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Abstract 
We have analysed and attempted to classify the acoustic ray patterns in stars whose 
equilibrium figure is globally deformed. We discuss here the effect of distortions of 
ellipsoidal and pear-shaped structure. Under ellipsoidal symmetry all ray patterns remain 
'regular'. For arbitrarily small pear-shaped deformations our numerical results indicate 
the occurrence of 'chaotic' ray patterns arising out of the unstable longest diameter ray. 
These chaotic rays cover the whole configuration space. 

1. Introduction 
In current inverse helioseismological problems information on the central parts of the sun 
(r<.2R@) is very hard to extract from the frequency spectrum (cf Gough 1986). A major 
reason for this difficulty is that acoustic waves, except if strictly radial, do not penetrate 
into the central region of a star; the precise central properties of the sun have therefore 
only a minor effect on the global acoustic spectrum. One motivation of the present work is to 
see whether a similar difficulty survives if we relax the assumption of spherical symmetry 
of the star. To this end we investigate a class of formal models in which the surfaces of 
constant sound speed are algebraically deformed (Eq. 1). We then study the acoustic ray 
patterns arising under these conditions. The ray patterns directly indicate the zones 
avoided by the associated acoustic waves. 
While the 'probability of avoidance' of the centre in a spherically symmetric star is always 
one - the set of radial rays is of measure zero among the totality of rays - this probability 
decreases as we consider ellipsoidal deformations. Moreover, as soon as we include 
pear-shaped deformations, we observe chaotic rays for initial conditions close to the longest 
diameter ray of the ellipse. These nontrivial results are indicative that in stars lacking the 
property of exact spherical symmetry the physics of the central region influence the global 
structure of the acoustic spectrum. The sensitivity of the spectrum to the central physics is 
increased as the configuration deviates more and more from the spherical symmetry. 

2. Ray Chaos 
An unsuspected result is the presence of 'observable' chaotic behaviour as soon as the ray 
equations (Eqs. 5) cease to be 'integrable', integrability being lost under an arbitrarily 
small pear-shaped distortion of the stellar structure. This result differs radically from the 
behaviour of the more conventional generic Hamiltonian systems discussed in the literature. 
The latter typically exhibit 'observable' chaotic behaviour only beyond some finite 
distortion of the Hamiltonian away from a reference integrable Hamiltonian, in accordance 
with the KAM theorem. In stellar ray problems KAM theory is not applicable, since the ray 
Hamiltonian violates the requirement of analyticity in the generalised coordinates and 
momenta (Perdang 1986). However, our numerical results indicate that the chaotic rays 
which are initially close to regular rays remain so over a long integration time, developing 
blurred or 'vague' caustics which in turn are the boundaries of 'vague' tori (Figs. 2). A 
similar behaviour has been reported in classical billiards (Berry 1981). It is also 
consistent with a class of solutions of analytic Hamiltonians (Shirts and Reinhardt 1982). 
The latter class of chaotic rays, which we may conveniently refer to as 'vague-regular' rays, 
coincide with the totality of the chaotic rays arising in slightly globally deformed stars 
such as the sun. This guarantees that we can apply the standard semi-classical quantisation 
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method to the average 'vague' tori carrying these rays, in order to compute the asymptotic 
frequencies. Alternatively it suggests, although this point requires closer checking, that a 
standard perturbation method of the oscillation eigenvalue problem of the spherical star 
should provide an acceptable approximation to the actual eigenfrequencies of the slightly 
deformed star. 

3. Ray Equations and Model 
We investigate stars in which the originally spherical surfaces of constant sound speed are 
distorted into algebraic surfaces of third degree in the coordinates, of equation 

X j aA x A

2 + ß Σ i j k b i j k xA X j x k = r 2 , i,j,k = 1,2,3 ; 1 

X j , *2> x 3 a r e dimensionless coordinates, scaled such that the volume of the star is equal to 

4/3 π . The factor r, 0 < r < 1 , is an averaged dimensionless radius. The ordering parameter 
ß is less than 1, while the remaining coefficients a and b are of order 1. Deformations in 
the surfaces of constant sound speed of form (1) are expected to arise generically under the 
action of any global perturbation of low enough symmetry. 
We have examined the distortion due to the tidal effect of a mass point M' on the X j axis, at 

a distance D from the centre of the primary; the latter is a liquid star considered in the 
Jeans approximation (Chandrasekhar 1969); the novel feature is that we expand the tidal 
potential to cubic degree in the coordinates 

V T ( x ) = μ{χχ

2 - l / 2 ( x 2

2 + x 3

2 ) + (1/D) X j ( χ χ

2 - 3 / 2 ( x 2

2 + x 3

2 ) ) } , M=GM' /D 3 . 2 

Due to the symmetry of the perturbing potential (2), the coefficients in Eq. (1) obey 

&2 = a 3 and b 1 2 2 = b 1 3 3 = -3/2 bj χ χ , 3 

the remaining coefficients b vanish. By setting b i 11 = 1 » t n e family of nested surfaces 

