
11
Position and momentum

Field theory is ripe with objects referred to colloquially as coordinates and
momenta. These conjugate pairs play a special role in the dynamical formulation
but do not necessarily imply any dimensional relationship to actual positions or
momenta.

11.1 Position, energy and momentum

In classical particle mechanics, point particles have a definite position in space
at a particular time described by a dynamical trajectory x(t). The momentum
p(t) = m dx(t)

dt . In addition, one has the energy of the particle, p2

2m + V , as a
book-keeping parameter for the history of the particle’s momentum transactions.

In the theory of fields, there is no a priori notion of particles: no variable
in the theory represents discrete objects with deterministic trajectories; instead
there is a continuous field covering the whole of space and changing in time. The
position x is a coordinate parameter, not a dynamical variable. As Schwinger
puts it, the coordinates in field theory play the role of an abstract measurement
apparatus [119], a ruler or measuring rod which labels the stage on which the
field evolves. Table 11.1 summarizes the correspondence.

The quantum theory is constructed by replacing the classical measures of
position, momentum and energy with operators satisfying certain commutation
relations:

[x,p] = ih̄ (11.1)

and

[t, E] = −ih̄. (11.2)

These operators have to act on something, and indeed they act on the fields,
but the momentum and energy are represented by the operators themselves
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284 11 Position and momentum

Table 11.1. Dynamical variables.

Canonical Particle Field
position mechanics theory

Parameter space t x, t
Dynamical variable x(t) φ(x, t)

independently of the nature of the fields. Let us see why this must be so. The
obvious solution to the commutators above is to represent t and x by algebraic
variables and E and p as differential operators:

pi = −ih̄∂i

E = ih̄∂t . (11.3)

If we check the dimensions of these operator expressions, we find that h̄∂i has
the dimensions of momentum and that h̄∂t has the dimensions of energy. In
other words, even though these operators have no meaning until they act on
some field, like this

piψ = −ih̄∂iψ

Eψ = ih̄∂tψ, (11.4)

it is the operator, or its eigenvalues, which represent the momentum and energy.
The field itself is merely a carrier of the information, which the operator extracts.
In this way, it is possible for the classical analogues of energy and momentum,
by assumption, to be represented by the same operators for all the fields. Thus
the dimensions of these quantities are correct regardless of the dimensions of
the field.

The expectation values of these operators are related to the components of the
energy–momentum tensor (see section 11.3),

pi c = −
∫

dσ 0θ0i = 〈pi c〉

E p =
∫

dσ 0θ00 = 〈HD〉 . (11.5)

HD is the differential Hamiltonian operator, which through the equations of
motion is related to ih̄∂t . The relationship does not work for the Klein–Gordon
field, because it is quadratic in time derivatives. Because of their relationship
with classical concepts of energy and momentum, E p and Pi may also be
considered as mechanical energy and momenta.
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11.2 Particles and position 285

Table 11.2. Canonical pairs for the fields.

Field ‘X ’ ‘P’

Klein–Gordon φ h̄2c2∂0φ

Dirac ψ ψ†

Schrödinger ψ ih̄ψ∗

Maxwell Aµ D0i

Separate from these manifestations of mechanical transport are a number of
other conjugate pairs. The field q itself is a basic variable in field theory, whose
canonical conjugate ∂0q is often referred to as a conjugate momentum; see
table 11.2. That these quantities do not have the dimensions of position and
momentum should be obvious from these expressions; thus, it should be clear
that they are in no way connected with the mechanical quantities known from the
classical theory. In classical electrodynamics there is also a notion of ‘hidden’
momentum which results from self-interactions [71] in the field.

11.2 Particles and position

The word particle is dogged by semantic confusion in the quantum theory of
matter. The classical meaning of a particle, namely a localized pointlike object
with mass and definite position, no longer has a primary significance in many
problems. The quantum theory of fields is often credited with re-discovering
the particle concept, since it identifies countable, discrete objects with a number
operator in Fock space. The objects which are counted by this operator are
really quanta, not particles in the classical sense. They are free, delocalized,
plane wave objects with infinite extent. This is no problem for physics. In fact,
it is possible to speak of momentum and energy transfer, without discussing
the nature of the objects which carry these labels. However, it is sometimes
important to discuss localizability.

In spite of their conceptual demotion, it is clear that pointlike particle events
are measured by detectors on a regular basis and thus have a practical signifi-
cance. Accordingly, one is interested in determining how sharply it is possible
to localize a particle in space, i.e. how sharp a peak can the wavefunction, and
hence the probability, develop? Does this depend on the nature of the field, for
instance, the other quantum numbers, such as mass and spin? This question
was asked originally by Wigner and collaborators in the 1940s and answered for
general mass and spin [6, 101].

The localizability of different types of particle depends on the existence of a
Hermitian position operator which can measure it. This is related to the issue
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286 11 Position and momentum

of physical derivatives in section 10.3. Finding such an operator is simple in
the case of the non-relativistic Schrödinger field, but is less trivial for relativistic
fields. In particular, massless fields, such as the photon, which travel at the speed
of light, seem unlikely candidates for localization since they can never be halted
in one place.

