighting.

Let (�W , oW , mW ) be the Brauer covering graph associated with W . An argument
similar to the one given in Section 2 shows that (�W , oW , mW ) has the desired
properties.

PROPOSITION 7.6. Let (�, o, m, q) be a quantized Brauer graph such that � contains
no loops. Then there is a finite abelian group G and a Brauer weighting W : Z� → G
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of (�, o, m, q) so that the quantized Brauer covering graph (�W , oW , mW , qW ) has the
property that �W does not contain multiple edges between any two vertices.

7.7. Main theorem. We combine Propositions 7.4, 7.5 and 7.6 to obtain our final
result.

THEOREM 7.7. Let (�0, o0, m0, q0) be a quantized Brauer graph. Then there
is a tower of quantized Brauer covering graphs (�0, o0, m0, q0), (�1, o1, m1, q1),
(�2, o2, m2, q2), (�3, o3, m3, q3) such that the quantized Brauer covering graph
(�3, o3, m3, q3) has the following properties:

(1) the multiplicity function m3 is identically one,
(2) the graph �3 has no loops, and
(3) the graph �3 has no multiple edges.

Proof. By Proposition 7.4, there is a finite abelian group G1 and a Brauer
weighting W1 : Z�0 → G1 such that the associated quantized Brauer covering
graph ((�0)W1 , (o0)W1 , (m0)W1 , (q0)W1 ) has (m0)W1 identically 1. Set (�1, o1, m1, q1) =
((�0)W1 , (o0)W1 , (m0)W1 , (q0)W1 ).

By Proposition 7.5, there is a finite abelian group G2 and a Brauer
weighting W2 : Z�1 → G2 such that the associated quantized Brauer covering graph
((�1)W2 , (o1)W2 , (m1)W2 , (q1)W2 ) has the property that (�1)W2 contains no loops. Set
(�2, o2, m2, q2) = ((�1)W2 , (o1)W2 , (m1)W2 , (q1)W2 ). Note that m2 is also identically 1,
for if μd is a vertex in �2 with μ ∈ �1, then we have ord(μ) = 1 so that m2(μd) =
m1(μ) = 1.

Finally, by Proposition 7.6, there is a finite abelian group G3 and a Brauer
weighting W3 : Z�2 → G3 such that the associated quantized Brauer covering graph
((�2)W3 , (o2)W3 , (m2)W3 , (q2)W3 ) has the property that (�2)W3 contains no multiple
edges. Set (�3, o3, m3, q3) = ((�2)W3 , (o2)W3 , (m2)W3 , (q2)W3 ). We then note that �3

has no loops since �2 has no loops, and that m3 is identically 1 for reasons similar to
m2 being identically 1. This completes the proof. �

Appendix. In this appendix, we review covering theory for path algebras and
their quotients. For further information and proofs see [4, 7−9]. We allow G to be any
finite group whereas we assumed that G is always a finite abelian group in the previous
sections.

Let K be a field and Q be a finite quiver. Let G be a finite, not necessarily abelian,
group. We begin by showing that if G acts freely on Q, then there is an orbit quiver Q
associated with this action. Let G act freely on Q. If x is either a vertex or an arrow in
Q, then we denote the action of g ∈ G on x by xg, and denote the orbit of x under the
G-action by x̄. We now construct Q. The vertices of Q are the orbits of vertices of Q
and the arrows of Q are the orbits of arrows of Q, that is, if a : v → w is an arrow in
Q1, then ā : v̄ → w̄ is an arrow in Q1.

Consider the path algebras KQ and KQ. The action of G on Q extends to an
action of G on the paths of Q and hence to the path algebra KQ. Let I be an ideal in
KQ and set � = KQ/I . Assume that I satisfies r ∈ I if and only if rg ∈ I , for all g ∈ G.
Let I denote the set of orbits of elements of I under the action of G. It is immediate
that I is an ideal in KQ. Let � = KQ/I . We call � the orbit algebra associated with
the action of G on �.
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We now show that � is G-graded. We start by constructing a set function W : Q1 →
G which we call the weight function on Q induced by the action of G. For each vertex
v̄ in Q0, choose a vertex v∗ in Q0 such that v∗ ∈ v̄. Let ā : v̄ → w̄ be an arrow in
Q1. Then, by the freeness of the action of G on Q, there is a unique g ∈ G and b ∈ ā
such that b : vidG∗ → w

g
∗ is an arrow in Q1. We define W (ā) = g and remark that W

is dependent on the choices of the v∗. We see that W extends linearly to KQ by
setting W (v̄) = idG, for v̄ ∈ Q0, and, if p = ā1ā2 · · · ān is a path in Q with āi ∈ Q1, then
W (p) = W (ān) · · · W (ā2)W (ā1). Note that in Section 5, the product for W (p) is written
in reverse order. However, the definitions coincide since G is assumed to be abelian in
that section. This choice of W induces a G-grading on KQ by setting (KQ)g to be the
K-span of paths p such that W (p) = g. This G-grading on KQ induces a G-grading on
� = KQ/I if and only if I can be generated by weight homogeneous elements, that is,
by elements each of which is in (KQ)g, for some g ∈ G. It remains to show that I can
be generated by weight homogeneous elements.

