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Abstract
Robinson’s unification algorithm can be identified as the underlying machinery of both C. Meredith’s rule
D (condensed detachment) in propositional logic and of the construction of principal types in lambda cal-
culus and combinatory logic. In combinatory logic, it also plays a crucial role in the construction of Meyer,
Bunder & Powers’ Fool’s model. This paper now considers pattern matching, the unidirectional variant of
unification, as a basis for logical inference, typing, and a very simple and natural model for untyped com-
binatory logic. An analysis of the new typing scheme will enable us to characterize a large class of terms of
combinatory logic which do not change their principal type when being weakly reduced. We also consider
the question whether the major or the minor premisse should be used as the fixed pattern.
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1. Introduction
In propositional logic, rule D, or condensed detachment as it is often called, is a rule of inference
invented by Carew Arthur Meredith in 1957 (cf. Lemmon et al. 1957, Section 9) as a means to
study propositional calculi. As we shall see in Section 2, it combines a “minimal” amount of sub-
stitution with the rule of detachment or modus ponens. While condensed detachment, which has
been called “Meredith’s most widely used innovation in logic” (Meredith 1977), is often regarded
as an abbreviative device in Hilbert-style proofs, it has also widely been used in the field of auto-
mated theorem proving,1 and it is known that David Meredith, as early as 1957, “programmed
UNIVAC I to find the D-derivatives of any given set of formulae, but with only one thousand
12-character words of memory ... didn’t get any results that could not have been obtained by hand
more quickly.” (Kalman 1983).

A few years later, in 1965, J. A. Robinson’s pioneering and influential paper introducing the
unification algorithm appeared (Robinson 1965), and it was soon realized that it was this very
algorithmwhich lay at the heart of Meredith’s ruleD.2 Unification was a central part of Robinson’s
resolution principle, which can be regarded as a “machine-oriented” rule of inference for first-
order logic. Nevertheless, as Robinson (1979, p. 292) states, the idea of unification “turns out to
have been sitting there all these years, unnoticed, in Herbrand’s doctoral thesis” (cf. Herbrand
1930, Chapter 5, Section 2.4). Further details about the history of condensed detachment and its
connection to Robinson’s unification algorithm can be found in Meredith (1977), Kalman (1983),
and Hindley (1997, p. 103).

Another strand of research closely connected to unification is the theory of simple types. Here,
the principal type of a term in lambda calculus or combinatory logic can be regarded as the term’s
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most general type, and it was soon realized that the algorithm designed to compute the principal
type of a term is not only based on Robinson’s unification algorithm but also mirrors Meredith’s
rule D of the propositional calculus in a perfect manner. An overview over the history of this
apparently independent field of development can be found in Hindley (1997, p. 33).

Finally, a type-lifted variant of rule D – and thus the unification algorithm – also lies at the
heart of a model of untyped combinatory logic published in Meyer et al. (1991). It is called the
“Fool’s Model.”

In this paper, we now shift the emphasis to an algorithm called pattern matching, which can
be regarded as a simplified, “unidirectional variant of unification” (Knight 1989), and which is
very popular in a wide range of applications. As we shall see, this variant gives rise to a new rule of
inference in propositional logic, to a simplified typing scheme in lambda calculus and combinatory
logic, and, finally, to a very natural model of combinatory logic.

We proceed as follows. In Section 2, we summarize the basics of condensed detachment, princi-
pal types, and the unification algorithm. In Section 3, we introduce a version of pattern matching
upon which we will base the new rule of inference and the new typing scheme. As we shall see
in Section 4, this typing scheme will lead to the identification of a large class of terms of com-
binatory logic which do not change their principal type when weakly reduced. In Section 5, we
introduce a simple new model for untyped combinatory logic, which we call the pattern model.
Finally, Section 6 will consider the question why the introduced logical inference and the typing
based on pattern matching take the minor premisse (instead of the major premisse) as its fixed
pattern.

2. Condensed Detachment, Principal Types, and Unification
In this section, we summarize some basic definitions and facts about condensed detachment, prin-
cipal types, and the unification algorithm, which will help to introduce the new rule of inference
and the new typing scheme in the section to follow.