11.2.1 Schrödinger field

The Schrödinger field has a scalar product

(ψ,ψ) =
∫

dnx ψ∗(x)ψ(x)

=
∫

dnk
(2π)n

ψ∗(k)ψ(k). (11.6)

Its wavefunctions automatically have positive energy, and thus the position
operator may be written

(ψ, x̂ψ) =
∫

dnx ψ∗(x)x̂ψ(x)

=
∫

dnk
(2π)n

ψ∗(k)
(

i
∂

∂k

)
ψ(k). (11.7)

This is manifestly Hermitian. If one translates one of these wavefunctions a
distance a from the other, then, using

ψ(a) = eik·aψ(0), (11.8)

one has

(ψ(a), ψ(0)) =
∫

dnx ψ∗(0)ψ(0) ≡ δ(a)

=
∫

dnx eik·a. (11.9)

This is an identity. It shows that the Schrödinger wavefunction can be localized
with delta-function precision. Point particles exist.

11.2.2 Klein–Gordon field

The Klein–Gordon field does not automatically have only positive energy
solutions, so we must restrict the discussion to the set of solutions which have
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11.2 Particles and position 287

strictly positive energy. The scalar product on this positive energy manifold is

(φ(+), φ(+)) =
∫

dnx (φ(+)∗
↔
∂0 φ

(+)),

=
∫
(dk) φ(+)∗(k)φ(+)(k) θ(−k0)δ(p

2c2 + m2c4)

=
∫
(dk)
2|p0|e

−ik·a|φ(+)0 |2. (11.10)

A translation by a such that φ(+)(a) = eik·aφ0(k) makes the states orthogonal;

(φ(+)(a), φ(+)(0)) = δn(a)

=
∫
(dk)e−ik·a

=
∫
(dk)
2|p0|e

−ik·a|φ(+)0 |2. (11.11)

For the last two lines to agree, we must have

φ
(+)
0 (k) =

√
2|p0|, (11.12)

and thus the extent of the field about the point a is given by

φ(+)(x− a) =
∫

(dk)√
2|p0|

e−ik·(x−a), (11.13)

which is not a delta function, and thus the Klein–Gordon particles do not exist
in the same sense that Schrödinger particles do. There exist only approximately
localizable concentrations of the field. The result of this integral in n dimensions
can be expressed in terms of Bessel functions. For instance, in n = 3,

φ(+)(a) ∼
(m

r

) 5
4

H (1)
5
4
(imr) (11.14)

where r = |x−a|. This lack of sharpness is reflected in the nature of the position
operator x̂ acting on these states:

(φ(+)(a), x̂φ(+)(a)) =
∫
(dk)
2|p0|φ

∗(k) x̂ φ(k). (11.15)

Clearly, the partial derivative ∂
∂k is not a Hermitian operator owing to the factors

of p0 in the measure. It is easy to show (see section 10.3) that the addition of
the connection term,

x̂ = i
∂

∂k
+ i

2

k

p2
0

, (11.16)

is what is required to make this operator Hermitian.

https://doi.org/10.1017/9781009289887.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781009289887.014


288 11 Position and momentum

11.2.3 Dirac field

The Dirac field also has both positive and negative energy states, and particle
wavefunctions must be restricted to positive energies. It shares with the Klein–
Gordon field the inability to produce sharp delta-function-like configurations
of the field. The expression for the position operator is extremely complicated
for the spin- 1

2 particles, owing to the constraints imposed by the γ -matrices.
Although the procedure is the same, in principle, as for the Klein–Gordon field,
the details are aggravated by the complexity of the field equations for the Dirac
field.

The scalar product for localizable solutions is now, by analogy with
eqn. (11.11),

(ψ(+), ψ(+)) =
∫

(dk)
(2p0)2

|ψ |2, (11.17)

since there is no time derivative in the scalar product. Restricting to positive
energies is also more complex, owing to the matrix nature of the equation. The
normalized positive energy solutions include factors of

N =
√

E

E + mc2
=

√
−p0

(−p0 + mc)
, (11.18)

giving

(ψ(+), x̂ψ(+)) =
∫

(dk)
(2p0)2

u† N x̂ Nu. (11.19)

A suitable Hermitian operator for the position

x̂ = N

(
−i
∂

∂k
+ �

)
N (11.20)

must now take into account all of these factors of the momentum.

11.2.4 Spin s fields in 3+ 1 dimensions

The generalization to any half-integral and integral massive spin fields can be
accomplished using Dirac’s construction for spin 1

2 . It is only sketched here. A
spin-s field may be written as a direct product of 2s spin- 1

2 blocks. Following
Wigner et al. [6, 101], the wavefunction may be written in momentum space as

ψ(k)α (11.21)

where α = 1, . . . , 2s represents the components of 2s four-component spin
blocks (in total 2s × 4 components). The sub-spinors satisfy block-diagonal
equations of motion:

(γ µα pµ + mc)ψα = 0. (11.22)
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11.3 The energy–momentum tensor θµν 289

The γ -matrices all satisfy the Clifford algebra relation (see chapter 20),{
γ µα , γ

ν
α

} = −2gµν. (11.23)

