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Introduction

In recent years the geometry of generic submanifolds of Euclidean space has been the
object of much study. Thorn hinted in [7] that the focal set of such a submanifold could
profitably be studied by using the family of distance squared functions on the
submanifold from points of the ambient space. For a generic submanifold the focal set is
the catastrophe or bifurcation set of this family. The key to obtaining results on the
local structure of this focal set is a transversality theorem of Looijenga [5]; for an
alternative exposition see [8].

In this paper we shall show how to extend these results to generic submanifolds of a
larger class of spaces, namely the complete, simply connected Riemannian manifolds
without conjugate points. (For example complete, simply connected Riemannian
manifolds with non positive sectional curvature; see [6] p. 100).

The hypotheses are fairly natural: the condition that the ambient manifold has no
conjugate points means that it has no focusing itself which might interfere with those of
a submanifold. The hypothesis of simple connectivity can be explained by the following
example. Take a closed curve with an inflexion in the plane and enclose it in a
rectangle.

Identify opposite sides of the rectangle to obtain a flat torus; clearly the focal set of
the closed curve will wind around the torus an infinite number of times. Indeed with a
suitable choice of normal at the inflexion the focal set will be dense in the torus. There
is no hope of any nice local structure for this focal set, even if we perturb the curve.

Below we first show that the family of distance squared functions on the above spaces
play the same role as in the Euclidean case. We then prove the transversality result
which we use to obtain normal forms for the local structure of the focal set of generic
submanifolds.

Throughout we shall use the notation of [8] and [3] (except where the latter conflicts
with the former of course!) The main tools used below come from singularity theory,
and for this reason we have given a detailed proof of the one result (Proposition 1)
concerning Riemannian geometry.

In what follows H" denotes a simply connected complete Riemannian manifold of
dimension n with no conjugate points. It is well known that for every point x in such a
space the exponential map expx: TXH-*H is a diffeomorphism; see [6] p. 102. One easily
checks that the distance between two points x,yeH, say d(x,y), is given by d{x,y) =
<exp~ 1(y),exp~ l{y)}il2 where <,> is the Riemannian inner product. The map d2:H x H-+U
defined by d2(x,y)=(d(x,y))2 defines a smooth family of functions d2:H^>U on H,
parameterised by H, where d2(x) = d2{x,y).
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If M is a submanifold of H, N(M) the normal bundle of M in H, we denote by
exp(M):N(M)->H the corresponding exponential map. The set of critical values of
exp(M) is called the focal set of M. Intuitively this is the light caustic of the initial
wavefront M in the inhomogeneous media H. Our first result shows that the focal set of
M is the bifurcation set of the family d2:M x H-+M given by the restriction of d2 to
MxH (see [1]). (That is the focal set consists of those points yeH with d2:M^>U
having a non Morse singularity at some point x e M.)

For the proof of our first proposition we shall need various results from [3]. We use
the notation used there except that tangent spaces, to M at x say, are denoted by TXM,
and covariant differentiation along a curve by V/dt.

Proposition 1.1. Let N(M) denote the normal bundle of M in H and
exp(M): JV(M)->H the exponential map. The point yeH is a critical value ofexp(M) with
critical point over xeM if and only d2: M—>R has a degenerate critical point at xeM.

To prove this result we need to introduce the idea of an M-Jacobi field.

Definition 1.2. ([3] p. 221). Let T be a geodesic segment in H with I ( 1 ) E M and T(1)
perpendicular to Tt(1)M. A Jacobi field J on T is an M-Jacobi field if

(i) J is perpendicular to T;
(ii) J(l)eTt(1)M;
(iii) J'(l) —Si(1)J(l) is perpendicular to Tz(l)M, where Si(l) is the symmetric

transformation on Tz(l)M corresponding to the second fundamental form of T(1).

Proof of Proposition 1. Let g:H->IR be the function g(x) = d2(x), and let / be an
open interval containing 0 with a:/-»H a curve in H. We define a map r:UxI->H by

'^s))). Now

from which it follows that

/ dr
(g o a) (s) = 2 /oc'(s), — (1,

Since (goa)'(s) also equals <a'(s), gradg(a(s))> clearly

If a is actually a smooth curve on M it follows that g\M has a critical point at
a(0) = x e M if and only if

https://doi.org/10.1017/S0013091500022306 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500022306


CERTAIN RIEMANNIAN MANIFOLDS 211

is perpendicular to TXM, where y(t) = r{t,O) is the geodesic joining y and x. In [3] p. 255
it is proved that y = y{0) is a critical value of exp(M) over x = y(l) if an only if there
exists a non zero M-Jacobi field J on y with J(0) = 0. Note that such a field must have
J( 1)^=0 since otherwise x would be a conjugate point of y, contradicting our hypothesis.
So we have to show that such a field exists if and only if the restriction of g to M has a
degenerate critical point at x. To do this we need to compute the Hessian of g at x.

