
BULL. AUSTRAL. MATH. SOC. 34CO5, 58F21

VOL. 38 (1988) [1-10]

QUADRATIC SYSTEMS
WITH A DEGENERATE CRITICAL POINT

W. A. COPPEL

It is shown that a quadratic system with a degenerate critical point has at most one limit
cycle.

A critical point of a two-dimensional autonomous system

(1) x' = P(x, y), y1 = Q(x, y),

is a point M = (xo, yo) for which

P(xo, 3/o) = Q(zo, yo) = 0.

The critical point is degenerate if both the Jacobian PxQy — PyQx and the divergence
Px + Qy a r e zero at M.

The system (1) is said to be quadratic if

2 2

(2) p(x, y)= ] T a^xiyk Q(x>y)= ] C hikxiyk

i+k=0 i+k=0

are relatively prime real polynomials of degree at most two which are not both linear.
We propose to prove

THEOREM 1. If a quadratic system has a degenerate critical point then it either
has a centre or has at most one periodic orbit. Moreover, if there is a unique periodic
orbit it is a limit cycle with a non-zero characteristic exponent.

By [2], Theorem 6 we may suppose that the quadratic system has a focus or centre
at the origin, which is surrounded by a periodic orbit. Moreover, by a non-singular
linear transformation we may suppose that it has the form

x' = Xx — y + lx7 + mxy + ny2

y = x + Xy + ax2 -f bxy + cy2.
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2 W.A. Coppel [2]

Furthermore we may suppose that the degenerate critical point is situated at (0, 1).
Then n — 1, c = -A and m = 0, b — - 1 - A2 . Thus

x' = \x - y + lx2 + y2

y' = X + Xy + ax2 - (1 + X2)xy - Ay2.

If we put z — y + Ax this takes the form

a;' = 2Xx - z + Lx2 - 2Xxz + z2

z' = (l + X2)x + Ax2-(l +

By scaling we can obtain finally a system of the form

x - dx - y + lx2 - dxy + y2

y = x 4- ox2 — xy

where - 2 < d < 2.

Since y' = aa;2 for y = 1 any periodic orbit 7 of (3) which surrounds the origin
must lie in the half-plane y < 1. Moreover, since the interior of 7 is a convex region
([2, Theorem 1]), the intersections of 7 with the t/-axis are the only points on 7 where
y' = 0. Hence 7 must also lie in the half-plane 1 + ax — y > 0.

The system (3) has a centre at the origin if d = a(2l — 1) = 0, by the standard
criteria for a weak focus to be a centre (see [2]). Thus this case may be excluded. If we
set B(y) = |1 - y\a then for the system (3)

(BP), + (BQ)y = [d(l - yf + (2J - 1 - a)x(l - y) - aax2]B/(l - y).

If we take a — 21 — 1 then it follows from Dulac's criterion that ad(2l — 1) > 0. If we
take a = 1 - 2/ then it follows similarly that (2/ - I)2 > ad(2l - 1). By changing the
signs of x and t we may suppose that d > 0. Then we must have

(4) 0 < d < {21 - I) I a.

It will now be shown that the quadratic system (3) has no focus or centre besides
the origin, and hence that every periodic orbit must surround the origin. Besides the
critical points (0, 0) and (0, 1) the system (3) also has the critical point (xo, j/o),
where

So = —a/(a? — ad + l), yo = 1 + a^o = (/ — ad)/(a2 — ad + l).

If we set x = x0 + £, y = y0 + rj then

£' = {21 - ad)xo( + [1 + (2a - d)xo]rj + ...

7] — a z o £ - xorj + . . . .
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[3] Quadratic differential systems 3

Thus the linear terms have trace T = (21 — ad — l)xo and determinant D = axo . If

the critical point (zo>2/o) is a focus or centre then T2 < 4D, that is

{21-I ~ ad)2 < -4 (a 2 -ad + l)

or, equivalently,

{21 + 1-ad)2 <4(/-a2) .

Thus a2 — ad + I < 0 and I > a2 . Since ci > 0, these inequalities imply a > 0. Then
(4) implies 21 + 1 - ad > 2 and hence 1 < / - a2 . On the other hand o2 - ad + 1 > 0,
since 0 < d < 2, and hence / < 1. Thus we have a contradiction.

In order to show that the quadratic system (3) has at most one periodic orbit
surrounding the origin we now make some changes of variables. The linear fractional
transformation

£ = x / { \ - y ) , r 1 = y / ( l - y ) , d r / d t = l - y

with inverse

x = £ / ( l + v),V = W ( l +• V), dt/dr -

replaces (3) by

We wish to show that this system has at most one periodic orbit in the region r\ >

- 1 , l + a£> 0.

If we now put £ = x, T] = ey — 1, T = t we obtain a system

x'= F{x) - ip{y)

y = Q(X)

with

F(x) = dx + (1 + l)x2 + ax3,

(6) g{x) = x + ax2,

In order to show that (5)-(6) has at most one periodic orbit in the region 1 + ax > 0
we make use of the following criterion:
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THEOREM 2. Let <p be a continuously differentiable {unction such that <p(0) —
0,<p'(y) > 0 for — oo < y < oo. Also let f, g be continuously differentiable functions
on the open interval (a, 6), where a < 0 < b, such that

(i) g(x) $ 0 according as x ^ 0,

(iii) f{^)/g(x) is a decreasing function for x > 0 and for x < 0.