(1) labelled by r is fixed by two parameters which we may take as a 1 and ß . The 

condition of hydrostatic equilibrium relates these parameters to μ (a function of the 
excentricity and hence of aj , cf Chandrasekhar 1969), and 1/D - ß/aj (Moray 1986). The 

sound speed c(x) then becomes 

c ( x ) 2 = ΎΡ(χ)/Ρ = c c

2 {1 - r 2 ^ ) } , 4 

where γ is as usual the (constant) adiabatic index, P(x) is the pressure field, ρ the 
(uniform) density and cQ the central sound speed. The latter is normalised to 1, which 

determines in turn a dimensionless time. 
The acoustic ray patterns are obtained by solving the Hamiltonian equations 

d/dtx = d/dk Ω ; d/dt k = - d/dx Ω ; with Q ( x , k ) = c(x) |k| , 5 

(k, wavevector, Ω , frequency). The latter are integrated numerically in the interior of the 
star, and analytically in the neighbourhood of the surface, where the equations are singular; 
the analytic solution takes care of the reflection of the ray. We have studied ray systems 
confined to the symmetry planes of the configuration only (say the plane - x 2 ) . Since any 

ray is bound to cross the X j axis, we generate the totality of rays by the 3-parameter family 

of initial conditions χ γ = Χ , x 2 = 0 , |k| = k, and the angle w of the wavevector with the x^ 

axis . 

4. Classifying the Rays 
ß=0 : Ellipsoidal Configurations 

One can show, by the procedure adopted in Perdang (1986) for spherical symmetry, that the 
ray problem remains regular. The integration of Eqs. (5) disclose in fact 3 families of 
regular rays (Fig. l.a,b,c). 
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(a) Surface Rays (SRs) which avoid the central zones of the star (Fig. l.a); the caustics of SRs 
of same frequency seemingly define a 1-parameter family of ellipses. 

(b) Minor Axis Rays (MARs) which avoid the polar caps on the X j axis (Fig. l.b); the 

caustics of MARs of same frequency seem to define a 1-parameter family of hyperbolas. 

(c) Focal Rays (FRs) are rays going through two foci, X j = • F , on the X j axis (Fig. l.c); FRs 
are the common limiting rays of both the SRs and MARs as the caustics of the latter become 
degenerate; we can view the caustic of the FRs as a degenerate ellipse (line segment on the 
x 1 axis joining -F to +F ) or as a degenerate hyperbola (longest diameter with the segment 

-F to +F being excluded). 
As the ellipse transforms into a circle (F coincides with the origin) the region in the 3 
dimensional parameter space (X,k,w) producing SRs coincides with this whole space, with 
the exception of the subset of dimension 2, X = 0. Only the latter subset produces MARs and 
FRs. For nonzero excentricity the subset carrying MARs becomes 3 dimensional, 
corresponding to -F<X<F, while FRs correspond to the subsets Χ = ± F, which remain 2 
dimensional in the parameter space. This result shows that for any frequency there is 
indeed a 3 dimensional subset in the parameter space generating rays traversing the centre 
of the star, as soon as the ellipticity is nonzero. Incidentally, this explains also why for 
small elliptic deformations the chances of hitting a MAR remain small, inspite of the fact 
that MARs covering all of the symmetry plane do exist. 

β m ο : Pear-shaped Configurations 
The ray problem now ceases to be integrable. Numerical integrations performed by choosing 
initial conditions in the parameter space (X,k,w) demonstrate the existence of 3 families of 
rays directly related to the families of the ellipsoidal case (Figs. 1. a',b',c'). 
(a') SRs (Fig. l.a') and (b') MARs (Fig. l.b') are again regular classes of rays with caustics 
which are ellipses distorted into drop shapes, and deformed hyperbolas respectively. SRs 
are numerically found to survive until the caustic develops a cusp, say at = - C (closest 

to the point of greatest curvature of the surface). MARs show a larger avoided zone towards 
the side of greatest curvature of the surface. 
(c') The limiting families of SRs (ray systems with cusped caustic) and of MARs (ray 
systems covering all of the region towards the smallest curvature, but showing an avoided 
zone near the greatest curvature of the surface) now cease to coincide. In the parameter 
space (X,k,w) these limiting families define a 3 dimensional region Κ occupied by Chaotic 
Rays (CRs, Fig. l.c'). That these rays are chaotic in the technical sense of the word can be 
verified by a numerical stability test. Notice that this class comprises the longest diameter 
ray (LDR) whose instability is geometrically obvious. For any nonzero value of ß the region 
Κ in the parameter space remains 3 dimensional, so that we have a nonzero probability of 
hitting a chaotic ray. Notice also that the CRs travel all through the star. 
Our results show that although under arbitrarily slight generic distortions of the geometry 
of the star we always find chaotic rays, the corresponding chaos is of a mild form. More 
generally, these rays seemingly remain on tori over a long period of time if we choose initial 
conditions close to the regular regions. This is demonstrated in the examples exhibited in 
Fig. 2 which displays one (probably) SR (Fig. 2.x) and two nearby CRs (Figs. 2.y,z). In the 
latter cases a 'vague' caustic is found to survive which is indicative that the rays continue 
to stay on an approximate, or 'vague' torus (cf also Fig. l.c'). 
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