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Abstract

We consider a finite-time optimal consumption problem where an investor wants to
maximize the expected hyperbolic absolute risk aversion utility of consumption and
terminal wealth. We treat a stochastic factor model in which the mean returns of risky
assets depend linearly on underlying economic factors formulated as the solutions of
linear stochastic differential equations. We discuss the partial information case in which
the investor cannot observe the factor process and uses only past information of risky
assets. Then our problem is formulated as a stochastic control problem with partial
information. We derive the Hamilton–Jacobi–Bellman equation. We solve this equation
to obtain an explicit form of the value function and the optimal strategy for this problem.
Moreover, we also introduce the results obtained by the martingale method.

Keywords: Optimal consumption and investment; HARA utility; stochastic factor model;
partial information; Hamilton–Jacobi–Bellman equation

2010 Mathematics Subject Classification: Primary 49L20; 60H30; 91G10; 93E20
Secondary 93E11

1. Introduction

When optimal consumption problems on a finite time horizon are studied, the dynamic pro-
gramming approach is often used to solve these problems. Adopting this approach, Hamilton–
Jacobi–Bellman (HJB) equations are derived. Optimal consumption-investment strategies are
obtained from the solutions of the HJB equations. For this approach, we recall the pioneering
work of Merton [40] in which the author examined a hyperbolic absolute risk aversion (HARA)
utility function for a model with constant interest rate and where the price of the risky asset is
an exponential Brownian motion. Karatzas et al. [32] and Liu [39] studied a counterpart of [40]
with a general utility and stochastic factor model, respectively. In stochastic factor models, the
returns and volatilities of the assets are affected by some economic factors. See [21] for an
introduction and [16]–[18], [25], [26], and [43] for stochastic factor models and infinite time
horizon optimal consumption problems.

The martingale method is another useful approach to solve optimal investment problems
including the consumption problems discussed in this paper; see [12], [31], and [46]. The
advantage of the martingale method is that an optimal consumption-investment strategy may
be derived without solving a partial differential equation (namely, the HJB equation). In
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132 H. HATA AND S.-J. SHEU

complete markets, explicit solutions of the consumption problems were obtained by Liu [39]
and Wachter [54]. Indeed, in [54] the author considered the models in which the risky stock
and the factor process are perfectly negatively correlated. Castaneda-Leyva and Hernandez-
Hernandez [8] adopted an incomplete market approach. Using a combination of the martingale
method and stochastic control techniques, the authors of [8] solved the consumption problems
explicitly for the Kelly utility.

We refer the reader to [14], [23], and [30] for pioneering work on the model in continuous
time with partial information. Linear Gaussian models were considered in [4], [14], [15],
[23], [35], [41], [44], [47], and [56]. We follow the approach of [41] by considering the
filtering equation for the estimated mean based on the observation. We use a different argument
starting from the innovation process. We obtain the equation for the estimated mean using an
innovation process. Using the estimated mean as a new factor process, we then have the model
with complete information. The problem can be solved using either a dynamic programming
approach or a duality approach using the martingale method. For the convenience of the reader,
we provide the argument necessary to derive the filtering equation in Appendix A. The filtering
equation is often considered in the study of models with partial observation; see, e.g. [3], [4],
[23], [28], [30], [35], and [37]. See [5], [13], and [50] for the model in which the drift of a risky
asset is constant and cannot be observed. In [22], [27], [47], and [52] hidden Markov models
were considered. See also [9] and [36] where jump diffusion was used to model the problem.

In this paper we consider the finite time horizon optimal consumption problem with partial
information. An investor wants to invest in m+ 1 assets including a riskless asset and m risky
assets, also he/she consumes his/her wealth. In particular, we consider the linear Gaussian
model in which the factor process is a Gaussian diffusion process and the returns of the assets
depend linearly on the factor; see [41], [42], and [44]. In particular, this is the counterpart
of [41] for the consumption problem. Note that Nagai [41] studied a risk-sensitive portfolio
optimization problem on a finite time horizon.

Now we consider the following setting. The market consists of one bank account and m
risky stocks. We assume that the bank account process S0 and the price process of the risky
stocks S := (S1, . . . , Sm)� are governed by:

dS0
t = rS0

t dt, S0
0 = s0,

dSit = Sit

{
(a + AYt)

i dt +
n+m∑
k=1

�ik dWk
t

}
, Si0 = si, i = 1, . . . , m,

dYt = (b + BYt ) dt +� dWt, Y0 = y ∈ Rn, (1.1)

where Wt = (Wk
t )k=1,...,(n+m) is an (m+ n)-dimensional standard Brownian motion process.

Here ‘�’ denotes the transpose of a vector or matrix. For the coefficients, we have r ≥ 0,
a ∈ Rm, b ∈ Rn, A ∈ Rm×n, B ∈ Rn×n, � ∈ Rm×(n+m), and� ∈ Rn×(n+m). In this paper we
always assume that

(H) ��� > 0.

We consider an investor who invests at time t a proportion hit of his/her wealth in the ith
risky stock Si, i = 1, . . . , m. With ht = (h1

t , . . . , h
m
t )

� chosen, the proportion of the wealth
invested in the bank account is 1 − h�

t 1. Here 1 = (1, . . . , 1)�. Let Xc,ht and ctX
c,h
t be the

investor’s wealth and the rate at which wealth is consumed, respectively.
We set

Gt := σ(Su; u ≤ t),
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An optimal consumption and investment problem 133

and we consider a strategy (ct , ht ) in the space HT of investment strategies:

HT :=
{
(ct , ht )t∈[0,T ]; (ct , ht ) is a [0,∞)× Rm-valued Gt -progressively measurable

stochastic process such that
∫ T

0
ct dt < ∞,

∫ T

0
|ht |2 dt < ∞,P-a.s

}
,

where we abbreviate P-almost surely to P-a.s. By the self-financing condition, the investor’s
wealth Xc,ht , starting with the initial capital x, satisfies

dXc,ht
X
c,h
t

= (1 − h�
t 1)

dS0
t

S0
t

+
m∑
i=1

hit
dSit
Sit

− ct dt, X
c,h
0 = x,

or, equivalently

dXc,ht
X
c,h
t

= {r + h�
t (AYt + a − r1)− ct } dt + h�

t � dWt. (1.2)

Our goal is to select consumption and investment controls which maximize the finite horizon
discounted expected HARA utility of consumption and terminal wealth:

(IC) V (0, x, y) := sup(c,π)∈AT
J (x, y; c, h; T ), ρ > 0,

where J (x, y; c, h; T ) is defined by

J (x, y; c, h; T ) := E

[∫ T

0
e−ρt 1

γ
(ctX

c,h
t )γ dt + e−ρT 1

γ
(X

c,h
T )γ

]
. (1.3)

Here AT (⊂ HT ) is the space of admissible strategies defined later; see Section 4.
We will see that (IC) becomes a standard stochastic control problem with partial information.