For this, we recall that r ∈ KQ is said to be uniform if there are vertices v and
w in Q0 such that r = vrw. Since every non-zero element of KQ is uniquely a sum
of uniform elements, the ideal I can be generated by uniform elements. Let r ∈ I and
v,w ∈ Q0 so that r = vrw. Then, since rg ∈ I , for all g ∈ G, there exists h ∈ G such that
rh = (v∗)idG rh(w∗)k, for some k ∈ G. Hence, if p is a path occurring in r, then W (p̄) = k.
It follows that r̄ ∈ (KQ)k is a homogeneous element, and hence, I can be generated by
weight homogeneous elements.

We summarize the above discussion in the following result.

PROPOSITION A.1. Let K be a field and let G be a finite group which acts freely on
a finite quiver Q. Assume that I is an ideal in KQ such that r ∈ I if and only if rg ∈ I,
for all g ∈ G. Let � = KQ/I be the orbit algebra associated with the action of G on
� = KQ/I. Then there is a weight function W : Q1 → G induced by the action of G so
that I can be generated by weight homogeneous elements. This weight function induces a
G-grading on �.

We now start with a weight function and construct an associated covering algebra.
Let W : Q1 → G be a weight function on Q. We begin by defining the quiver QW . Set
(QW )0 = Q0 × G and (QW )1 = Q1 × G. We denote the vertices of QW by vg if v ∈ Q0

and g ∈ G, and the arrows of QW by ag if a ∈ Q1 and g ∈ G. The arrows in QW are
defined as follows: if a : v → w is an arrow in Q1 and g ∈ G, then ag : vg → wW (a)g.
There is a surjection π : KQW → KQ induced by π (vg) = v and π (ag) = a, for all
g ∈ G, v ∈ Q0 and a ∈ Q1. If I is generated by a set ρ of weight homogeneous elements,
then let IW be the ideal in KQW generated by π−1(ρ). We call �W = KQW/IW the
covering algebra associated with W .

The group G acts freely on QW in a canonical way; namely, if x is either a vertex
or an arrow in Q and g, h ∈ G, we set (xg)h = xgh. This action can be extended to an
action of G on KQW . From the definition of IW , it is clear that r ∈ IW if and only
rg ∈ IW , for all g ∈ G. It follows that the action of G on KQW induces an action of G
on �W = KQW/IW .

The above discussion yields the following result.

PROPOSITION A.2. Let K be a field, G be a finite group, Q be a finite quiver, and
W : Q1 → G be a weight function on Q. Suppose that I is an ideal in KQ which is
generated by weight homogeneous elements. Then G acts freely on QW and there is an

https://doi.org/10.1017/S0017089513000372 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089513000372


GROUP ACTIONS AND COVERINGS OF BRAUER GRAPH ALGEBRAS 463

induced G-action on �W = KQW/IW , the covering algebra of � = KQ/I associated
with W.

The next result shows that the above constructions may be considered as inverse
to one another.

THEOREM A.3. Let K be a field, G a finite group, Q a finite quiver, and I an ideal in
KQ.

(1) Suppose G acts freely on Q and r ∈ I if and only if rg ∈ I, for all g ∈ G. Then,
by Propositions A.1 and A.2, G acts freely on QW . There is an isomorphism
of quivers from Q to QW which induces a K-algebra isomorphism from � =
KQ/I to �W = KQW /IW .

(2) Suppose � = KQ/I and W : Q1 → G is a weight function on Q such that I
can be generated by weight homogeneous elements. Then, by Propositions A.1
and A.2, there is an isomorphism of quivers from Q to QW which induces a
K-algebra isomorphism from � = KQ/I to �W = KQW /IW .

We also have the following theorem, which we apply in Theorem 7.2. A proof may
be found in [9, Theorem 2.5].

THEOREM A.4. Let K be a field, G be a finite group, Q be a finite quiver and I
be an ideal in KQ. Suppose � = KQ/I and W : Q1 → G is a weight function on Q
such that I can be generated by weight homogeneous elements. Give � the G-grading
induced from W. Then the category of G-graded �-modules is equivalent to the category
of �W = KQW/IW -modules.

Finally, let � = KQ/I be a G-graded algebra and let P : KQ → � be the canonical
surjection. Suppose that the G-grading of � is induced from a weight function. It
follows that, if x is either a vertex or an arrow of Q, then P(x) is in some (KQ)g, for
some g ∈ G; that is, P(x) is a homogeneous element of degree g. Our final proposition
shows that the converse also holds. The proof is left to the reader.

PROPOSITION A.5. Let � = KQ/I be a G-graded algebra and let P : KQ → � be
the canonical surjection. Suppose, for all x ∈ Q0 ∪ Q1, there exists g ∈ G such that P(x)
is a homogeneous element of degree g. Then the G-grading of � is induced by a weight
function on Q.
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