2.1 Propositional logic and condensed detachment
In order to facilitate the comparison between condensed detachment and principal types, the con-
sidered propositional formulas will be purely implicational. To be more precise, propositional
formulas are defined by the simple grammar rule:

ϕ ::= p | (ϕ→ ϕ) (1)
where p ranges over a countable infinite set of propositional variables.

We call the formula α′ an alphabetic variant of the formula α if, in order to obtain α′, all
or some variables in α have been substituted by variables distinct from each other and distinct
from any variables in α which have not been replaced.3 A substitution σ is called a unifier of
the formulas α and β if σ (α)= σ (β). A unifier σ of α and β is called most general if σ ′(α) is a
substitution instance of σ (α) for every other unifier σ ′ of α and β . In this case, we call σ (α) the
most general unification of α and β .

The ruleD (condensed detachment) can then be given as:
α→ β γ

σ (β)
(D)

where γ ′ is an alphabetic variant of γ which has no common variables with α, and where σ is a
most general unifier of α and γ ′ for which no new variable in σ (α) occurs in β .4 If rule D can be
applied to α→ β and γ , we writeD(α→ β , γ )= σ (β).5

As an example for an application of rule D, let the major premise α→ β be
(a→ (b→ c))→ ((a→ b)→ (a→ c)), and let the minor premise γ be the formula p→ p. As
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Figure 1. Rule D applied to the major premise α→ β = (a→ (b→ c))→ ((a→ b)→ (a→ c)) and the minor premise
γ = p→ p, both represented as binary trees. The resulting formula is σ (β)= ((b→ c)→ b)→ ((b→ c)→ c).

α and γ share no common variables, we can immediately proceed with their actual unification,
which is realized by the most general unifier σ = {

a� (b→ c), p� (b→ c)
}
. Thus, the resulting

formula σ (β) is ((b→ c)→ b)→ ((b→ c)→ c).
The representation of the just mentioned formulas as binary trees leads to the picture in Fig. 1,

in which the original trees α and γ successfully try to grow into the same overall shape or structure.
Note how the subtree β follows the same “growing rules” as α and γ do. Finally, variables in inner
nodes will have to be replaced by the implication operator.

2.2 Combinatory logic and principal types
Terms of combinatory logic (CL-terms) are built according to the following production rule:

ϕ ::= S | K | (ϕ ϕ), (2)
the third option being called an application. Example CL-terms are S, (KS), and ((KK)(KS)), the
last one of which is usually simply written as KK(KS) following an association to the left.

Two rules of weak reduction6 can be applied to CL-terms, and while the actual terms can be
interpreted as algorithms, it is the reduction rules which bring in the dynamics of the computation.
These rules are

Sxyz� xz(yz), (3)
Kxy� x, (4)

where themetavariables x, y, and z represent arbitrary CL-terms. Applying these rules, an example
reduction leading to what is called an unreducible normal formmight look as follows:

K(SKSS)K� K(KS(SS))K� KSK� S
The reader should note that we could also have chosen a different reduction path, which, never-
theless, would have led to the same normal form, a property of combinatory logic known as the
Church–Rosser property:

K(SKSS)K� SKSS� KS(SS)� S
In typed combinatory logic, principal types can be assigned to certain CL-terms. These

types follow the building law given by production rule (1), that is, every type can
be interpreted as an implicational proposition. Two axioms assign the principal types
(a→ (b→ c))→ ((a→ b)→ (a→ c)) and a→ (b→ a) (or any other alphabetic variant) to the
CL-terms S and K, respectively. If two CL-termsM and N with principal types ϕ→ψ and ϑ are
given, the principal typeD(ϕ→ψ , ϑ), if it exists, is assigned to the application (MN). Otherwise,
(MN) is regarded as not typable. The typing scheme is summarized in Fig. 2.

As an example, the tree in Fig. 3 assigns the principal type (a→ a) to the CL-term SKK.
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Figure 2. Assigning principal types to terms in CL.

Figure 3. A tree assigning the principal type (a→ a) to the CL-term SKK, using two applications of rule (pt). The substitution
in the first step is {a�p, b�q, c�p} and in the second step {

p�a, q�(b→ a)
}
.