The scalar product for localizable positive energy solutions may thus be found
by analogy with eqn. (11.17):

(ψ1, ψ2) =
∫
(dp)ψ1 γ

0
1 . . . γ

0
2s ψ2

=
∫
(dp)

( |mc|
p0

)2s+1

γ
†
1 γ2, (11.24)

since, in the product over blocks, each normalization factor is multiplied in turn.
Wigner et al. drop the factors of the mass arbitrarily in their definitions, since
these contribute only dimensional factors. It is the factors of p0 which affect the
localizability of the fields. The localizable wavefunction is thus of the form

|ψ |2 ∼ p2s+1
0 . (11.25)

The normalization of the positive energy spinors is

∑
ξ

|u|2 =
(

p0 + mc

2p0

)2s

. (11.26)

Combining the factors of momentum, one arrives at a normalization factor of

N =
(

p0

p0 + mc

)s

×
√

p2s+1
0 (11.27)

and a Hermitian position operator of the form

(ψ, x̂ψ) =
∫

(dp)

2p2s+1
0

(
u N

(
−i
∂

∂k
+ �

)
N u

)
. (11.28)

Notice that the extra factors of the momentum lead to a greater de-localization.
This expression contains the expressions for spin 0 and spin 1

2 as special cases.
For massless fields, the above expressions hold for spin 0 and spin 1

2 , but break
down for spin 1, i.e. the photon.

11.3 The energy–momentum tensor θµν

Translational invariance of the action implies the conservation of momentum.
Time-translation invariance implies the conservation of energy. Generally,
invariance of one variable implies the conservation of its conjugate variable.
In this section, we see how symmetry under translations of coordinates leads to

https://doi.org/10.1017/9781009289887.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781009289887.014


290 11 Position and momentum

the definition of energy, momentum and shear stress in a mechanical system of
fields.

In looking at dynamical variations of the action, we have been considering
changes in the function φ(x). Now consider variations in the field which occur
because we choose to translate or transform the coordinates xµ, i.e.

δxφ(x) = (∂µφ(x))δxµ, (11.29)

where we use δx to distinguish a coordinate variation and

δxµ = x ′µ − xµ. (11.30)

The variation of the action under such a change is given by

δS =
∫
(dx ′)L(x ′)−

∫
(dx)L(x), (11.31)

which is manifestly zero, in the absence of boundaries, since the first term
is simply a re-labelling of the second. We shall consider the action of an
infinitesimal change δxµ and investigate what this tells us about the system.
Since we are not making a dynamical variation, we can expect to find quantities
which are constant with respect to dynamics.

To calculate eqn. (11.31), we expand the first term formally about x :

L(x ′) = L(x)+ δL(1) + · · ·
= L(x)+ (∂µL)δxµ + O((δx)2). (11.32)

The volume element transforms with the Jacobian

(dx ′) = det

(
∂x ′µ

∂xν

)
(dx), (11.33)

thus, we require the determinant of

x
∂ν x ′µ = δµν + (∂νδxν). (11.34)

This would be quite difficult to compute generally, but fortunately we only
require the result to first order in δxµ. Writing out the infinite-dimensional
matrix explicitly, it is easy to see that all the terms which can contribute to first
order lie on the diagonal:

 1+ ∂1δx1 ∂1δx2 . . .

∂2δx1 1+ ∂2δx2 . . .
...

...


 . (11.35)
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11.3 The energy–momentum tensor θµν 291

Now, the determinant is the product of all the terms along the diagonal, plus
some other terms involving off-diagonal elements which do not contribute to
first order; thus, it is easy to see that we must have

det(
x
∂ν x ′µ) = 1+ ∂µδxµ + O((δx)2). (11.36)

Using this result in eqn. (11.34), we obtain, to first order,

δS =
∫
(dx)

{
δL(1) + (∂µδxµ)L

}
. (11.37)

Let us now use this result to consider the total variation of the action under a
combined dynamical and coordinate variation. In principle, we should proceed
from here for each Lagrangian we encounter. To make things more concrete,
let us make the canonical assumption that we have a Lagrangian density which
depends on some generic field q(x) and its derivative ∂µq(x). This assumption
leads to correct results in nearly all cases of interest – it fails for gauge theories,
because the definition of the velocity is not gauge-covariant, but we can return
to that problem later. We take

L = L
(
q(x), (∂µq(x)), xµ

)
. (11.38)

Normally, in a conservative system, xµ does not appear explicitly, but we
can include this for generality. Let us denote a functional variation by δq as
previously, and the total variation of q(x) by

δTq = δq + (∂µq)δxµ. (11.39)

The total variation of the action is now

δTS =
∫
(dx)

{
δL
δq
δq + δL

δ(∂µq)
δ(∂µq)+ (∂µL)δxµ + (∂µδxµ)L

}
,

(11.40)

where the first two terms originate from the functional variation in eqn. (4.21)
and the second two arise from the coordinate change in eqn. (11.32). We
now make the usual observation that the δ variation commutes with the partial
derivative (see eqn. (4.19)), and thus we may integrate by parts in the second
and fourth terms of this expression to give

δTS =
∫
(dx)