We regard the factor process Y as the state process, the price process S of the risky stocks as
the observation process, and the consumption rate and investment policy can be considered as
the control processes.

In Section 2 we reduce (IC) with partial information to a problem with full information.
In order to do that we introduce an innovation process. We first derive the Kalman filter of the
factor process, which is a time-inhomogeneous diffusion process. Note that the coefficients of
(2.11) for the state estimate depend on the conditional variance �t of the filter which solves
the Riccati equation (2.5). By using the innovation process and the Kalman filter, we are able
to rewrite criterion (1.3). The Kalman filter becomes the state process. We can then reduce
(IC) to a problem with full information. In this regard, we compare our approach with [41], in
which the authors made a measure change before using the Kalman filter. Instead, we make the
measure change after rewriting the dynamics of the risky assets using the Kalman filter and an
innovation process. This seems to greatly simplify the calculation. An innovation process and
filter are often used in the study of the problem for models with partial information; see, e.g.
[3], [4], [23], [28], [30], [35], and [37]. For the convenience of the reader, we provide a brief
discussion in Appendices A and B. For more detailed discussions, we refer the reader to [2],
[11], and [38].

In Section 3, applying a dynamic programming approach, we derive a HJB equation. By a
suitable transformation, the HJB equation turns out to be a linear partial differential equation.
As a result, an explicit solution for the HJB equation is obtained by the solution of the time-
inhomogeneous Riccati equation (3.4).
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134 H. HATA AND S.-J. SHEU

In Section 4 we prove the verification theorem. Indeed, the proof follows closely the
arguments of Theorem 5.1 of Nagai [43]. The optimal value and the optimal strategy is obtained
by the Kalman filter (2.3) and the solution of the time-inhomogeneous Riccati equation (3.4).

In Section 5, adopting the martingale method, we consider our consumption problem. First,
we introduce the result for a general utility function. Next, we treat the power utility function
in particular. Then we verify that the result obtained from the martingale method is the same as
that obtained from the dynamic programming approach. In this particular case, we can apply
the martingale method. We obtain an optimal strategy from the martingale representation of a
random variable. To derive its feedback form, we still need to consider the associated partial
differential equation. As another interesting observation, we know that the Merton consumption
problem in an incomplete market with full information does not have an analytic (or explicit)
solution; see [39]. For the same problem with partial information, an analytic solution may be
obtained, as shown in this paper. Finally, we indicate an extension for future research, which
is the consumption problem on the infinite time horizon.

2. Reduction to a corresponding control problem with full information

Let
Zit := log Sit , i = 1, . . . , m,

with Zt = (Z1
t , . . . , Z

m
t ). Then Z solves

dZt = (d + AYt) dt +� dWt, (2.1)

with d = (di), di := ai − 1
2 (��

�)ii .
In this section we compute the Kalman filter Ŷt of Yt defined by

Ŷt := E[Yt | Gt ].
In this case we consider the innovation process It defined by

It :=
∫ t

0
{dZu − (d + AŶu) du}. (2.2)

Then we have the following results. For the convenience of the reader, we state the proof in
Appendices A and B. See also [2], [11], and [38] for more detailed discussions.

Lemma 2.1. The innovation process It is a Gt -Wiener process with covariance matrix ���.

Proof. The proof can be found in Appendix A. �
Lemma 2.2. The Kalman filter Ŷt solves the stochastic differential equation

dŶt = (b + BŶt ) dt + λ(�t) dIt , Ŷ0 = y, (2.3)

where λ(�t) is defined by

λ(�t) = (�tA
� +���)(���)−1, (2.4)

and �t = E[(Yt − Ŷt )(Yt − Ŷt )
� | Gt ] solves the Riccati equation

�̇t+(�tA�+���)(���)−1(A�t+���)−���−B�t−�tB� = 0, �0 = 0. (2.5)

Proof. The proof can be found in Appendix B. �
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Using (2.1) and (2.2), we have

dIt = A(Yt − Ŷt ) dt +� dWt. (2.6)

Moreover, by (2.6), we have

dZt = (d + AŶt ) dt + dIt . (2.7)

From (2.3) and (2.7), using Ŷt as a new factor process, we have the market with full information
which has the filtration {Gt } and the dynamics of the risky assets become Zt given in (2.7).

Then we can write (1.2) as

dXc,ht
X
c,h
t

= {r + h�
t (AŶt + a − r1)− ct } dt + h�

t dIt . (2.8)

Hence, we have

(X
c,h
t )γ = xγ exp

[
γ

∫ t

0
{
(Ŷu, hu)− cu} du

]
Mh
t ,

where 
(y, h) and Mh
t are defined as


(y, h) := −1 − γ

2
h����h+ r + h�(Ay + a − r1),

Mh
t := exp

[
γ

∫ t

0
h�
u dIu − γ 2

2

∫ t

0
h�
u ��

�hu du

]
.

Therefore, we can write (1.3) as

J (x, y; c, h; T ) = xγ

γ
E

[∫ T

0
c
γ
t exp

[∫ t

0
[γ {
(Ŷu, hu)− cu} − ρ] du

]
Mh
t dt

+ exp

[∫ T

0
[γ {
(Ŷu, hu)− cu} − ρ] du

]
Mh
T

]
. (2.9)

Let
A1
T := {(ct , ht ) ∈ HT ; E[Mh

T ] = 1}.
Then, for all h ∈ A1

T , we can define the probability measure Ph on (�,G) using

dPh

dP

∣∣∣∣
GT

= Mh
T . (2.10)

Under the probability measure Ph, we have

dŶt = {b + BŶt + γ λ(�t)��
�ht } dt + λ(�t) dIht , Ŷ0 = y, (2.11)

where Iht defined by Iht := It −γ
∫ t

0��
�hu du is a Gt -Wiener process with covariance���t .

Then (2.9) can be expressed as

J (x, y; c, h; T ) = xγ

γ
Eh

[∫ T

0
c
γ
t exp

[∫ t

0
[γ {
(Ŷu, hu)− cu} − ρ] du

]
dt

+ exp

[∫ T

0
[γ {
(Ŷu, hu)− cu} − ρ] du

]]
. (2.12)

We conclude that (IC) can be reduced to a stochastic control problem with full information,
which is the problem of maximizing (2.12) subject to a system process Ŷt given by (2.11) on
the filtered probability space (�,F ,Gt ,Ph).
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3. The HJB equation and its explicit solution

In this section we will derive the HJB equation for the new control problem with full
information obtained in Section 2. We will obtain an explicit solution for the HJB equation.