2.3 The unification algorithm
Without going into twomany details, we now present a version of the unification algorithmwhich
is based on a variant given in Russell and Norvig (2010) and which, in our case, computes a most
general unifier of two implicational propositional formulas α and β . Basically, Algorithm 1 con-
siders four cases: if α and β are equal, the substitution built up so far is returned. If one of the
formulas is a variable, the two formulas are passed on to Algorithm 2, unify-var, which unifies
the variable with the second formula. Otherwise, the left and right parts of α and β , that is, their
antecedent and consequent, are recursively unified.

Two things are worth noting about this algorithm. First, unification is “nearly” symmetrical
in α and β , the only difference between α and β which breaks the symmetry being that the
test if α is a variable comes before the test if β is a variable. Thus, in certain cases, unify(α, β)
may lead to a result different from the one returned by unify(β , α).7 However, it can be shown
that the resulting unified formulas are always alphabetic variants of each other. Second, the algo-
rithm is apparently far from being trivial: as Peter Norvig notes (Norvig 1991), many textbooks
in the 1980s presented8 versions of the algorithm which, for example, failed to unify the formulas
(a→ (b→ a))→ (b→ (a→ b)) and p→ p due to a missing dereferencing clause when unifying
variables (lines 3/4 in Algorithm 2).

Algorithm 1 unify(α, β , σ )
Input: α, β : implicational formulas

σ : the substitution built up so far (optional, defaults to empty)
Output: a substitution unifying α and β , or failure
1: if σ = failure then
2: return failure
3: else if α = β then
4: return σ

5: else if variable?(α) then
6: return unify-var(α, β , σ )
7: else if variable?(β) then
8: return unify-var(β , α, σ )
9: else
10: return unify(right(α), right(β), unify(left(α), left(β), σ ))
11: end if
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Algorithm 2 unify-var(var, β , σ )
Input: var: a variable

β : an implicational formula
σ : a substitution

Output: a (modified) substitution
1: if 〈var�γ 〉 ∈ σ then
2: return unify(γ , β , σ )
3: else if 〈β�γ 〉 ∈ σ then
4: return unify(var, γ , σ )
5: else if occur-check?(var, β , σ ) then
6: return failure
7: else
8: return σ ∪ {〈var�β〉}
9: end if

3. Pattern Matching, Pattern Detachment, and Pattern Typing
As mentioned in the Introduction, we now shift the focus to the unidirectional sibling of the
unification algorithm, which is known as pattern matching. Pattern matching regards one of the
given formulas as a fixed and unchangable pattern to which the other formula has to be matched
using appropriate variable substitutions.9 This asymmetry is reflected in Algorithm 3 (match) by
the difference between the clause in lines 5/6 on the one hand and the clause in lines 7/8 on the
other hand: if β is a variable but α is not, the matching is doomed to fail because β is not allowed
to grow. Furthermore, Algorithm 4 (match-var) fails if a variable var has to be substituted by an
expression β , but the substitution built so far already contains a binding 〈var�γ 〉 for which β �= γ

holds. In this case, there is no possibility to unify β and γ .

Algorithm 3match(α, β , σ )
Input: α, β : implicational formulas

σ : the substitution built up so far (optional, defaults to empty)
Output: a substitution that makes α identical to β , or failure
1: if σ = failure then
2: return failure
3: else if α = β then
4: return σ

5: else if variable?(α) then
6: return match-var(α, β , σ )
7: else if variable?(β) then
8: return failure
9: else
10: return match(right(α), right(β), match(left(α), left(β), σ ))
11: end if

While pattern matching is a widely used technique in Artificial Intelligence and related fields, it
does not play an apparent role when it comes to logical rules of inference in propositional logic or
to type inference in combinatory logic. In what follows, we take a closer look at the consequences
of replacing the unification algorithm by pattern matching as the underlying mechanism of these
kinds of inferences. To start with, we define an inference rule P (pattern detachment) as follows:

α→ β γ

σ (β)
(P)
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Algorithm 4match-var(var, β , σ )
Input: var: a variable

β : an implicational formula
σ : a substitution

Output: a (modified) substitution
1: if 〈var�γ 〉 ∈ σ then
2: if β = γ then
3: return σ

4: else
5: return failure
6: end if
7: else
8: return σ ∪ {〈var�β〉}
9: end if

Figure 4. Rule P applied to the major premise α→ β = (a→ (b→ c))→ (b→ (a→ c)) and the minor premise
γ = (p→ q)→ (p→ q), both represented as binary trees. The resulting formula is σ (β)= p→ ((p→ q)→ q). Note that the
minor premise γ remains in its fixed shape.

