RADII AND FLUXES OF LONG-PERIOD CEPHEIDS
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Abstract. The radii of 9 long-period Cepheids have been determined by means of the modificated
Wesselink method and some general conclusions have been formulated. The relations R — P and
F,— M, for stars recognized as fundamental and first overtone pulsators have been established.

The determination of stellar fluxes F, in the V system, relating to the solar flux F,
may be based on the fundamental relation:

logF,/F,o = — 0.4(M, — M,o) — 2 logR/R )
(o] (0] 0]

In order to use this relation for long-period Cepheids we should secure the correct
values of their radii. In this case they are more essential than the absolute magnitudes
M, because of the coefficients 0.4 and 2 respectively. The radii of pulsating stars are
usually computed with the well known Wesselink method, which has been applied
in our considerations but with some modifications. The proposed alterations should
facilitate the practical use of this method and should increase the accuracy of the
results.

In the Wesselink method we try to separate two factors acting simultaneously and
defining the observed changes of star magnitude: the changes of fluxes and of radii

AV =—51log(l + AR/R) — 2.5 AlogF,, 2)

where AR is the displacement resulting from the integration of the radial velocities.
In practice the component 5 log (1 + 4 R/R) is most frequently replaced by a more con-
venient but only approximatively equivalent value 2.17(4R/R).

But we may proceed in the following way. Let us fix that R,,,, denotes the maximum
of the radius, which for the Cepheids occur near the phases 0.3-0.4 and is rather flat.
Now we introduce the correcting factor ¢ in order to get the exact equality

51og (1 + AR/Rpay) = 2.17(4R/R ) €. 3)
The value ¢ depends in small degree on AR/R,,.:

AR/Rmax c
0.00 1.000
—0.05 1.028
—0.10 1.055
—0.15 1.084
—0.20 1.116

and can be computed even by applying an approximate value of R,,. The Equation
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(3) can be transformed as:
5log(1 + AR/R,,.x) = Nr, C)]

where N=2.17/R,,,, determinés the maximum value of the radius, and the ‘rectified
displacement’ r:

r=A4R-c (5)

assures the exact proportionality to the photometric effects expressed in the magnitude
scale.

By this method we have for each phase three values determining the state of a star:
V,(B—V), and r. The farther procedure can be continued in two ways: graphically
or numerically.

1. Graphical Method

According to Wesselink assumption for two phases with equal (B—V) or for
4(B—V)=0, we have also the same values of F, or 4 logF,=0. So the Equation (2)
is reduced to
AV = — NdAr (6)
or N=—AV/Ar; or R, =-217(4r/4V).
Let us draw two graphs with the common axis (B— V'), Figure 1. Perpendicularly
are V axis upwards and r axis downwards. By means of the values V, (B—V), and r

ry

Fig. 1. Graphical method of N and Rmax determination.
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we trace two loops described by star during one period. Each line perpendicular to

the (B— V') axis and cutting both loops passes through the points with equal (B— V).

So the sections of the loops 4V and Ar can be used as the values needed in the formula

(6). But each such a cutting has this property. So it follows that N can be calculated as
b

fAVd(B— V)
N=—-ot @)
fArd(B— V)

a

where the integration includes the whole range of (B— V') changes. In practice this
integration can simply be executed by measuring the surfaces of the loops P, and P,.

N=P/[P,; Ry =217P]P, ®)

2. Numerical Method

In this method we change the Wesselink basing assumption and enlarge the range
of its applicability by introducing the coefficient k so that

—2.541logF,=k4(B—V). )

The coefficient & is regarded as a constant or as a mean value in the case, when it
depends on the phases used in the formula (9). In terms of fluxes the Wesselink assump-
tion: 4 logF,=0, when 4 (B—¥V)=0 is equivalent to the statement that F, is a mono-
tonic function of Fjg, but not of the shape F,= AFg, with constant 4. In this last case
we would have constant (B— V') and it would not be possible to separate photometri-
cally the changes of fluxes from the changes of radius. Whereas according to the as-
sumption (9) we have
F,=AF%;  a#1; hk=--_. (10)
I —-a
This formula with two parameters A4 and a can represent, at least in approximation, a
rather large class of real relations between both kinds of fluxes in the range of changes
occuring during the star pulsation. Though it is to be remarked that in reality the
fluxes as the functions of many atmospheric parameters — model, temperature, gravity —
cannot be connected by only one function during the whole period.
By means of the formulas (4) and (9) the Equation (2) gains the simple shape:

AV = — NAr + kA(B - V). (11)

This type of relation was used by Opolski and Krawiecka (1956) and by Latyshev
(1964). The differences 4V, Ar, and 4(B— V') can be calculated for each free chosen
pair of phases. But in order to decrease the influence of the observational errors, it

seems to be advantageous to calculate first the mean values ¥, 7 and (B— V), and
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then to use the differences between the individual values and their mean: AV=V—-V;
Ar=r—F; A(B—V)=(B—-V)—(B—V). So we can form the system of the Equations
(11) with two unknown N and k. Taking into consideration the fact that 4(B—V')
are less accurate than 4V, we'can solve this system in the form

1 N
(B—V)—);V+-1;A,. (12)
The individual values ¥, B—V and r should be suitably distributed on the light-,
colour- and displacement-curves. By this method we can get for each Cepheid two
characteristic quantities: NV — defining the radius of the star and k — which is a measure
of the relation between the fluxes F, and Fj. Also the accuracy of the values N and k
can be calculated by standard methods.