We first introduce the value functions

V (t, x, y) = sup
(c,h)∈A1

t,T

xγ

γ
J (y; c, h; [t, T ])

or, equivalently,

V (t, x, y) = xγ

γ
v(t, y),

where

v(t, y) := sup
(c,h)∈A1

t,T

Ĵ (y; c, h; [t, T ]), γ ∈ (0, 1),

v(t, y) = inf
(c,h)∈A1

t,T

Ĵ (y; c, h; [t, T ]), γ ∈ (−∞, 0).

Here Ĵ (y; c, h; [t, T ]) is defined by

Ĵ (y; c, h; [t, T ]) = Eht,y

[∫ T

t

c
γ
s exp

[∫ s

t

[γ {
(Ŷu, hu)− cu} − ρ] du

]
dt

+ exp

[∫ T

t

[γ {
(Ŷu, hu)− cu} − ρ] du

]]
.

We denote by Eht,y the expectation with respect to a probability Pht,y defined similarly to Ph,
but with Ŷt = y. Also, A1

t,T is the restriction of the space A1
T on the time interval [t, T ]. Then,

using the dynamic programming approach (see [20, Chapter III.7]), we can formally deduce
the following HJB equation for v with the dynamic (2.11):

∂v

∂t
+ 1

2
tr[λ(�t)���λ(�t)�D2v] + (b + By)�Dv − ρv + γ sup

c≥0

(
−cv + cγ

γ

)

+ γ sup
h∈Rm

{

(y, h)+ h����λ(�t)�

Dv

v

}
v

= 0, t < T , v(T , y) = 1. (3.1)

We provide a formal derivation of (3.1) in Appendix C. This holds for γ ∈ (−∞, 0) ∪ (0, 1).
We define u(t, y) by the relation v(t, y) := u(t, y)1−γ . Then u satisfies

∂u

∂t
+ 1

2
tr[λ(�t)���λ(�t)�D2u] − γ

2u
(Du)�λ(�t)���λ(�t)�Du+ (b + By)�Du

− ρ

1 − γ
u+ γ

1 − γ
sup
c≥0

(
−cu1−γ + cγ

γ

)
uγ

+ γ

1 − γ
sup
h∈Rm

[

(y, h)+ (1 − γ )h����λ(�t)�

Du

u

]
u

= 0, t < T , u(T , y) = 1. (3.2)
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Simplifying this equation, we have

∂u

∂t
+ Lt u+ 1 = 0, t < T , u(T , y) = 1. (3.3)

The supremum in (3.2) is attained by (c̃(t, y), h̃(t, y)):

c̃(t, y) := u(t, y)−1,

h̃(t, y) := 1

1 − γ
(���)−1

{
Ay + a − r1 + (1 − γ )���λ(�t)�

Du

u

}
.

Here Lt is the differential operator defined by

Lt f := 1
2 tr[λ(�t)���λ(�t)�D2f ]

+
[
b + γ

1 − γ
λ(�t)(a − r1)+

{
B + γ

1 − γ
λ(�t)A

}
y

]�
Df

+ 1

1 − γ

{
γ

2(1 − γ )
(Ay + a − r1)�(���)−1(Ay + a − r1)+ γ r − ρ

}
f.

We now consider the following time-inhomogeneous Riccati equation:

U̇ (t)+U(t)K2(t)U(t)+K1(t)
�U(t)+U(t)K1(t)+K0 = 0, t < s, U(s) = 0, (3.4)

where

K2(t) := 1

1 − γ
λ(�t)��

�λ(�t)� ≥ 0, K1(t) := B + γ

1 − γ
λ(�t)A,

K0 := γ

1 − γ
A�(���)−1A.

We also use U(t) = U(t; s) for the dependence of U(t) on s ∈ [t, T ]. The term g(t) = g(t; s)
is the solution of a linear differential equation:

ġ(t)+ {K1(t)+K2(t)U(t)}�g(t)+ U(t)b + γ

1 − γ
{A�(���)−1 + U(t)λ(�t)}(a − r1)

= 0, t < s, g(s) = 0, (3.5)

and l(t) = l(t; s) is the solution of

l̇(t)+ 1
2 tr[λ(�t)���λ(�t)�U(t)] + 1

2g(t)
�λ(�t)���λ(�t)�g(t)+ b�g(t)+ γ r

+ γ

2(1 − γ )
(a − r1 +���λ(�t)�g(t))�(���)−1(a − r1 +���λ(�t)�g(t))

= 0, t < s, l(s) = 0. (3.6)

Then we have the following results.

Theorem 3.1. If (3.4)–(3.6) have solutionsU(t; s), g(t; s), and 
(t; s), then ū(t, y) defined by

ū(t, y) :=
∫ T

t

w̄(t; s, y) ds + w̄(t; T , y) (3.7)
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138 H. HATA AND S.-J. SHEU

solves (3.3), where w̄(t; s, y), s ∈ [t, T ], is defined by

w̄(t; s, y) := exp

[
1

1 − γ

{
1

2
y�U(t; s)y + g(t; s)�y + l(t; s)− ρ(s − t)

}]
. (3.8)

In particular, corresponding to the value function V (t, x, y) for (IC), we define

V (t, x, y) = xγ

γ
ū(t, y)1−γ . (3.9)

Proof. A straightforward calculation shows thatw(t, y) ≡ w̄(t; s, y), given by (3.8), solves

∂w

∂t
+ Ltw = 0, t < s, w(s, y) = 1.

Moreover, using an argument similar to that of Lemma 2 of Liu [39], we see that (3.7)
solves (3.3). �
Remark 3.1. In the γ < 0 case, it is known that (3.4) has a unique solution (see Lemma 5.2
of [6, Chapter V], or Theorem 5.2 of [19, Chapter 5]).

4. Verification theorem

In this section we prove the verification theorem. In order to do so, we first rewrite (3.2).
Define η by

η(t, y) := (1 − γ ) log ū(t, y). (4.1)

Then, using (3.2) and Theorem 3.1, η solves

∂η

∂t
+ 1

2
tr[λ(�t)���λ(�t)�D2η] + 1

2
(Dη)�λ(�t)���λ(�t)�Dη + (b + By)�Dη − ρ

+ γ sup
c≥0

(
−c + cγ

γ
e−η

)
+ γ sup

h∈Rm

{
(y, h)+ h����λ(�t)�Dη}

= 0, t < T , η(T , y) = 0. (4.2)

Next we define the space of admissible strategies

AT := {(c, h) ∈ A1
T ; Eh[Mh

T ] = 1},
where M

h

t is defined by

M
h

t := exp

[∫ t

0
(Dη(u, Ŷu))

�λ(�u) dIhu

− 1

2

∫ t

0
(Dη(u, Ŷu))

�λ(�u)���λ(�u)�Dη(u, Ŷu) du

]
.