Here, if it exists, σ is the substitution for which σ (α)= γ ′ holds, where γ ′ is an alphabetic variant
of γ which does not share any variables with β .10 In this case, we writeP(α→ β , γ )= σ (β), other-
wise P(α→ β , γ ) remains undefined. The reader should note that if P(α→ β , γ ) is defined, then
alsoD(α→ β , γ ) (condensed detachment) is defined and P(α→ β , γ )=D(α→ β , γ ) holds.

An example of pattern detachment is shown in Fig. 4, where the formulas
(a→ (b→ c))→ (b→ (a→ c)) and (p→ q)→ (p→ q), both represented as binary trees,
lead to the result p→ ((p→ q)→ q), the (most general) unifier being the substitution
σ = {

a� (p→ q), b� p, c� q
}
.

When it comes to typed combinatory logic, the notion of pattern typing can be defined exactly
as in Fig. 2, the third rule (pt) being replaced by the following rule (ptt):

M : ϕ→ψ N : ϑ
(ptt)

(MN) : P(ϕ→ψ , ϑ)

If P(ϕ→ψ , ϑ) is not defined, then the CL-term (MN) is not pattern typable. If a CL-term Q is
pattern typable, we use the notation ptt(Q) for its pattern type.

As an example for pattern typing, we refer the reader back to Fig. 3, where we simply replace the
annotation (pt) by (ptt), stressing the fact that in this example both applications of rule (ptt) regard
the type of the combinator K (the minor premise) as a fixed pattern, to which the antecedent of
the types of the combinators S and SK have to be matched. The example demonstrates that every
pattern type also is a principal type of its CL-term.
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4. Pattern Types and Weak Reduction
It is a widely known fact that weak reduction is capable to change the principal type of a CL-term.
To be more precise, if ϕ is the principal type of a CL-term M which weakly reduces to N (i.e.,
M�N), then N has a principal type ψ of which ϕ is a substitution instance.11 As an example,
consider the CL-term SKSI (where I abbreviates the term SKK). This term reduces to KI(SI). But
while the former term has the principal type (a→ b)→ (a→ b), the latter has the principal type
a→ a. If we consider CL-terms as programs and a reduction step as part of a computation, then
the possible change of the program’s principal type during a computation may well disturb our
picture of a type as a way to characterize the input and output of the computation. At this very
point, it should be remarkable to note that the pattern type of a CL-term never changes when the
term is reduced.

Theorem 1. Let M and N be two CL-terms with M�N. If M has pattern type ϕ, then N is also
pattern typable and has the same pattern type ϕ.

Proof. We consider three cases. In case 1,M is the CL-term Sxyz, x, y, and z denoting arbitrary CL-
terms. If Sxyz is pattern typable, x needs to have a pattern type of the structure σ1(a→ (b→ c))
so that the type of S can match this fixed pattern in the first step:

S : (a→ (b→ c))→ ((a→ b)→ (a→ c)) x : σ1(a→ (b→ c))
(ptt)

Sx : σ1((a→ b)→ (a→ c))

Similar arguments lead us to the structure of the types of y and z, and finally to the pattern type of
Sxyz:

Sx : σ1((a→ b)→ (a→ c)) y : σ2 ◦ σ1(a→ b)
(ptt)

Sxy : σ2 ◦ σ1(a→ c) z : σ3 ◦ σ2 ◦ σ1(a)
(ptt)