Let v, w be vectors in TXM, with w a smooth vector field on M extending w. The
Hessian form Hg(v,w) = v(w(g)) = v(gradg,w> = <Vugradg,w> + <gradg,V0(w)>. If V
is covariant differentiation on M, with respect to the induced connexion, then
Vv(w) = Vv{w) + Tv(w) (see [3] p. 191). It easily follows that at x, <gradg,V,,(w)> =
<gradg, Tv(w)y= — <Sgrad9t>, w>. On the other hand if a is a curve on M as above with
a'(0) = v then

^ ( l , ^ = V g r a d ! , ^ ( l , ^ = Vgrad9(a'(s)),

since V is symmetric; so Hg(v,w) = <VgTadgv-Sgtadgv,w) = 2<Vj,(1)t;-Sj,(1)i;,w>.
Now if a'(0) = u=£0 and Hg(v,w) = 0 for all weTxM we claim that j{t)=(dr/ds)(t,0) is

an M-Jacobi field along the geodesic y(t). By [3] p. 174 J is a Jacobi field; (ii) above is
trivial, and (iii) follows from the expression above for Hg. For (i) we note that
<J(l) ,7(l)>=0and

d /dr. „ dr'.

=l(l/*<t**t

But

and(g°a')(0) = 0 by hypothesis, so (J(t),y(t)y = O all t. Clearly J(0)=0 so J is as required.
Conversely if J(t) is a non zero M-Jacobi field on y with J(0) = 0 then J(l) = ue TXM is a
non zero vector and from the expression for Hg above we see that x is a degenerate
critical point of g.

To obtain information on the local structure of the focal set we now prove the
required transversity result. To avoid rather tedious topological arguments we shall
suppose that the submanifold M is compact.
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Theorem 3. Let M, a compact manifold, and H be as above. Let W be a submanifold
of the multi-jet space rJ

k(M, R) which is invariant under addition of constants: so for any
(qu...,qT)6 W and ceR, (q1+c,...,qr + c)eW. For a residual set of embeddings i:M-*H
in the space of embeddings Emb°°(M, H) the jet extension

rj\d
2:M(r)xH->rJ

k(M,U)

is transverse to W.
As usual in providing results of this type we need to find a suitable family of

deformations of any smooth embedding i:M->H. We shall use polynomial mappings
H->H to deform i. Let Pk denote the space of polynomial maps </>:R"->-[R" of degree k.
If g:M, wo->IRn,xo is the germ of an embedding, (j)lePk a polynomial map yielding the
germ of a diffeomorphism ^jiR",x0—>R",y0 and f:U",y0—>R is the germ of a smooth
function we define F:M xPk + t, (uo,<j>i)-^U by F(u, </>) = / ° <p ° g(u). Let
j\F:M xPk + u (u0,(p^^M x Jk(m, 1) be the associated jet extension, where m = dimM
(and we have chosen local co-ordinates on M at u0). They key step in the proof of
Theorem 3 is

Lemma 4. (i) / / / is the germ of a submersion then j\F is the germ of a submersion.
(ii) / / / has an A^Morse) singularity at x0 then the germj\F is transverse to the manifold
of constant jets.

Proof. Without loss of generality we may suppose that M, M0 = Rm, 0, x0 = y0 = 0 E R"
(the constant part of </>x is irrelevant). If i/':Rn,0->R",0 is the germ of any
diffeomorphism, one easily checks that the map (f>\—*jk + i(^~1 °(p) is the germ of a
diffeomorphism' Pk + l,(f>i->Pk + t,jk + 1(il/~l °</>i) = </>2- Since the conclusions of both parts
of the lemma only depend on the (k+ l)-jet of F it is enough to prove the lemma with F
replaced by Fi.MxPk + u(0,(/>2)-»IR where Ft(u,4>)={f °ip)°<f>°g{u) for any \j/ as above.
Thus if the lemma holds for / it holds for any germ right equivalent to / Consequently
we may suppose that in case (i) f(x) = xl and for (ii) / (x) = £?=i erxf,er= ± 1.