Then we have the following theorem.

Theorem 4.1. Assume that (H) holds and (3.4)–(3.6) have solutionsU(t), g(t), and 
(t). Note
that η(t, y) is given by (4.1). Define

ĉ(t, y) := e−η(t,y)/(1−γ ),

ĥ(t, y) := 1

1 − γ
(���)−1{a − r1 + Ay +���λ(�t)�Dη(t, y)}.
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Then
(̂ct , ĥt ) := (̂c(t, Ŷt ), ĥ(t, Ŷt )) ∈ AT (4.3)

is an optimal strategy for (IC). Moreover, V (0, x, y) = V (0, x, y). Here, from (3.9) and (4.1),
V is given by

V (0, x, y) = xγ

γ
eη(0,y). (4.4)

Proof. We apply the idea of the proof of Theorem 5.1 of [43]. First, for any (ct , ht ) ∈ AT ,
we will show that

J (x, y; c, h; T ) ≤ V (0, x, y). (4.5)

Now, we consider the γ ∈ (0, 1) case. We apply Itô’s differential rule to η(t, Ŷt ). Note that Ŷt
is given in (2.11). Then we have

η(t, Ŷt )− η(0, y) =
∫ t

0
(Dη(u, Ŷu))

�λ(�u) dIhu

+
∫ t

0

[
∂η

∂u
(u, Ŷu)+ 1

2
tr(λ(�u)��

�λ(�u)�D2η(u, Ŷu))

+ (Dη(u, Ŷu))
�{b + BŶu + γ λ(�u)��

�hu}
]

du

≤
∫ t

0
[ρ − γ {
(Ŷu, hu)− cu} − c

γ
u e−η(u,Ŷu)] du+ logM

h

t ,

where the second inequality follows from (4.2). Hence, we obtain

γ

∫ t

0
{
(Ŷu, hu)− cu} du− ρt ≤ η(0, y)− η(t, Ŷt )+ logψct + logM

h

t , (4.6)

where ψct is defined by

ψct := exp

[
−

∫ t

0
c
γ
u e−η(u,Ŷu) du

]
.

Moreover, using (2.12) and (4.6), we have

J (x, y; c, h; T ) ≤ xγ

γ
eη(0,y)Eh

[∫ T

0
c
γ
t e−η(t,Ŷt )ψct M

h

t dt + ψcTM
h

T

]

= V (0, x, y)E
h
[
−

∫ T

0
dψct + ψcT

]
= V (0, x, y).

Here E
h[·] is the expectation with respect to the probability measure P

h
:

dP
h

dPh

∣∣∣∣
Gt

= M
h

t .

Next, we consider the γ ∈ (−∞, 0) case. In a similar way to the above, we have

γ

∫ t

0
{
(Ŷu, hu)− cu} du− ρt ≥ η(0, y)− η(t, Ŷt )+ logψct + logM

h

t .

Hence, we have (4.5) again.
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Next, we take (̂ct , ĥt ). By Theorem 3.1, we have |̂ht | ≤ C(1+|Ŷt |). Furthermore, following

the arguments of Lemma 4.1.1 of [2], we have E[Mĥ
T ] = 1 and Eĥ[Mĥ

T ] = 1. Hence, we verify
that (̂ct , ĥt ) ∈ AT . Letting γ ∈ (−∞, 0) ∪ (0, 1), we will show that

J (x, y, ĉ, ĥ; T ) = V (0, x, y).

Now, we can define the probability measure Pĥ (see (2.10)), and we see that under Pĥ, Ŷt solves

dŶt = {b + BŶt + γ λ(�t)��
�ĥt } dt + λ(�t) dI ĥt , Ŷ0 = y.

Then we have

η(t, Ŷt )− η(0, y) =
∫ t

0
(Dη(u, Ŷu))

�λ(�u) dI ĥu

+
∫ t

0

[
∂η

∂u
(u, Ŷu)+ 1

2
tr(λ(�u)��

�λ(�u)�D2η(u, Ŷu))

+ (Dη(u, Ŷu))
�{b + BŶu + γ λ(�u)��

�ĥu}
]

du

=
∫ t

0
[ρ − γ {
(Ŷu, ĥu)− ĉu} − ĉ

γ
u e−η(u,Ŷu)] du+ logM

ĥ

t ,

where the second equality follows from the fact that (̂c, ĥ) is the maximizer in (4.2). Hence,
we have

γ

∫ t

0
{
(Ŷu, ĥu)− ĉu} du− ρt = η(0, y)− η(t, Ŷt )+ logψĉt + logM

ĥ

t .

Moreover, we have

J (x, y, ĉ, ĥ; T ) = xγ

γ
eη(0,y)Eĥ

[∫ T

0
ĉ
γ
t e−η(t,Ŷt )ψĉt M

ĥ

t dt + ψĉTM
ĥ

T

]

= V (0, x, y)E
ĥ
[
−

∫ T

0
dψĉt + ψĉT

]
= V (0, x, y). �

5. The martingale method

In this section we consider (IC) by adopting the martingale method. In Subsection 5.1 we
treat the general utility case. In Subsection 5.2 we treat the power utility case. In addition, we
check that the optimal strategy obtained by the martingale method accords with the optimal
strategy (4.3) by the dynamic programming approach. In Subsection 5.3 we introduce an infinite
time horizon optimal consumption problem as an extension for future research. Actually, the
problem on the infinite time horizon is not completely solved. We state the difficulty faced.

5.1. General utility

In this subsection we use the argument of Karatzas and Shreve [29, Chapter 3].
Use (2.3) and (2.8). Define

H 0
t := e−rtM0

t , (5.1)
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where M0
t is defined by

M0
t := exp

[
−

∫ t

0
(a − r1 + AŶu)

�(���)−1 dIu

− 1

2

∫ t

0
(a − r1 + AŶu)

�(���)−1(a − r1 + AŶu) du

]
.