Sxyz : σ3 ◦ σ2 ◦ σ1(c)
As Sxyz reduces to xz(yz), we can now construct the pattern type of the reduct, taking into consid-
eration the appropriate structures of the types of x, y, and z. As we can see, the deduction results
in the same pattern type as before:

x : σ1(a→ (b→ c)) z : σ3 ◦ σ2 ◦ σ1(a) (ptt)
xz : σ3 ◦ σ2 ◦ σ1(b→ c)

y : σ2 ◦ σ1(a→ b) z : σ3 ◦ σ2 ◦ σ1(a)
(ptt)

yz : σ3 ◦ σ2 ◦ σ1(b)
(ptt)

xz(yz) : σ3 ◦ σ2 ◦ σ1(c)
In case 2, M is the CL-term Kxy, with x and y again denoting CL-terms. For Kxy to be pat-

tern typable, x and y may now have arbitrary pattern types, which we denote as σ1(a) and σ2(b),
respectively. Here, we stipulate that

• σ1 does not replace any other variables than a,
• σ1(a) does not contain the variable b,
• σ2 does not replace any other variables than b,

which, for example, implies that σ1(b)= b, a fact which is used in the following deduction:
K : a→ (b→ a) x : σ1(a) (ptt)

Kx : σ1(b→ a) y : σ2 ◦ σ1(b)
(ptt)

Kxy : σ2 ◦ σ1(a)
Due to the stipulations concerning the substitutions σ1 and σ2, the resulting pattern type is equal
to σ1(a), which is the pattern type of x, which in turn is the reduct of Kxy.
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In case 3, M contains one of the redexes Sxyz and Kxy as a proper subterm, which is reduced
to obtain the term N. Using structural induction, this case can easily be reduced to the first two
cases. �

As every pattern type is also a principal type, Theorem 1 identifies a large class of CL-terms
which do not change their principal type when being reduced.

At this point, the question may arise how “natural” Theorem 1 is, or, to put it the other way
round, one may wonder if the unchanged types in the above proof are just a mere coincidence. A
look at other combinators presents a somewhat diffuse picture at first sight: while the combinators
B andWwith reduction rules Bxyz� x(yz) andWxy� xyy, respectively, preserve pattern types, the
combinator C with reduction rule Cxyz� xzy and pattern type (a→ (b→ c))→ (b→ (a→ c))
reveals a somewhat different behavior. Again, we can first determine the types of the terms x, y,
and z as follows:

C : (a→ (b→ c))→ (b→ (a→ c)) x : σ1(a→ (b→ c))
(ptt)

Cx : σ1(b→ (a→ c))

Cx : σ1(b→ (a→ c)) y : σ2 ◦ σ1(b)
(ptt)

Cxy : σ2 ◦ σ1(a→ c) z : σ3 ◦ σ2 ◦ σ1(a)
(ptt)

Cxyz : σ3 ◦ σ2 ◦ σ1(c)
Trying to pattern type the redex xzy then leads to the insight that a pattern type might not exist

if σ3 is a substitution that modifies the type σ2 ◦ σ1(b→ c):

x : σ1(a→ (b→ c)) z : σ3 ◦ σ2 ◦ σ1(a) (ptt)
xz : σ3 ◦ σ2 ◦ σ1(b→ c) y : σ2 ◦ σ1(b)

(ptt)
xzy : ?

As an example, we can now consider the term CTIK with pattern type (a→ (b→ a)), where T
abbreviates the term C(SK(SK)) with pattern type (a→ ((a→ b)→ b)). It is now easy to see that
the reduct TKI is not pattern typable.12

The following theorem characterizes exactly those combinators which guarantee that reduc-
tion does preserve pattern types. If M is a combination of terms taken from the set {x1, . . . , xn},
index(M) denotes the greatest x-index occuring withinM. For example, index(x1x3(x2x3))= 3.

Theorem 2. Let P be a combinator with reduction rule Px1, . . . , xn �Q where Q is a combination
of the variables x1, . . . , xn. Then, for any CL-terms x1, . . . , xn, Q is pattern typable with the same
pattern type as Px1, . . . , xn, if, for every subterm (MN) of Q, the inequation index(M)≤ index(N)
holds.