We remark still, that the coefficient £ may be obtained separately by the graphical
method analogically to the N determination. For two phases with Ar=0 we have
AV=k A(B— V) and the surface of two loops on the planes in the coordinate systems
V,r and (B— V), r determine the coefficient k.

As an example of the application of the above described methods we present in
Table I the results obtained for 9 Cepheids. General remarks which can be deduced
from these results are as follows:

(1) There are no systematic differences between N values obtained by graphical and
numerical methods. But in Table I the results received by numerical methods are given.

TABLE 1
Radii and fluxes of Cepheids

— Fy Fy
Star logP {Mv>int Sp log Rmax logR log ,-- (Iog X ) F8
Fug Fog

n Aql 0.855 —3.9 F 8.8 7.68 7.66 —0.22 —0.18
W Sgr 0.880 —4.0 F 7.7 17.69 7.67 —0.19 —0.21

S Sge 0.923 —4.1 F 87 1775 7.73 —0.26 —0.22

B Dor 0.993 —4.3 F 81 7.79 777 —0.27 —0.27

{ Gem 1.007 —4.3 F 9.0 779 7.78 —0.27 —0.22
X Cyg 1.215 —4.8 G000 8.03 800 —0.56 —0.46
T Mon 1.432 —55 G 1.1 8.4 8.10 —0.50 —0.34

1 Car 1.551 —59 F 9. 8.18 8.15 —042 —0.36
SV vul 1.655 —6.1 G221 840 836 —0.77 —0.57

(2) When we try to improve the accuracy of N and k by shifting the phases of the
‘rectified displacement’ r, as it was suggested by Fernie and Hube (1967), it appears
that the smallest errors of N and k occures at the diminishing of the phases r (and 4R)
by about 0°05. This is particularly essential near the phases of sharp minimum of the
radius. From the photometric data we should fix R, in the phases near 0.87, whereas
from the radial velocities R, appears later, at the phases 0.92. This can be explained
as due to the fact that, after common falling down of the whole atmosphere, the

https://doi.org/10.1017/5S007418090005525X Published online by Cambridge University Press


https://doi.org/10.1017/S007418090005525X

RADII AND FLUXES OF LONG-PERIOD CEPHEIDS 169

movement upwards begins first in the photospheric layer, responsible for the radiation
measured in the B and V systems, and then 0705 later, in the upper layers of the atmo-
sphere, where the narrow absorption lines used for radial velocity determination are
formed. This may be connected with the emission effects observed in some lines at
these phases. Similar conclusion is to be found in the paper by Latyshev (1964).

(3) The best accuracy of the results gained by suitable diminishing of r phases is
Joint with the smallest value of N and consequently with the greatest value of R, .\
The mean values R=R,,,, — (3 amplitude of 4R) given in Table I, for long-period
Cepheids are systematically greater than values given by Fernie (1968). Following
Fernie’s considerations we can establish the period-radius relation with the division
on the fundamental and first overtone pulsators, Figure 2. From the investigated

T
1

igR
84 -
a2}
8o} i
78F .
760 1
| igP

Fig. 2. Radius-period relations for fundamental and first overtone pulsators.
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stars only X Cyg and SV Vul can be regarded as pulsating in the first overtone. For
fundamental pulsators we have the relation:

log R = 0.904 log P + 6.88. 13)

From the separation of two lines we can estimate the ratio of the periods P,/P, as
about 0.7. :

The values of R,,,, have been applied in the formula (1) in order to calculate the
relative fluxes for Cepheids under consideration. As the absolute magnitudes the
values (M, »;,, given by Fernie and Hube (1968) have been accepted, Table I. We can
expect that for a homogeneous group of stars the fluxes depend chiefly on the absolute
magnitude and on the spectral type. To remove the second dependence a correction
for the differences of spectral types ASp have been used:

A4logF, = —0.054Sp, (14)
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Fig. 3. Relative fluxes-absolute magnitudes relations for fundamental and first overtone pulsators.

where ASp is expressed in the tenth of spectral class. This formula results from the
relation (B— V)-surface brightness given by Parsons and Bouw (1971) and from the
relation (B— ¥V )-spectral type. In this way we got the fluxes reduced to the mean spec-
tral type F8. The dependance of these values on the absolute magnitudes is shown in
Figure 3. Again we can observe two relations. For 7 stars recognized as fundamental
pulsators we have

1og F,/F,q = 0.0822 (M, + 0.12. (15)

For the first overtone pulsators the values of logF,/F,, are smaller by 0.15. These
fluxes concern the state when the star in the greatest extension reaches the mean mag-
nitude.
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