{(
δL
δq
− ∂µ δL

δ(∂µq)

)
δq

}

+
∫
(dx)

{
∂µ

[
δL

δ(∂µq)
δq + Lδxµ

]}
. (11.41)

One identifies the first line as being that which gives rise to the Euler–Lagrange
field equations. This term vanishes by virtue of the field equations, for any

https://doi.org/10.1017/9781009289887.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781009289887.014


292 11 Position and momentum

classically acceptable path. The remaining surface term can be compared with
eqn. (4.62) and represents a generator for the combined transformation. We
recognize the canonical momentum !µ from eqn. (4.66). To display this term
in its full glory, let us add and subtract

δL
δ(∂µq)

(∂νq)δx
ν (11.42)

to the surface term, giving

δTS = 1

c

∫
dσµ

{
!µ(δq + (∂νq)δxν)− θµνδxν

}
= 1

c

∫
dσµ

{
!µδTq − θµνδxν

}
, (11.43)

where we have defined

θµν = δL
δ(∂µq)

(∂νq)− Lgµν. (11.44)

This quantity is called the energy–momentum tensor. Its µ, ν = 0, 0 component
is the total energy density or Hamiltonian density of the system. Its µ, ν =
0, i components are the momentum components. In fact, if we expand out the
surface term in eqn. (11.43) we have terms of the form

!δq − Hδt + pδx+ · · · . (11.45)

This shows how elegantly the action principle generates all of the dynamical
entities of our covariant system and their respective conjugates (the delta objects
can be thought of as the conjugates to each of the dynamical generators).
Another way of expressing this is to say

• ! is the generator of q translations,

• H is the generator of t translations,

• p is the generator of x translations,

and so on. That these differential operators are the generators of causal changes
can be understood from method 2 of the example in section 7.1. A single partial
derivative has a complementary Green function which satisfies

∂x G(x, x ′) = δ(x, x ′). (11.46)

This Green function is simply the Heaviside step function θ(t − t ′) from
Appendix A, eqn. (A.2). What this is saying is that a derivative picks out a
direction for causal change in the system. In other words, the response of the
system to a source is channelled into a change in the coordinates and vice versa.
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11.3 The energy–momentum tensor θµν 293

11.3.1 Example: classical particle mechanics

To illustrate the energy–momentum tensor in the simplest of cases, we return to
the classical system, with the Lagrangian given by eqn. (4.5). This Lagrangian
has no µν indices, so our dogged Lorentz-covariant formalism is strictly wasted,
but we may take µ to stand for the time t or position i and use the general
expression. Recognizing that the metric for classical particles is δµν rather than
gµν , we have

θt t = ∂L

∂q̇i
q̇i − Lδt t

= pi q̇
i − L

= 1

2
mq̇2 + V (q)

= H. (11.47)

The off-diagonal spacetime components give the momentum,

θti = ∂L

∂q̇ j

∂q j

∂qi
= p jδ

j
i = pi = mq̇i , (11.48)

and

θi i = −L , (11.49)

which has no special interpretation. The off-diagonal i j components vanish in
this case.

The analogous analysis can be carried out for relativistic point particles.
Using the action in eqn. (4.32), one finds that

θττ = ∂L

∂ t x
(∂t x)+ L

= ∂L

∂τx
(∂τx)+ L

= mu2 − 1

2
mu2 + V ′

= 1

2
mu2 + V, (11.50)

where u = dx/dτ is the velocity, or

θt t = 1

2
mv2 + V . (11.51)

11.3.2 Example: the complex scalar field

The application of eqn. (11.44) for the action

S =
∫
(dx)

{
h̄2c2(∂µφA)

∗(∂µφA)+ m2c4φ∗AφA + V (φ)
}
, (11.52)
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294 11 Position and momentum

gives us the following components for the energy–momentum tensor:

θ00 = ∂L
∂(∂0φA)

(∂0φA)+ ∂L
∂(∂0φ∗A)

(∂0φ
∗
A)− Lg00

= h̄2c2
[
(∂0φ

∗
A)(∂0φA)+ (∂iφ

∗
A)(∂iφA)

]+ m2c4 + V (φ).

(11.53)

Thus, the last line defines the Hamiltonian density H, and the Hamiltonian is
given by

H =
∫

dσH. (11.54)

The off-diagonal spacetime components define a momentum:

θ0i = θi0 = ∂L
∂(∂0φ)A

(∂iφ)A + ∂L
∂(∂0φ∗A)

(∂iφ
∗
A)

= h̄2c2
{
(∂0φ

∗
A)(∂iφA)+ (∂0φA)(∂iφ

∗
A)
}
. (11.55)

Taking the integral over all space enables us to integrate by parts and write this
in a form which turns out to have the interpretation of the expectation value
(inner product) of the field momentum (see chapter 9):∫

dσθ0i = −h̄2c2
∫

dσ
(
φ∗∂i∂0φ − (∂0φ

∗)∂iφ
)

= −(φ, pi cφ), (11.56)

where p = −ih̄∂i . The diagonal space components are given by

θi i = ∂L
∂(∂ iφA)

(∂iφA)+ ∂L
∂(∂ iφ∗A)