Before we move on to the Theorem’s proof, two examples may help to clarify the central point.
First, the just regarded combinator C with reduction rule Cx1x2x3 � x1x3x2 violates the subterm
condition in the term ((x1x3)x2) because index(x1x3)> index(x2). Second, the combinator B′ with
reduction rule B′x1x2x3 � x2(x1x3) does indeed guarantee the preservation of pattern types, as can
now immediately be read off the indices of the structure (x2(x1x3)). We now proceed to the proof
of Theorem 2.

Proof. In the first step, pattern typing of the term Px1 . . . xn leads to the following deduction,
as can be shown by natural induction on n. Thus, every term xi (1≤ i≤ n) has pattern type
σiσi−1 . . . σ1(ϕi) for some type ϕi:13
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P : ϕ1 → ϕ′
1 x1 : σ1(ϕ1)

(ptt)
Px1 : σ1(ϕ2 → ϕ′

2) x2 : σ2σ1(ϕ2)
(ptt)

Px1x2 : σ2σ1(ϕ3 → ϕ′
3)

. . . xn : σn . . . σ1(ϕ) (ptt)
Px1 . . . xn : σn . . . σ1(ϕ)

In the second step, we now consider subterms (MN) of Q with index(M)︸ ︷︷ ︸
=:k

≤ index(N)︸ ︷︷ ︸
=:l

. By struc-

tural induction, we can show that (MN) has pattern type σl . . . σ1(ψ) for some type ψ . As the
base case, we consider the subterm (xkxl) for two variables xk : σk . . . σ1(ϕk) and xl : σl . . . σ1(ϕl).
As k≤ l holds by the assumption of the theorem, we get (xkxl) : σl . . . σ1(ψ). For the induction
step, we consider two terms M and N, which, by the induction hypothesis, have pattern types
σk . . . σ1(ϕM) and σl . . . σ1(ϕN), respectively. Again, k≤ l holds, and we conclude that the term
(MN) has pattern type σl . . . σ1(ψ). In the case of the complete term Q, this is exactly the type of
the term Px1 . . . xn. �

5. The Pattern Model of Untyped Combinatory Logic
Theorem 1 of the preceding section now gives rise to a model of untyped combinatory logic which
can be regarded as a simplification of the Fool’s model (Meyer et al. 1991). To start with, we define
the notion of a combinatory reduction algebra.

Definition 1. A combinatory reduction algebra is an algebraic structure (A,≤, •, s, k) where A
(the domain) is a nonempty set, ≤ is a partial order on A, •:A×A→A is a binary operation
on A, and s and k are two distinct elements of A, and where the following stipulations hold for all
x, y, z ∈A:

s • x • y • z ≤ x • z • (y • z) (5)
k • x • y≤ x (6)

x≤ y implies z • x≤ z • y (7)
x≤ y implies x • z ≤ y • z (8)

Next, we interpret CL-terms (the set of which we denote by T) by means of the elements of a
combinatory reduction algebra.

Definition 2. A model of untyped combinatory logic is a pair (A, I) where A= (A,≤, •, s, k) is a
combinatory reduction algebra, and I:T→A is a mapping for which the following equalities hold:

I(S)= s (9)
I(K)= k (10)

I((PQ))= I(P) • I(Q) for all CL-terms P,Q (11)

In order to introduce the new model, which we will call the pattern model, we first identify
propositional formulas which are alphabetic variants of each other. To this end, we use the nota-
tion {ϕ}α to denote the set of all formulas which are alphabetic variants of ϕ. These kind of sets
actually form the domain of the pattern model.
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Definition 3. The pattern model is the pair (P, I), where

P= (P ,⊆, •, s, k), (12)
P = {{ϕ}α | ϕ is an implicational propositional formula

} ∪ {∅} , (13)
⊆ is ordinary set inclusion, (14)

x • y= {
ϑ | ∃ϕ ∈ x, ∃ψ ∈ y : P(ϕ,ψ)= ϑ

}
α
for all x, y ∈P , (15)

s= {
(a→ (b→ c))→ ((a→ b)→ (a→ c))

}
α
, (16)

k= {
a→ (b→ a)

}
α
, (17)

I(Q)=
{{

ptt(Q)
}
α
if Q is pattern typable

∅ otherwise

}
for all CL-terms Q. (18)

A few remarks should be appropriate at this point.
� As defined in (13), the domain P of P can simply be regarded as the set of implicational

propositional formulas modulo alphabetic variation. P thus consists of equivalence classes
of formulas which have the same “logical power.”14

� If x and y are elements of the domain P , x⊆ y only holds if x= y or x= ∅.
� As defined in (15), x= ∅ or y= ∅ immediately lead to the fact that x • y= ∅. This cor-

responds to the fact that any CL-term, which has an pattern-untypable subterm, is itself
pattern-untypable.

