Preface to the first edition

The 'Standard Model' of particle physics is the result of an immense experimental and inspired theoretical effort, spanning more than fifty years. This book is intended as a concise but accessible introduction to the elegant theoretical edifice of the Standard Model. With the planned construction of the Large Hadron Collider at CERN now agreed, the Standard Model will continue to be a vital and active subject.

The beauty and basic simplicity of the theory can be appreciated at a certain 'classical' level, treating the boson fields as true classical fields and the fermion fields as completely anticommuting. To make contact with experiment the theory must be quantised. Many of the calculations of the consequences of the theory are made in quantum perturbation theory. Those we present are for the most part to the lowest order of perturbation theory only, and do not have to be renormalised. Our account of renormalisation in Chapter 8 is descriptive, as is also our final Chapter 19 on the anomalies that are generated upon quantisation.

A full appreciation of the success and significance of the Standard Model requires an intimate knowledge of particle physics that goes far beyond what is usually taught in undergraduate courses, and cannot be conveyed in a short introduction. However, we attempt to give an overview of the intellectual achievement represented by the Model, and something of the excitement of its successes. In Chapter 1 we give a brief résumé of the physics of particles as it is qualitatively understood today. Later chapters developing the theory are interspersed with chapters on the experimental data. The amount of supporting data is immense and so we attempt to focus only on the most salient experimental results. Unless otherwise referenced, experimental values quoted are those recommended by the Particle Data Group (1996).

The mathematical background assumed is that usually acquired during an undergraduate physics course. In particular, a facility with the manipulations of matrix algebra is very necessary; Appendix A provides an *aide-mémoire*. Principles of symmetry play an important rôle in the construction of the model, and Appendix B is a self-contained account of the group theoretic ideas we use in describing these symmetries. The mathematics we require is not technically difficult, but the reader must accept a gradually more abstract formulation of physical theory than that presented at undergraduate level. Detailed derivations that would impair the flow of the text are often set as problems (and outline solutions to these are provided).

The book is based on lectures given to beginning graduate students at the University of Bristol, and is intended for use at this level and, perhaps, in part at least, at senior undergraduate level. It is not intended only for the dedicated particle physicist: we hope it may be read by physicists working in other fields who are interested in the present understanding of the ultimate constituents of matter.

We should like to thank the anonymous referees of Cambridge University Press for their useful comments on our proposals. The Department of Physics at Bristol has been generous in its encouragement of our work. Many colleagues, at Bristol and elsewhere, have contributed to our understanding of the subject. We are grateful to Mrs Victoria Parry for her careful and accurate work on the typescript, without which this book would never have appeared.