(∂iφ
∗
A)− L

= 2h̄2c(∂iφ
∗)(∂iφ)− L, (11.57)

where i is not summed. Similarly, the off-diagonal ‘stress’ components are given
by

θi j = ∂L
∂(∂ iφA)

(∂ jφA)+ ∂L
∂(∂ iφA)

(∂ jφA)

= h̄2c2
{
(∂iφ

∗
A)(∂ jφA)+ (∂ jφ

∗
A)(∂iφA)

}
= h̄−1c(φA, pi p jφA). (11.58)

From eqn. (11.57), we see that the trace over spatial components in n + 1
dimensions is ∑

i

θi i = H− 2m2c4φ2
A − 2V (φ)+ (n − 1)L, (11.59)
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11.3 The energy–momentum tensor θµν 295

so that the full trace gives

θµµ = gµνθνµ = −2m2c4φ2
A − 2V (φ)+ (n − 1)L. (11.60)

Note that this vanishes in 1+ 1 dimensions for zero mass and potential.

11.3.3 Example: conservation

We can also verify the energy–momentum conservation law, when the fields
satisfy the equations of motion. We return to this issue in section 11.8.1. For the
simplest example of a scalar field with action,

S =
∫
(dx)

{
1

2
(∂µφ)(∂µφ)+ 1

2
m2φ2

}
. (11.61)

Using eqn. (11.44), we obtain the energy–momentum tensor

θµν = 1

2
(∂µφ)(∂νφ)− 1

2
mφ2. (11.62)

The spacetime divergence of this is

∂µθµν = −(− φ + m2φ)(∂νφ) = 0. (11.63)

The right hand side vanishes as a result of the equations of motion, and thus the
conservation law is upheld.

It is interesting to consider what happens if we add a potential V (x) to the
action. This procedure is standard practice in quantum mechanics, for instance.
This can be done by shifting the mass in the action by m2 → m2 + V (x). The
result of this is the following expression:

∂µθµν = ( φ − (m2 + V (x))φ)(∂νφ)+ (∂νV )φ2

= (∂νV (x))φ2. (11.64)

The first term vanishes again by virtue of the equations of motion. The
spacetime-dependent potential does not vanish, however. Conservation of
energy is only assured if there are no spacetime-dependent potentials. This
illustrates an important point, which is discussed more generally in section
11.8.1.

The reason that the conservation of energy is violated here is that a static
potential of this kind is not physical. All real potentials change in response to
an interaction with another field. By making a potential static, we are claiming
that the form of V (x) remains unchanged no matter what we scatter off it. It is
an immovable barrier. Conservation is violated because, in a physical system,
we would take into account terms in the action which allow V (x) to change in
response to the momentum imparted by φ. See also exercise 1, at the end of this
chapter.
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11.4 Spacetime invariance and symmetry on indices

For reasons which should become apparent in section 11.6.1, the energy–
momentum tensor, properly defined under maximal symmetry, is symmetrical
under interchange of its indices. This reflects the symmetry of the metric tensor
under interchange of indices. If the Lorentz symmetry is broken, however (for
instance, in the non-relativistic limit), then this property ceases to apply. In a
relativistic field theory, a non-symmetrical tensor may be considered simply
incorrect; in the non-relativistic limit, only the spatial part of the tensor is
symmetrical.

11.5 θµν for gauge theories

Consider the Maxwell action

S =
∫
(dx)

{
1

4µ0
FµνFµν − JµAµ

}
. (11.65)

A direct application of the formula in eqn. (11.44) gives an energy–momentum
tensor which is not gauge-invariant:

θµν = ∂L
∂(∂µAα)

(∂ν Aα)− 1

4µ0
Fρσ Fρσ gµν. (11.66)

The explicit appearance of Aµ in this result shows that this definition cannot
be physical for the Maxwell field. The reason for this lack of gauge invariance
can be traced to an inaccurate assumption about the nature of a translation, or
conformal transformation of the gauge field [44, 76]; it is related to the gauge
invariance of the theory. The expression for θµν in eqn. (11.44) relies on the
assumption in eqn. (11.29) that the expression for the variation in the field by
change of coordinates is given by

δx Aµ = (∂αAµ)δx
α. (11.67)

It is clear that this translation is not invariant with respect to gauge transforma-
tions, but this seems to be wrong. After all, potential differences are observable
as electric and magnetic fields between two points, and observable quantities
should be gauge-invariant. In terms of this quantity, the energy–momentum
tensor can be written as

θµνδx
ν = ∂L

∂(∂µAα)
(δx Aα)− 1

4µ0
Fρσ Fρσ gµνδx

ν. (11.68)

Suppose now that we use this as a more fundamental definition of θµν . Our
problem is then to find a more appropriate definition of δx Aµ, which leads to a
gauge-invariant answer. The source of the problem is the implicit assumption
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that the field at one point in spacetime should have the same phase as the field
at another point. In other words, under a translation of coordinates, we should
expect the field to transform like a vector only up to a gauge transformation.
Generalizing the transformation rule for the vector potential to account for this
simple observation cures the problem entirely. The correct definition of this
variation was derived in section 4.5.2.