� If both x �= ∅ and y �= ∅, then x • y is the result of (possibly) applying rule P (pattern detach-
ment) to two representatives of the sets x and y, finally collecting the alphabetic variants of
the result.15

� Concerning the role of the empty set ∅, computer experiments have been able to show that
310,210 out of 397,242 terms – with a maximum of eight applications – are indeed pattern
typable and are thus not represented by the empty set.

Theorem 3. The pattern model is a model of untyped combinatory logic.

Proof. We first show that for every pattern model (P, I), P is a combinatory reduction algebra.
To this end, we show that stipulations (5) and (7) hold. Stipulations (6) and (8) follow in exactly
the same manner.

For stipulation (5), we consider two cases. In the first case, the expression s • x • y • z is equal to
the empty set. In this case, set inclusion is trivially fulfilled. Otherwise, one can successfully apply
rule P three times to representatives of the sets s, x, y, and z, yielding a nonempty set of alphabetic
variants of a formula ϑ . But now Theorem 1 guarantees that the expression x • z • (y • z) leads to
exactly the same result. Again, set inclusion holds.

For stipulation (7), we also consider two cases. In the first case, x⊆ y holds because x is the
empty set. But in this case, the expression z • x is also equal to the empty set, and thus z • x⊆ z • y
is fulfilled. In the second case, x⊆ y holds because x and y are equal. But then z • x and z • y are
also equal.

In the next step, we show that the interpretaion I does indeed give rise to a model. As equalities
(9) and (10) obviously hold, we can concentrate on equality (11). This time, we consider three
cases. In case 1, at least one of the CL-terms P and Q is not pattern typable. This implies that the
application (PQ) is not pattern typable, either. Thus, both sides of the equation evaluate to the
empty set. In case 2, both P andQ are pattern typable, but the application (PQ) is not. Again, both
sides of the equation yield the empty set, the right-hand side because the sets I(P) and I(Q) do not
contain any formula to which rule P can be applied. In the third case, P, Q, and (PQ) are pattern
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typable. Thus, the term I(P) • I(Q) evaluates exactly to the set of alphabetic variants of the pattern
type of the application (PQ). �

We conclude this section with a short comparison between the pattern model and the Fool’s
model. Details about the latter can be found in Meyer et al. (1991) and Bimbo (2011, Chapter 6).
The Fool’s model can actually be obtained by simply changing Definition 3 as follows:

(1) Change the index α to an index s all the way through, where the notation {ϕ}s represents
the set of all substitution instances of ϕ.

(2) In (18), change “ptt” and “pattern typable” into “pt” and “principal-typable,” respectively.

The advantages of the pattern model over the Fool’s model now lie at hand: First, the former is
based on the very natural domain consisting of propositional formulas (modulo the renaming of
variables). Second, two arbitrary CL-terms P andQwith P�Q are always represented by the same
object, thus supporting the idea that a computation is not supposed to change its input and output
types while running.

6. Major versus Minor Premisses as Fixed Patterns
In this last section, we answer the question why we have decided to consider the minor premise
as the fixed and unchangable pattern both in rule P and in rule (ptt). The main reason is that any
proof which also allows for the consideration of the major premise as the fixed pattern can – under
certain very “mild” conditions – be transformed into an equivalent proof which uses rule P only.
To be more precise, we first define the following rule P′, which is applicable if and only if there is
a substitution σ for which σ (γ )= α holds:

α→ β γ

β
(P′)

Using the notation A�P ϕ (A�P,P′ ϕ) for the existence of a proof for ϕ which is based on the
axioms A and rule P (and rule P′, resp.), we can now state the following theorem.