Then the system (5), where F(x) = JQ f(£)d£, has at most one periodic orbit and, if
it exists, it is a staWe limit cycle.

Theorem 2 differs only trivially from the theorem in Zhang Zhifen [5] and may be
proved in exactly the same way. (This theorem was already announced, with a sketch
of the proof, in [4].) It will now be shown that the functions (6) satisfy the conditions
of Theorem 2. The assumptions concerning (p are obviously satisfied. The hypothesis
(i) is satisfied on the open interval where 1 + ax > 0 and the hypothesis (ii) is also
satisfied, since

f(x) = d + 2(1 + l)x + 3ax2.

Filially the hypothesis (iii) is satisfied, since

-j-(f/g) = -[d + 2adx + a(2l - I)x2)/g2{x)

and the quadratic in square brackets has negative discriminant.
Hence the quadratic system (3) has a unique periodic orbit, which is a stable limit

cycle. To complete the proof of Theorem 1 it only remains to show that this periodic
orbit has a negative characteristic exponent.

Let 7 now denote the unique periodic orbit of the system (5)-(6). Let X2 > 0 be
the maximum value of x on 7 and put

7(x) = f(x) - ag(x),

where a = f{x2)/g(x2)- The hypotheses (i)-(iii) of Theorem 2 imply that a >
0, f(x) < 0 for x > X2 and f(x) > 0 for 0 ^ x < X2 • The characteristic exponent of
7 is

h = j 7(x)dt,

since

J g{x)dt = J dy = 0.

Since 7 is stable we must have h < 0. We will assume h — 0 and derive a contradiction.
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Evidently f(x\) = 0 for some x\ < 0 and the minimum value of z on 7 is less

than » ! . The hypotheses (i)-(iii) of Theorem 2 imply that f(x) < 0 for x < xx and

7(x) > 0 for z i < x < 0 . Put

exp [-(xi - x)~ ] for x < xlt

O for x > x j .

and set

where ^ > 0. Then the corresponding system

z' = FM(sc)

y =g(x)

also satisfies the hypotheses of Theorem 2. Moreover (5M) has a periodic orbit 7^ in
the interior of 7, since the origin is an unstable critical point and orbits of (5,,) which
intersect 7 to the left of the line x — Xi cross it from the outside to the inside. Thus
7^ is the unique periodic orbit of (5^) and is a stable limit cycle.

We now make use of some results from Andronov et al. [1, Chapter 13]. Although
the system (5^) is C°°, rather than analytic, and although it is not obtained from the
analytic system (5) by a simple rotation of the vector field, nevertheless the quantity
U01 defined there by (36) is still non-zero. Consequently Theorems 71 and 72 continue
to hold. Theorem 71 shows that the limit cycle 7 of (5) must be of odd multiplicity.
Theorem 72 then shows that for all sufficiently small \i > 0 the limit cycle -y^ of (5M)
has characteristic exponent h^ < 0.

Finally we compare h^ with h, in the same manner as in the proof of Theorem 2.
We refer to Figure 1. Since 7 is a limit cycle of odd multiplicity greater than 1, the
argument in [1] shows that the distance <r of B\ from Ao is given asymptotically by
a ~ CJM™ for n -> +0, where cx > 0 and 0 < a < 1/3. Evidently

Ji= f J(x)dt < 0, J2= f 7(x)dt < 0.
JA1B1 JCiDi

Since x' < 0 along F\Ai and CQAQ these arcs can be described by equations y = y(x)
and y — y^(x) respectively. Then
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Figure 1

J3= f f(x)dt - f
JFiA1 JC0/

= _ p . * l{x)dx f(x)dx
F(x) - >p(y{x)) JXi F{x) -

7(x)[<p(y,(x))-<p(y(*))}dx

since J/M(x) < y(x) for £i < a; < ^2,/j- Similarly

DlEl

0.

Since y' < 0 along JBJCI and >lo5o these arcs can be described by equations x = x(y)

and a; = x^(y) respectively. Let yi, 1/2(1/1 < 0 < J/2) be the ordinates of Bo and Ao .

Then since {f/g) < 0 and a < 1 we have, for small /i > 0,

J5= I f(x)dt- f /fI(

< -
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where c2 > 0. On the arc E^Fy we have x = x(y). Since f(x2) = 0 it follows that

r _ / 7 ( ( y ) )
J6 = / f(x)dt = / \ {dy = o(M

a).
^ f i •> g[x{y))

Adding these estimates we obtain, for small /x > 0,

h - hp = Ji + J2 + J3 + J* + Ji + Je < 0.

Since h = 0 and /iM < 0, this is the required contradiction. This completes the proof
of Theorem 1.