The correct (gauge-invariant) transformation is now found by noting that we
may write

δx Aµ = (∂ν A′µ(x))ε
ν + (x ′

∂µ ε
ν)Aν

= ενFνµ + ∂µ(εν Aν). (11.69)

This last term has the form of a gauge-invariant translation plus a term which
can be interpreted as a gauge transformation ∂µs (where s = εν Aν). Thus
we may now re-define the variation δx Aµ to include a simultaneous gauge
transformation, leading to the gauge-invariant expression

δx Aµ(x) ≡ δx Aµ − ∂µs = ενFνµ, (11.70)

where εµ = δxµ. The most general description of the translation εµ, in 3 + 1
dimensions is a 15-parameter solution to Killing’s equation for the conformal
symmetry [76],

∂µεν + ∂νεµ − 1

2
gµν∂γ ε

γ = 0, (11.71)

with solution

εµ(x) = aµ + bxµ + ωµνxν + 2xµcνxν − cµx2, (11.72)

where ωµν = −ωνµ. This explains why the conformal variation in the tensor Tµν
gives the correct result for gauge theories: the extra freedom can accommodate
x-dependent scalings of the fields, or gauge transformations.

The anti-symmetry of Fµν will now guarantee the gauge invariance of
θµν . Using this expression in eqn. (11.43) for the energy–momentum tensor
(recalling εµ = δxµ) gives

θ ′µν =
δL

δ(∂µAα)
F α
ν − Lgµν

= 2
δL
δFµα

F α
ν − Lgµν

= µ−1
0 FµαF α

ν −
1

4µ0
Fρσ Fρσ gµν. (11.73)

This result is manifestly gauge-invariant and can be checked against the tradi-
tional expressions obtained from Maxwell’s equations for the energy density and
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the momentum flux. It also agrees with the Einstein energy–momentum tensor
Tµν .

The components in 3+ 1 dimensions evaluate to:

θ00 = µ−1
0

(
F0i F i

0 − Lg00
)

= Ei Ei

c2µ0
+ 1

2µ0

(
Bi Bi − Ei Ei

c2

)

= 1

2µ0

(
E2

c2
+ B2

)

= 1

2
(E · D+ B ·H), (11.74)

which has the interpretation of an energy or Hamiltonian density. The spacetime
off-diagonal components are given by

θ0 j = θ j0 = µ−1
0 F0i F i

j

= µ−1
0 εi jk Ei Bk/c

= −(E×H)k
c

, (11.75)

which has the interpretation of a ‘momentum’ density for the field. This
quantity is also known as Poynting’s vector divided by the speed of light. The
conservation law is

∂µθµ0 = −1

c
∂tH+ ∂i (H× E)i = 1

c
∂µSµ = 0, (11.76)

which may be compared with eqns. (2.70) and (2.73). Notice finally that

δS

δx0
= −

∫
dσθ00, (11.77)

and thus that

δS

δt
= −H, (11.78)

which is the energy density or Hamiltonian. We shall have use for this relation
in chapter 14.

11.6 Another energy–momentum tensor Tµν

11.6.1 Variational definition

Using the action principle and the Lorentz invariance of the action, we have
viewed the energy–momentum tensor θµν as a generator for translations in space
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and time. There is another quantity which we can construct which behaves as
an energy–momentum tensor: it arises naturally in Einstein’s field equations
of general relativity as a source term for matter. This tensor is defined by the
variation of the action with respect to the metric tensor:

Tµν = 2√
g

δS

δgµν
. (11.79)

Clearly, this definition assumes that the action is covariant with respect to the
metric gµν , so we should not expect this to work infallibly for non-relativistic
actions.

The connection between Tµν and θµν is rather subtle and has to do with con-
formal transformations. Conformal transformations (see section 9.6) are related
to re-scalings of the metric tensor, and they form a super-group, which contains
and extends the Lorentz transformation group; thus Tµν admits more freedom
than θµν . As it turns out, this extra freedom enables it to be covariant even
for local gauge theories, where fields are re-defined by spacetime-dependent
functions. The naive application of Lorentz invariance for scalar fields in section
11.3 does not automatically lead to invariance in this way; but it can be fixed, as
we shall see in the next section. The upshot of this is that, with the exception of
the Maxwell field and the Yang–Mills field, these two tensors are the same.

To evaluate eqn. (11.79), we write the action with the metric made explicit,
and write the variation:

δS =
∫

dn+1x
√

g

(
1√
g

δg

δgµν
L+ δL

δgµν

)
, (11.80)

where we recall that g = −det gµν . To evaluate the first term, we note that

δg

δgµν
= −δdet gµν

δgµν
, (11.81)

and use the identity

ln detgµν = Tr ln gµν. (11.82)

Varying this latter result gives

δ ln(detgµν) = Trδ ln gµν, (11.83)

or

δ(detgµν)

detgµν
= δgµν

gµν
. (11.84)

Using this result, together with eqn. (11.81), in eqn. (11.80), we obtain

Tµν = 2
∂L
∂gµν

− gµνL. (11.85)

https://doi.org/10.1017/9781009289887.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781009289887.014