Theorem 4. If A�P,P′ ϕ and A�P (a→ ((a→ b)→ a)), then A�P ϕ (for all propositional
implicational formulas ϕ).

Proof. All we need to do is to show how an application of rule P′ in a proof tree can be replaced by
applications of rule P which possibly make use of the formula a→ ((a→ b)→ a). Let us assume
that a proof contains the following passage where σ (γ )= α holds for some substitution σ :

...
α→ β

...
γ

(P′)
β

...
We replace this passage by the following structure:

...
α→ β

...
a→ ((a→ b)→ a)

...
γ

(P)
(γ → b)→ γ

...
α→ β

(P)
σ ′(γ )

(P)
β

...
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For this structure, we assume that b is a fresh variable with respect to α, β , γ , and the substitution
σ . σ ′ is the substitution σ , extended by the substitution

{
b�β

}
, that is, σ ′ = σ ∪ {

b�β
}
. As b

does not occur in γ , σ ′(γ )= σ (γ ) holds. �

We finish our considerations with some remarks and open questions concerning the interplay
between rules P and P′ in the presence of the two axioms (a→ (b→ c))→ ((a→ b)→ (a→ c))
and a→ (b→ a), which, on the one hand, form a basis for the implicational fragment of intu-
itionistic propositional logic, and, on the other hand, serve as types for combinatory logic based
on the combinators S and K.

� It remains an open question whether the formula a→ ((a→ b)→ a), which plays such a
crucial role in the elimination of rule P′, can be pattern-proved using the two just mentioned
axioms. As computer experiments have shown, none of the CL-terms with less than eight
combinators have pattern type a→ ((a→ b)→ a).

� If the formula (a→ (b→ c))→ (b→ (a→ c)), which is the principal type of the combi-
nator C, is added as an axiom, the formula a→ ((a→ b)→ a) can be pattern-proved. It
is the pattern type of the CL-term CSK. It remains an open question whether the formula
(a→ (b→ c))→ (b→ (a→ c)) is a pattern type for the basis S and K. (Again, there is no
CL-term with less than eight combinators which serves our purpose.)

� It also remains open whether the combination of rules P and P′ can replace rule D,
condensed detachment.
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Notes
1 For an early publication of the underlying algorithm, see Peterson (1978).
2 According to Hindley (1997, p. 103), it was “around 1978, when David Meredith was the first to realize the parallel.”
3 To give an example, the formulas (a→ (b→ a)), (p→ (q→ p)), and (c→ (a→ c)) are alphabetic variants of each other.
4 That is, (Vars(σ (α)) \Vars(α))∩Vars(β)= ∅.
5 For an alternative (but equivalent) definition of condensed detachment, see Bunder (1995).
6 As we only consider weak reduction (as opposed to strong reduction) in this paper, we will simply speak of reduction.
7 For example, unify(a→ b, b→ a) returns the substitution

{〈
a�b

〉}
, while unify(b→ a, a→ b) returns

{〈
b�a

〉}
.

8 See for example Abelson and Sussman (1984). The mistake has been corrected in the second edition.
9 In our case, theminor premise constitutes the fixed pattern to which themajor premise is matched. This seemingly arbitrary
choice is taken up again in Section 6.
10 Producing an alphabetic variant is needed in order to avoid unwanted variable capture. As an example, the reader may
want to apply rule P to the premisses a→ (b→ a) and b→ b without renaming the variable b.
11 This is a direct consequence of the subject-reduction theorem, see for example Hindley and Seldin (1957, p. 132) or Bimbo
(2011, p. 248).
12 I am indebted to the third anonymous referee, who gave the decisive hint to this example and especially to the “Thrush”
combinator T.
13 For brevity, we omit the circle operator in the composition of substitutions.
14 Concerning this logical power and the role of the variables, Schönfinkel (1924, p. 307) writes: “The variable in the logical
proposition is nothing more than a marker to indicate certain argument places and operators as belonging together, and
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thus has the character of a mere auxiliary item that is actually inappropriate to the constant ‘eternal’ nature of the logical
proposition.”
15 The reader should note that we could dispense with the index “α” in definition (15): As x and y contain every alphabetic
variant, definition (15) automatically “produces” every alphabetic variant in the resulting set.
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