Using (2.8) and (5.1), we have

d(H 0
t X

c,h
t ) = H 0

t dXc,ht +X
c,h
t dH 0

t + d〈H 0· , Xc,h· 〉t
= H 0

t X
c,h
t [{r + h�

t (a − r1 + AŶt )− ct } dt + h�
t dIt ]

−H 0
t X

c,h
t {r dt + (a − r1 + AŶt )

�(���)−1 dIt }
−H 0

t X
c,h
t h�

t (a − r1 + AŶt ) dt

= −H 0
t ctX

c,h
t dt +H 0

t X
c,h
t {ht − (���)−1(a − r1 + AŶt )}� dIt .

Hence, we have

H 0
t X

c,h
t +

∫ t

0
H 0
u cuX

c,h
u du = x+

∫ t

0
H 0
uX

c,h
u {hu − (���)−1(a− r1 +AŶu)}� dIu. (5.2)

Then, the left-hand side of (5.2) is nonnegative and a Gt -local martingale. That is, it is a
Gt -supermartingale. Therefore, we have

E

[
H 0
T X

c,h
T +

∫ T

0
H 0
t ctX

c,h
t dt

]
≤ x for all (c, h) ∈ HT ,

where HT is given in Section 1. Then, following similar arguments as in Theorem 3.5 of [29,
Chapter 3], we have the following proposition.

Proposition 5.1. Assume that a contingent claim ξ ∈ GT , ξ ≥ 0, and C̄t ≥ 0 such that

E

[
H 0
T ξ +

∫ T

0
H 0
t C̄t dt

]
= x.

In addition, define

ct := C̄t

Xt
,

where Xt is defined by

Xt := 1

H 0
t

E

[
H 0
T ξ +

∫ T

t

H 0
u C̄u du

∣∣∣∣ Gt

]
.

Then there is an h such that (c, h) ∈ HT and Xc,hT = ξ , Xc,ht = Xt . Indeed, h is given by

ht := (���)−1(a − r1 + AŶt )+ 1

H 0
t Xt

ψt ,

where ψ is a Gt -progressively measurable integrand ψ : [0, T ] × � → Rm such that the
following martingale representation theorem holds:

H 0
t X

c,h
t +

∫ t

0
H 0
t C̄t dt = x +

∫ t

0
ψ�
u dIu. (5.3)
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Let Ui : [0,∞) → R∪{−∞} (i = 1, 2) be the general utility functions. We assume thatUi
is strictly increasing, strictly concave, and twice continuously differentiable. In addition, we
assume that

lim
x→∞U

′
i (x) = 0 and lim

x↓0
U ′
i (x) = ∞.

Moreover, Ii : (0,∞) → (0,∞) denotes the inverse function of U ′
i .

Now we consider the following problem:

(GU) V0(x, y) := sup
(c,h)∈ÃT

E

[∫ T

0
e−ρtU1(ctX

c,h
t ) dt + e−ρT U2(X

c,h
T )

]
, ρ > 0,

where ÃT is the space of admissible strategies defined by

ÃT :=
{
(c, h) ∈ HT ; E

[∫ T

0
e−ρtU−

1 (ctX
c,h
t ) dt

]
< ∞, E[e−ρT U−

2 (X
c,h
T )] < ∞

}
.

Define

χ(k) := E

[∫ T

0
H 0
t I1(keρtH 0

t ) dt +H 0
T I2(keρtH 0

T )

]
.

Then, following closely the arguments of Theorem 6.3 of [29, Chapter 3], we have the following
proposition.

Proposition 5.2. Assume that χ(k) < ∞ for all k > 0. Define k̃ such that χ(k̃) = x. Then

C̃t := I1(k̃eρtH 0
t ) and ξ̃ := I2(k̃eρT H 0

T )

lead to

V0(x, y) := E

[∫ T

0
e−ρtU1(C̃t ) dt + e−ρT U2(ξ̃ )

]
.

In addition, the optimal strategy (c̃t , h̃t ) ∈ ÃT is defined by

c̃t := C̃t

X
c̃,h̃
t

(5.4)

and

h̃t := (���)−1(a − r1 + AŶt )+ 1

H 0
t X

c̃,h̃
t

ψt , (5.5)

where ψ is a Gt -progressively measurable integrand in the martingale representation

H 0
t X

c̃,h̃
t +

∫ t

0
H 0
u c̃uX

c̃,h̃
u du = x +

∫ t

0
ψ∗
u dIu.

Here Xc̃,h̃t is the optimal wealth process defined by

X
c̃,h̃
t := 1

H 0
t

E

[
H 0
T ξ̃ +

∫ T

t

H 0
u C̃u du

∣∣∣∣ Gt

]
and X

c̃,h̃
T = ξ̃ .

5.2. Power utility functions

In this subsection we consider the case of the power utility functions. Under this setting,
we obtain the optimal wealth process, the optimal strategy, and the value function. We confirm
that the same result as Theorem 4.1 is obtained.
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First, we consider

U1(x) = U2(x) = xγ

γ
for γ ∈ (−∞, 0) ∪ (0, 1).

Then we have
I1(y) = I2(y) = y−1/(1−γ ).

First, we observe that

χ(k) = E

[∫ T

0
H 0
t (keρtH 0

t )
−1/(1−γ ) dt +H 0

T (keρtH 0
T )

−1/(1−γ )
]

= k−1/(1−γ )E
[∫ T

0
e−ρt/(1−γ )(H 0

t )
−γ /(1−γ ) dt + e−ρT/(1−γ )(H 0

T )
−γ /(1−γ )

]

= k−1/(1−γ )E
[∫ T

0
M̌t exp

[∫ t

0
φ(Ŷu) du

]
dt + M̌T exp

[∫ T

0
φ(Ŷt ) dt

]]
, (5.6)

where M̌t and φ(y) are defined as follows:

M̌t := exp

[
γ

1 − γ

∫ t

0
(a − r1 + AŶu)

�(���)−1 dIu

− 1

2

(
γ

1 − γ

)2 ∫ t

0
(a − r1 + AŶu)

�(���)−1(a − r1 + AŶu) du

]
,

φ(y) := 1

1 − γ

{
−ρ + γ r + γ

2(1 − γ )
(a − r1 + Ay)�(���)−1(a − r1 + Ay)

}
.

Now, we define the probability measure P̌ as

dP̌

dP

∣∣∣∣
Gt

= M̌t .

Under the probability measure P̌, Ŷt solves

dŶt =
{
b + BŶt + γ

1 − γ
λ(�t)(a − r1 + AŶt )

}
dt + λ(�t) dǏt ,

where Ǐt is defined by

Ǐt := It − γ

1 − γ

∫ t

0
(a − r1 + AŶu) du.