300 11 Position and momentum

This definition is tantalizingly close to that for the Lorentz symmetry variation,
except for the replacement of the first term. In many cases, the two definitions
give the same result, but this is not the case for the gauge field, where Tµν
gives the correct answer, but a naive application of θµν does not. The clue as
to their relationship is to consider how the metric transforms under a change of
coordinates (see chapter 25). Relating a general action gµν to a locally inertial
frame ηµν , one has

gµν = V α
µ V β

ν ηαβ, (11.86)

where the vielbein V α
µ = ∂ ′µxα, so that

gµν(∂µφ)(∂νφ) = ηαβV µ
αV ν

β(∂µφ)(∂νφ). (11.87)

In terms of these quantities, one has

Tµν = 2√
g

δS

δgµν
= Vαµ

det V

δS

δV µ
α

. (11.88)

Thus, one sees that variation with respect to a vector, as in the case of θµν
will only work if the vector transforms fully covariantly under every symmetry.
Given that the maximal required symmetry is the conformal symmetry, one may
regard Tµν as the correct definition of the energy–momentum tensor.

11.6.2 The trace of the energy–momentum tensor Tµν

The conformal invariance of the field equations is reflected in the trace of the
energy–momentum tensor Tµν , which we shall meet in the next chapter. Its
trace vanishes for actions which are conformally invariant. To see this, we note
that, in a conformally invariant theory,

δS

δ'
= 0. (11.89)

If we express this in terms of the individual partial transformations, we have

δS

δ'
= δS

δgµν
δgµν

δ'
+ δS

δφ

δφ

δ'
= 0. (11.90)

Assuming that the transformation is invertible, and that the field equations are
satisfied,

δS

δφ
= 0, (11.91)

we have

1

2
√

g Tµν
δgµν

δ'
= 0. (11.92)
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Since δgµν

δ'
must be proportional to gµν , we have simply that

Tµνg
µν = Tr Tµν = 0. (11.93)

A similar argument applies to the tensor θµν , since the two tensors (when defined
correctly) agree. In the absence of conformal invariance, one may expand the
trace in the following way:

T µµ = βiLi , (11.94)

where Li are terms in the Lagrangian of i th order in the fields. β i is then called
the beta function for this term. It occurs in renormalization group and scaling
theory.

11.6.3 The conformally improved Tµν

The uncertainty in the definition of the energy–momentum tensors θµν and Tµν
is usually understood as the freedom to change boundary conditions by adding
total derivatives, i.e. surface terms, to the action. However, another explanation
is forthcoming: such boundary terms are generators of symmetries, and one
would therefore be justified in suspecting that symmetry covariance plays a
role in the correctness of the definition. It has emerged that covariance, with
respect to the conformal symmetry, frequently plays a role in elucidating a
sensible definition of this tensor. While this symmetry might seem excessive
in many physical systems, where one would not expect to see such a symmetry,
its structure encompasses a generality which ensures that all possible terms are
generated, before any limit is taken.

In the case of the energy–momentum tensor, the conformal symmetry mo-
tivates improvements not only for gauge theories, but also with regard to
scaling anomalies. The tracelessness of the energy–momentum tensor for a
massless field is only guaranteed in the presence of conformal symmetry, but
such a symmetry usually demands a specific spacetime dimensionality. What is
interesting is that a fully covariant, curved spacetime formulation of Tµν leads
to an invariant definition, which ensures a vanishing T µµ in the massless limit
[23, 26, 119].

The freedom to add total derivatives means that one may write

Tµν → Tµν + ∇ρ∇σmµνρσ , (11.95)

where mµνρσ is a function of the metric tensor, and is symmetrical on µ, ν and
ρ, σ indices; additionally it satisfies:

mµνρσ + mρνσµ + mσνµρ = 0. (11.96)
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These are also the symmetry properties of the Riemann tensor (see eqn. (25.24)).
This combination ensures that the additional terms are conserved:

∇µ�Tµν = ∇µ∇ρ∇σmµνρσ = 0. (11.97)

The properties of the Riemann tensor imply that the following additional
invariant term may be added to the action:

�S =
∫
(dx) ξ mµνρσ Rµνρσ . (11.98)

For spin-0 fields, the only invariant combination of correct dimension is

mµνρσ =
(

gµνgρσ − 1

2
gρνgµσ − 1

2
gρµgνσ

)
φ2, (11.99)

which gives the term

�S =
∫

1

2
ξ Rφ2, (11.100)

where R is the scalar curvature (see chapter 25). Thus, the modified action,
which must be temporarily interpreted in curved spacetime, is

S =
∫
(dx)

{
1

2
(∇µφ)(∇µφ)+ 1

2
(m2 + ξ R)φ2

}
, (11.101)

where (dx) = √gdn+1x . Varying this action with respect to the metric leads to

Tµν = (∇µφ)(∇νφ) − 1

2
gµν

[
(∇λφ)(∇λφ)+ m2φ2

]
+ ξ(∇µ∇ν − gµν )φ2. (11.102)

Notice that the terms proportional to ξ do not vanish, even in the limit R → 0,
i.e. ∇µ → ∂µ. The resulting additional piece is a classic (n + 1) dimensional,
transverse (conserved) vector displacement. Indeed, it has the conformally
invariant form of the Maxwell action, stripped of its fields. The trace of this
tensor may now be computed, giving:

T µµ =
[

1− n

2
+ 2ξn

]
(∇µφ)(∇νφ)− 1

2
(n + 1)m2φ2. (11.103)

One now sees that it is possible to choose ξ such that it vanishes in the massless
limit; i.e.