Writing ep for the pth unit vector in R" consider the paths si—xjfrj +sjk(h °(f)1)ep in
Pk + 1 where h(x) is a polynomial of degree ^k. The image of the tangent vector
(O,jk(h°<f>l)ep) under the derivative ofy'i-F is

lim ( / ( / »(0i + sh o <t>iep)og(u)) -j\f o (fit og)(u))s-\
s->0

In case (i) this reduces to Sip jk(h°((l)i°g){u)) and in case (ii) to
2£p/((</>i °g)P(u)'h°{<pl °g){u)) where the second suffix p denotes the pth component of
4>i°g- Using the fact that <j)i°g is an immersion, and h can be chosen to be any
polynomial of degree ^ k the result follows.

We can now give the

Proof of Theorem 3. Let M->H be an embedding. By identifying H with W we find
that Pk + 1 gives a family of polynomial maps H-*H, and we consider the map
D 2 : M x f l x P H 1 - » R defined by D2{u,y,4>)=d\(f>{u),y), where M is considered a
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submanifold of H. The map d\ — ,y):H->R is smooth and has only one singular point,
at y, which is easily seen to be an Al (a non degenerate minimum in fact). Now let U be
a bounded open neighbourhood of M in H and let V be an open neighbourhood of Id,
the identity map, in Pk + i such that $ :£/-><£( I/) is a diffeomorphism for (peV. Then
Lemma 1.4 shows that the restriction j\D2:M x Hx [/->J''(M, (R) will be transverse to
any submanifold W of Jk(M, U) invariant under addition of constants. Applying Thorn's
transversality lemma ([8] Section 2) now shows that for almost any <j> e U, in the sense
of Lebesgue measure, jk

1d
2:<p(M)xH->Jk(M,M) will be transverse to W. The theorem

now follows, in the case r = 1, by the usual results (see [8]).
For r> 1, the case of multi-jets, one uses the standard observation (as in [8], Section

2) that deformations on disjoint compact sets can be chosen independently, using
partitions of unity.

If Nr(M) consists of those vectors in N(M) of length r>0 then exp(M)(Nr(M)) is
called a parallel distance r from M. Intuitively it is a wavefront evolved from the initial
wavefront M.

Corollary 5. For a residual set of embeddings of M in H the focal set of M has
generic Lagrange singularities. Fixing r the parallel of M distance r from M will, for a
residual set of embeddings of M in H have generic Legendre singularities.

Proof. The focal set of M is the bifurcation set of family of functions d2:M x H-+U.
The parallel of M is the discriminant set of the family of functions F = d2 — r2:M x H->M
(that is the set of y e H with DFy(x) = Fy(x) = 0 for some x e M). The result now follows
from Theorem 3 and [1], [5]. For the focal set we take the stratification of the multi-jet
space rJ

k{M, U) constructed by Looijenga in [5] (see also [8]). This is certainly invariant
under addition of constants, and the focal set will be that part of the induced
stratification of H obtained from non Morse jets.

For the parallel we need to consider the subset of Looijenga's canonical stratification
of singular jets with zero constant. Unfortunately this is not invariant under addition of
constants! However if DFy(x) = Fy{x) = 0 then y^x and dy:H,x->U is the germ of a
submersion. A careful analysis of the proof of Theorem 3 shows that if W is a
submanifold of the singular jets with zero constant then jkD2 is transverse to W,
essentially because we need only apply Lemma 4 (i).

Remarks. (1) It follows from the classification of functions of low codimension that
for n^5 (resp. n^6) a generic focal set (resp. parallel) is locally diffeomorphic to the
union of bifurcation (resp. discriminant) varieties of Arnold's simple singularities in
general position.

(2) It follows from Looijenga's topological stability theorem that for a residual set of
embeddings of M in H the focal set is topologically stable i.e. small perturbations of M
yield homeomorphic focal sets.

(3) For the parallels we need to fix r in advance since for certain values of r the
advancing wavefronts undergo catastrophic changes with non generic singularities
appearing. Generic such changes have been classified by Arnol'd in [2] for low values of
n. It would be interesting to know if they are generic for submanifolds of our spaces H.
(They are generic for surfaces in Euclidean space [4]).
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