Note that Ǐt is a Gt -Wiener process with covariance matrix ��� under P̌ (see Lemma 2.1).
Then we have

χ(k) = k−1/(1−γ )f (0, y),
where f (t, y) is defined by

f (t, y) = Ě

[∫ T

t

exp

[∫ s

t

φ(Ŷu) du

]
ds + exp

[∫ T

t

φ(Ŷs) ds

]]
,
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where Ě[·] is the expectation with respect to the probability measure P̌. Noting that f (t, y)
solves (3.3), we see that

f (t, y) = ū(t.y),

where ū is given by (3.7). Hence, from (5.6), we have

χ(k) = k−1/(1−γ )ū(0, y).

Moreover, noting that x = χ(k̃), we have

k̃ = x−(1−γ )ū(0, y)1−γ . (5.7)

Then we have

H 0
T ξ̃ = H 0

T I2(k̃eρT H 0
T )

= H 0
T (k̃eρT H 0

T )
−1/(1−γ )

= xū(0, y)−1e−ρT/(1−γ )(H 0
T )

−γ /(1−γ )

= xū(0, y)−1M̌T exp

[∫ T

0
φ(Ŷt ) dt

]
(5.8)

and, similarly,

C̃t := xū(0, y)−1M̌t exp

[∫ t

0
φ(Ŷu) du

]
(H 0

t )
−1. (5.9)

Using (5.8) and (5.9), we have

H 0
t X

c̃,h̃
t = xū(0, y)−1E

[∫ T

t

M̌s exp

[∫ s

0
φ(Ŷu) du

]
ds + M̌T exp

[∫ T

0
φ(Ŷt ) dt

] ∣∣∣∣ Gt

]

= xū(0, y)−1M̌t exp

[∫ t

0
φ(Ŷu) du

]

× E

[∫ T

t

M̌sM̌
−1
t exp

[∫ s

t

φ(Ŷu) du

]
ds + M̌T M̌

−1
t exp

[∫ T

t

φ(Ŷs) ds

] ∣∣∣∣ Gt

]

= xū(0, y)−1M̌t exp

[∫ t

0
φ(Ŷu) du

]

× Ě

[∫ T

t

exp

[∫ s

t

φ(Ŷu) du

]
ds + exp

[∫ T

t

φ(Ŷs) ds

] ∣∣∣∣ Gt

]

= xū(0, y)−1M̌t exp

[∫ t

0
φ(Ŷu) du

]
f (t, Ŷt )

= xū(0, y)−1M̌t exp

[∫ t

0
φ(Ŷu) du

]
ū(t, Ŷt ). (5.10)

From (5.4), (5.9), and (5.10), we have

c̃t := ū(t, Ŷt )
−1. (5.11)

Set

M̃t := H 0
t X

c̃,h̃
t +

∫ t

0
H 0
u c̃uX

c̃,h̃
u du.

https://doi.org/10.1017/apr.2018.7 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2018.7


An optimal consumption and investment problem 145

Using (5.10) and (5.11), we have

M̃t = xū(0, y)−1
{
M̌t exp

[∫ t

0
φ(Ŷu) du

]
ū(t, Ŷt )+

∫ t

0
M̌s exp

[∫ s

0
φ(Ŷu) du

]
ds

}
.

Here, we see that

dM̌t = γ

1 − γ
M̌t (a − r1 + AŶt )

�(���)−1 dIt ,

dū(t, Ŷt ) =
{
∂ū

∂t
(t, Ŷt )+ 1

2
tr(λ(�t)��

�λ(�t)�D2ū(t, Ŷt ))+ (b + BŶt )
�Dū(t, Ŷt )

}
dt

+ (Dū(t, Ŷt ))
�λ(�t) dIt .

Hence, we have

dM̃t = xū(0, y)−1M̌t exp

[∫ t

0
φ(Ŷu) du

]

×
[{
∂ū

∂t
(t, Ŷt )+ Lt ū(t, Ŷt )+ 1

}
dt

+
{
ū(t, Ŷt )

γ

1 − γ
M̌t (a − r1 + AŶt )

�(���)−1 + (Dū(t, Ŷt ))
�λ(�t)

}
dIt

]

= H 0
t X

c̃,h̃
t

{
γ

1 − γ
(���)−1(a − r1 + AŶt )+ λ(�t)

�Dū(t, Ŷt )
ū(t, Ŷt )

}�
dIt ,

where the last equality follows from the fact that ū solves (3.3) and (5.10). From (5.3), we see
that

ψt = H 0
t X

c̃,h̃
t

{
γ

1 − γ
(���)−1(a − r1 + AŶt )+ λ(�t)

�Dū(t, Ŷt )
ū(t, Ŷt )

}
.

Using (5.5), we have

h̃t = 1

1 − γ
(���)−1

{
a − r1 + AŶt + (1 − γ )���λ(�t)�

Dū(t, Ŷt )

ū(t, Ŷt )

}
. (5.12)

Finally, we have

V0(x, y) = E

[∫ T

0
e−ρtU1(c̃tX

c̃,h̃
t ) dt + e−ρT U2(X

c̃,h̃
T )

]

= E

[∫ T

0
e−ρtU1(I1(k̃eρtH 0

t )) dt + e−ρT U2(I2(k̃eρT H 0
T ))

]
.

Note that

Ui(Ii(y)) = 1

γ
(y−1/(1−γ ))γ = 1

γ
y−γ /(1−γ ).

Therefore, we have

V0(x, y) = 1

γ
E

[∫ T

0
e−ρt (k̃eρtH 0

t )
−γ /(1−γ ) dt + e−ρT (k̃eρT H 0

T )
−γ /(1−γ )

]

= k̃−γ /(1−γ )

γ
E

[∫ T

0
e−ρt/(1−γ )(H 0

t )
−γ /(1−γ ) dt + e−ρT/(1−γ )(H 0

T )
−γ /(1−γ )

]

= k̃−γ /(1−γ )

γ
k̃1/(1−γ )χ(k̃)
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= k̃

γ
x

= xγ

γ
ū(0, y)1−γ . (5.13)

Here, the third equality follows from (5.6) and the last equality follows from (5.7).

Remark 5.1. Recall that

ū(t, y) = exp

[
η(t, y)

1 − γ

]
;

see (4.1). Then we see that c̃t = ĉt and h̃t = ĥt hold. Here c̃t and h̃t are given by (5.11)
and (5.12), respectively. Also, ĉt and ĥt are given by (4.3). Moreover, we also see that
V0(x, y) = V̂ (0, x, y) holds, where V0(x, y) and V (0, x, y) are given by (5.13) and (4.4),
respectively. Hence, we can check that the results obtained using the martingale method are in
agreement with those obtained using the dynamic programming approach.