As Poincare already pointed out, it is useful to extend the domain of definition of
a quadratic system to the real projective plane. Then, in addition to the finite critical
points, there are also critical points at infinity. In [3] I have shown that if a quadratic
system has a critical point at infinity which is degenerate then it either has a centre or
has at most one periodic orbit. Moreover, if there is a unique periodic orbit it is a limit
cycle with a non-zero characteristic exponent. Thus the statement of Theorem 1 may
be understood to refer to either a finite or an infinite critical point.

The proof given in [3] for a degenerate critical point at infinity depended on com-
paring the quadratic system with certain reflected systems and on the fact that the
vector field defined by a quadratic system has at most six points of contact with a conic
section, unless the conic section is invariant. In the same paper it was shown by a
quite different method that a quadratic system with an invariant line has at most one
limit cycle. That proof depended on the following uniqueness theorem for the Lienard
equation

(7) x"-f(x)x'+g(x) = 0,

or rather the equivalent system

V ' 1

y =

where

= I*
Joo

THEOREM 3. Let f, g be continuously differentiable functions on the open interval

(a, 6), where a < 0 < 6, such that

(i) g(x) $ 0 according as x ̂  0,
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(ii) f{x) 5; 0 according as x §; xo , where XQ < 0,
(iii) the simultaneous equations

(9) F(xi) - F{x2), /(x1)/g(x1) = f{x2)/g(x2)

have at most one solution Xi, x2 with a < X\ < xo and 0 < x2 < 6.
(iv) if .F(£o) = 0 for some £o < XQ then f(x)F(x)/g(x) is a decreasing

function for a < x < £0 •

Tiien the system (8) has at most one periodic orbit and, if it exists, it has a negative

characteristic exponent.

If in the proof of Theorem 3 given in [3] we replace the path 7 through the point
C by the path 7 through the point D then in a completely analogous way we can
prove

THEOREM 3 ' . The conclusions of Theorem 3 still hold if the hypotheses (i)-(iii)

are retained but the hypothesis (iv) is replaced by

(iv)' f(x)F(x)/g(x) is an increasing- function for 0 < x < b and

lim F(x) < lim F{x).

In conclusion we show that Theorem 1, for the case of a degenerate critical point
at infinity, can actually be deduced from Theorem 3' . Proceeding as in [3], we see that
it is sufficient to show that the quadratic system

x' = y + ex2

y' = -x + dy + nx2 + mxy,

where d> 0, n < (3c — l)d and m+2c = 1, has at most one periodic orbit surrounding
the origin. Eliminating y we obtain a Lienard equation (7) with

f(x) = d + x, g{x) = xq(x),

where

q(x) - 1 + (cd - n)x + c(l - 2c)x2.

We will show that the hypotheses of Theorem 3' are satisfied by this Lienard equation.

Let 7 be a periodic orbit of (8) which surrounds the origin. If g(£) = 0 then on

the line x = f x' has opposite signs on opposite sides of the critical point (£, -c£2) .

Since the interior of 7 is a convex region containing no critical point besides the origin

it follows that 7 cannot intersect the line x = (. We now construct an open interval
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(a, b) with a < 0 < b, such that q(x) > 0 for a < x < b and any periodic orbit of (8)
which surrounds the origin must lie in the strip a < x < b. Then the hypothesis (i)
will be satisfied.

If q(x) has no real zeros we take a = — oo, 6 = +oo . If q(x) has two real zeros
£i < £2 < 0 > or if q(x) has only one zero £2 a n d (2 < 0 , we take a = £2, b — +°o • K
0 ^ c < 1/2 then one of the preceding possibilities must occur, since n — cd < 0 and
c(l - 2c) Js 0. If c < 0 or if c > 1/2 then q(x) has two real zeros £1 < ° < 6 and we
take a = fr, & = 6 -

If — d < a the system (8) has no periodic orbits, since the divergence f(x) is of
constant sign for a < x < b. Hence we may suppose a < — d and then the hypothesis
(ii) is obviously satisfied with xo = — d.

Since F(x) — dx + x2/2 it is readily shown that the simultaneous equations (9)
with Xi < 0 < x2

 ftre equivalent to

(11) X! + x2 = ~2d, dq(-2d) — HxiX2,

where
# = n-cd+3cd(l -2c).

Since o < si < —2d we must have <;(—2d) > 0 and since X1X2 < 0 we must have
H < 0. Since the first equation (11) defines x2 as a decreasing function of »i and
the second equation (11) defines x2 as an increasing function of x\, it follows that the
hypothesis (iii) is also satisfied.

If we put u(x) = f(x)F(x)/g(x) then

where
iV(x) = 3d + 2d2(n - cd) + 2[1 - 2c(l - 2c)d2]x - Hx2.

Since N(-d) = dq{-d) > 0, N(-2d) = -dq{-2d) < 0 and JV(-oo) = +00, the
quadratic .Af(z) is positive for x > -d and in particular for x > 0. It follows that
w(x) is an increasing function for 0 < x < b. The second part of the hypothesis (iv)'
is also satisfied, since if c < 0 or c > 1/2 then

Thus we have a new proof of Theorem 1 when the degenerate critical point is at infinity.
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