5.3. Infinite time horizon problem

As an extension for future research, we introduce a consumption problem on the infinite time
horizon. That is, using the general utility function U1 given in Subsection 5.1, we consider the
following:

V∞(x, y) := sup
(c,h)∈Ã

E

[∫ ∞

0
e−ρtU1(ctX

c,h
t ) dt

]
, ρ > 0,

where Ã is the space of admissible strategies defined by:

Ã :=
{
(c, h) ∈ HT ; E

[∫ T

0
e−ρtU−

1 (ctX
c,h
t ) dt

]
< ∞ for each T > 0

}
.

Define

χ∞(k) := E

[∫ ∞

0
H 0
t I1(keρtH 0

t ) dt

]
.

Then we have the following proposition.

Proposition 5.3. Assume that
χ∞(k) < ∞. (5.14)

Define k̃ such that χ∞(k̃) = x. Then we have

V∞(x, y) := E

[∫ ∞

0
e−ρtU1(C̃

(∞)
t ) dt

]
.

Here C̃(∞)
t is defined by

C̃
(∞)
t := I1(k̃eρtH 0

t ),

where I1 is given in Subsection 5.1. Also, (c̃(∞)
t , h̃

(∞)
t ) ∈ ÃT is the optimal strategy. Here c̃(∞)

t

is defined by

c̃
(∞)
t := C̃

(∞)
t

X
c̃(∞), h̃(∞)

t

,
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where Xc̃
(∞), h̃(∞)

t is the optimal wealth process defined by

X
c̃(∞), h̃(∞)

t := 1

H 0
t

E

[∫ ∞

t

H 0
u C̃

(∞)
u du

∣∣∣∣ Gt

]
. (5.15)

Moreover, h̃(∞)
t is determined by the following:

E

[∫ ∞

0
H 0
u C̃

(∞)
u du

∣∣∣∣ Gt

]
=

∫ t

0
H 0
uX

c̃(∞), h̃(∞)

u {h̃(∞)
u − (���)−1(a − r1 + AŶu)}� dIu.

(5.16)

Remark 5.2. As in (5.2), we have

H 0
t X

c̃(∞), h̃(∞)

t +
∫ t

0
H 0
u C̃

(∞) du

= x +
∫ t

0
H 0
uX

c̃(∞), h̃(∞)

u {h̃(∞)
u − (���)−1(a − r1 + AŶu)}� dIu.

From this and (5.15), we obtain (5.16).

In particular, we are interested in the case of the power utility:

U1(c) = 1

γ
cγ for γ ∈ (−∞, 0) ∪ (0, 1).

Note that we need to check condition (5.14) in order to use Proposition 5.3.
Then, in a similar way to Subsection 5.2, we have

χ∞(k) = k−1/(1−γ )
∫ ∞

0
exp

[
1

1 − γ

{
1

2
y�U(0; t)y + y�g(0; t)+ l(0; t)− ρt

}]
dt, (5.17)

where U , g, and l solve (3.4)–(3.6), respectively. We guess that we may need the conditions
of the discount factor ρ and the HARA parameter γ satisfying (5.14). In future work, we aim
to investigate the asymptotic behaviors of U , g, and l. One possible direction is to follow the
ideas of Nagai and Peng [44]; we can assume the stability of the matrix

G := B −���(���)−1A.

Then we see that �t → �̄ as t → ∞, where �̄ is a solution of the algebraic Riccati equation

G�̄+ �̄G� + �̄A�(���)−1A�̄+�(I −��(���)−1�)�� = 0.

In addition, the stability of the filter can be proved. In this case, when time is large, we may
replace the equation for the factor process (2.3) by a time-homogeneous equation

dŶt = (b + BŶt ) dt + λ(�̄) dIt .

We expect that similar results to [26] and [43] may be obtained. From (5.17), we will find the
conditions of ρ and γ such that χ∞(k) is finite. This will be discussed further elsewhere.
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Appendix A.

Proof of Lemma 2.1. We apply the approach of Proposition 1.2.3 of [2]. For s ≤ t , we have

E[It − Is | Gs] = E

[
Zt − Zs −

∫ t

s

(d + AŶu) du

∣∣∣∣ Gs

]

= E

[∫ t

s

� dWu +
∫ t

s

(d + AYu) du−
∫ t

s

(d + AŶu) du

∣∣∣∣ Gs

]

= E

[
E

[∫ t

s

� dWu

∣∣∣∣ Fs

]
+

∫ t

s

A(Yu − E[Yu | Gu]) du

∣∣∣∣ Gs

]
= 0.

Moreover, noting that

d(Iu − Is)(Iu − Is)
� = (Iu − Is)d(Iu − Is)

� + d(Iu − Is)(Iu − Is)
� +��� du,

we have
E[(It − Is)(It − Is)

� | Gs] = ���(t − s). �

Appendix B.

Proof of Lemma 2.2. We apply the approach of Theorem 22.1.9 of [11]. Define

Mt := Ŷt − Ŷ0 −
∫ t

0
E[b + BYu | Gu] du = Ŷt − y −

∫ t

0
(b + BŶu) du. (B.1)

Then we see that

E[Ŷt − Ŷs | Gs] = E[Yt − Ys | Gs]
= E

[∫ t

s

(b + BYu) du+
∫ t

s

� dWu

∣∣∣∣ Gs

]

= E

[∫ t

s

(b + BE[Yu | Gu]) du+ E

[∫ t

s

� dWu

∣∣∣∣ Fs

] ∣∣∣∣ Gs

]

= E

[∫ t

s

(b + BŶu) du

∣∣∣∣ Gs

]
,

and that Mt is a Gt -martingale. Hence, there exists a Gt -progressively process βu ∈ Rn×(n+m)
such that

Mt :=
∫ t

0
βu dνu,

where νt is defined by
νt := ��(���)−1It .

Then, by (B.1), we have
dŶt = (b + BŶt ) dt + βt dνt . (B.2)

Using (2.1) and (B.2), we have

d(YtZ
�
t ) = dNt +Ht dt,
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where

Nt :=
∫ t

0
{Yu(� dWu)

� + (� dWu)Z
�
u },

Ht :=
∫ t

0
{Yu(d + AYu)

� + (b + BYu)Z
�
u +���} du.

Note that Nt is an Ft -local martingale.
Using a similar argument as in Appendix A,

ŶtZt −
∫ t

0
Ĥu du is Gt -martingale.

That is, since Zt is Gt -measurable,

ŶtZt −
∫ t

0
Ĥu du is Gt -martingale. (B.3)

On the other hand, using (B.2) and recalling that

dZt = (a + AŶt ) dt +� dνt ,

we see that

ŶtZt −
∫ t

0
{Ŷu(d + AŶu)

� + (b + BŶu)Z
�
u + βu�

�} du (B.4)

is also Gt -martingale. Since the two decompositions (B.3) and (B.4) of the semimartingale
ŶtZt should be the same, we have

βt�
� := ŶtY

�
t A

� − Ŷt Ŷ
�
t A

� +��� = �A� +���, (B.5)

where �t = ŶtY
�
t − Ŷt Ŷ

�
t = E[(Yt − Ŷt )(Yt − Ŷt )

� | Gt ]. Hence, by (B.2) and (B.5), we
obtain (2.3).

Next, we will obtain (2.5). Note that, we also have

�t = E[(Yt − Ŷt )(Yt − Ŷt )
�] (B.6)

since Y and Z are Gaussian processes, hence, Yt − Ŷt is independent of Gt . Using (1.1), (2.3),
and (2.6), we have

d(Yt − Ŷt ) = (B − λ(�t)A)(Yt − Ŷt ) dt + (�− λ(�t)�) dWt.

Then we have

d(Yt − Ŷt )(Yt − Ŷt )
� = (�− λ(�t)�)(�− λ(�t)�)

� dt

+ (Yt − Ŷt ){(B − λ(�t)A)(Yt − Ŷt ) dt + (�− λ(�t)�) dWt }�
+ {(B − λ(�t)A)(Yt − Ŷt ) dt + (�− λ(�t)�) dWt }(Yt − Ŷt )

�.

Integrating this on [0, t], and taking the expectation for both sides, we have, by (B.6),

�t =
∫ t

0
{(B − λ(�u)A)�u +�u(B − λ(�u)A)

� + (�− λ(�u)�)(�− λ(�u)�)
�} du

=
∫ t

0
{−λ(�u)���λ(�u)� +��� + B�u +�uB

�} du.

For the last relation, we use (2.4). Hence, we see that �t is the solution of (2.5). �
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Appendix C. A formal derivation of (3.1)

For the derivation of (3.1), we consider only γ ∈ (0, 1). The derivation for γ ∈ (−∞, 0) is
similar.

Let 0 < t < T and δ > 0 such that t + δ < T . By the dynamic programming principle (see
[20, Theorem III.7]), we have

v(t, y) = sup
(c,h)∈A1

t,t+δ
Et,y

[∫ t+δ

t

c
γ
s exp

[∫ s

t

[γ {
(Ŷu, hu)− cu} − ρ] du

]
ds

+ exp

[∫ t+δ

t

[γ {
(Ŷu, hu)− cu} − ρ] du

]
v(t + δ, Ŷt+δ)

]
. (C.1)

Here Ŷt is governed by (2.11). Assume that v(·, ·) is C2. We can apply Itô’s formula:

dv(s, Ŷs) =
{
∂v

∂s
(s, Ŷs)+ 1

2
tr(λ(�s)��

�λ(�s)�D2v(s, Ŷs))

+ (b + BŶs + γ λ(�s)��
�hs)�Dv(s, Ŷs)

}
ds + (Dv(s, Ŷs))

�λ(�s) dIhs .

Then

ds

{
exp

[∫ s

t

[γ {
(Ŷu, hu)− cu} − ρ] du

]
v(s, Ŷs)

}

= exp

[∫ s

t

[γ {
(Ŷu, hu)− cu} − ρ] du

]

×
{
∂v

∂s
(s, Ŷs)+ 1

2
tr(λ(�s)��

�λ(�s)�D2v(s, Ŷs))

+ (b + BŶs + γ λ(�s)��
�hs)�Dv(s, Ŷs)

+ [γ {
(Ŷu, hu)− cu} − ρ]v(s, Ŷs)
}

ds

+ exp

[∫ s

t

[γ {
(Ŷu, hu)− cu} − ρ] du

]
(Dv(s, Ŷs))

�λ(�s) dIhs .

Then with Ŷt = y, we have

exp

[∫ t+δ

t

[γ {
(Ŷu, hu)− cu} − ρ] du

]
v(t + δ, Ŷt+δ)

= v(t, y)+
∫ t+δ

t

exp

[∫ s

t

[γ {
(Ŷu, hu)− cu} − ρ] du

]

×
{
∂v

∂s
(s, Ŷs)+ 1

2
tr(λ(�s)��

�λ(�s)�D2v(s, Ŷs))

+ (b + BŶs + γ λ(�s)��
�hs)�Dv(s, Ŷs)

+ [γ {
(Ŷu, hu)− cu} − ρ]v(s, Ŷs)
}

ds

+
∫ t+δ

t

exp

[∫ s

t

[γ {
(Ŷu, hu)− cu} − ρ] du

]
(Dv(s, Ŷs))

�λ(�s) dIhs .
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Assuming some growth condition on the derivatives of v and also h such that

Eht,y

[∫ t+δ

t

exp

[∫ s

t

[γ {
(Ŷu, hu)− cu} − ρ] du

]
(Dv(s, Ŷs))

�λ(�s) dIhs

]
= 0,

then

Eht,y

[
exp

[∫ t+δ

t

[γ {
(Ŷu, hu)− cu} − ρ] du

]
v(t + δ, Ŷt+δ)

]

= v(t, y)+ Eht,y

[∫ t+δ

t

exp

[∫ s

t

[γ {
(Ŷu, hu)− cu} − ρ] du

]

×
{
∂v

∂s
(s, Ŷs)+ 1

2
tr(λ(�s)��

�λ(�s)�D2v(s, Ŷs))

+ (b + BŶs + γ λ(�s)��
�hs)�Dv(s, Ŷs)

+ [γ {
(Ŷu, hu)− cu} − ρ]v(s, Ŷs)
}

ds

]
.

Hence, (C.1) becomes

sup
(c,h)∈A1

t,t+δ
Eht,y

[∫ t+δ

t

c
γ
s exp

[∫ s

t

[γ {
(Ŷu, hu)− cu} − ρ] du

]
ds

+ exp

[∫ s

t

[γ {
(Ŷu, hu)− cu} − ρ] du

]

×
{
∂v

∂s
(s, Ŷs)+ 1

2
tr(λ(�s)��

�λ(�s)�D2v(s, Ŷs))

+ (b + BŶs + γ λ(�s)��
�hs)�Dv(s, Ŷs)

+ [γ {
(Ŷu, hu)− cu} − ρ]v(s, Ŷs)
}

ds

]
= 0.

Dividing by δ and letting δ → 0, we can formally derive (3.1).
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