T µµ = −
1

2
(n + 1)m2φ2, (11.104)

where

ξ = n − 1

4n
. (11.105)

This value of ξ is referred to as conformal coupling. In 3+ 1 dimensions, it has
the value of 1

6 , which is often assumed explicitly.
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11.7 Angular momentum and spin1

The topic of angular momentum in quantum mechanics is one of the clas-
sic demonstrations of the direct relevance of group theory to the nature of
microscopic observables. Whereas linear momentum more closely resembles
its Abelian classical limit, the microscopic behaviour of rotation at the level
of particles within a field is quite unexpected. The existence of intrinsic,
half-integral spin S, readily predicted by representation theory of the rotation
group in 3 + 1 dimensions, has no analogue in a single-valued differential
representation of the orbital angular momentum L.

11.7.1 Algebra of orbital motion in 3+ 1 dimensions

The dynamical commutation relations of quantum mechanics fix the algebra
of angular momentum operators. It is perhaps unsurprising, at this stage,
that the canonical commutation relations for position and momentum actually
correspond to the Lie algebra for the rotation group. The orbital angular
momentum of a body is defined by

L = r× p. (11.106)

In component notation in n-dimensional Euclidean space, one writes

Li = εi jk x j pk . (11.107)

The commutation relations for position and momentum

[xi , p j ] = iχh δ
i j (11.108)

then imply that (see section 11.9)

[Li , L j ] = iχh εi jk Lk . (11.109)

This is a Lie algebra. Comparing it with eqn. (8.47) we see the correspondence
between the generators and the angular momentum components,

T a ↔ La/ χh

fabc = −εabc, (11.110)

with the group space a, b, c ↔ i, j, k corresponding to the Euclidean spatial
basis vectors. What this shows, however, is that the group theoretical description
of rotation translates directly into the operators of the dynamical theory, with a

1 A full understanding of this section requires a familiarity with Lorentz and Poincaré symmetry
from section 9.4.
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dimensionful scale χh , which in quantum mechanics is χh = h̄. This happens,
as discussed in section 8.1.3, because we are representing the dynamical
variables (fields or wavefunctions) as tensors which live on the representation
space of the group (spacetime) by a mapping which is adjoint (the group space
and representation space are the same).

11.7.2 The nature of angular momentum in n + 1 dimensions

In spite of its commonality, the nature of rotation is surprisingly non-intuitive,
perhaps because many of its everyday features are taken for granted. The
freedom for rotation is intimately linked to the dimension of spacetime. This
much is clear from intuition, but, as we have seen, the physics of dynamical
systems depends on the group properties of the transformations, which result
in rotations. Thus, to gain a true intuition for rotation, one must look to the
properties of the rotation group in n + 1 dimensions.

In one dimension, there are not enough degrees of freedom to admit rotations.
In 2 + 1 dimensions, there is only room for one axis of rotation. Then we have
an Abelian group U (1) with continuous eigenvalues exp(iθ). These ‘circular
harmonics’ or eigenfunctions span this continuum. The topology of this space
gives boundary conditions which can lead to any statistics under rotation. i.e.
anyons.

In 3 + 1 dimensions, the rank 2-tensor components of the symmetry group
generators behave like two separate 3-vectors, those arising in the timelike
components T 0i and those arising in the spacelike components 1

2ε
i jk Ti j ; indeed,

the electric and magnetic components of the electromagnetic field are related
to the electric and magnetic components of the Lorentz group generators.
Physically, we know that rotations and coils are associated with magnetic fields,
so this ought not be surprising. The rotation group in 3 + 1 dimensions is
the non-Abelian SO(3), and the maximal Abelian sub-group (the centre) has
eigenvalues ±1. These form a Z2 sub-group and reflect the topology of the
group, giving rise to two possible behaviours under rotation: symmetrical and
anti-symmetrical boundary conditions corresponding in turn to Bose–Einstein
and Fermi–Dirac statistics.

In higher dimensions, angular momentum has a tensor character and is
characterized by n-dimensional spherical harmonics [130].

11.7.3 Covariant description in 3+ 1 dimensions

The angular momentum of a body at position r, about an origin, with momentum
p, is defined by

J = L+ S = (r× p)+ S. (11.111)
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The first term, constructed from the cross-product of the position and linear
momentum, is the contribution to the orbital angular momentum. The second
term, S, is the spin, or intrinsic angular momentum, of the body. The total
angular momentum is a conserved quantity and may be derived from the energy–
momentum tensor in the following way. Suppose we have a conserved energy–
momentum tensor θµν , which is symmetrical in its indices (Lorentz-invariant),
then

∂µθ
µν = 0. (11.112)

We can construct the new axial tensor,

Lµνλ = xν θλ
µ − xλ θνµ, (11.113)

which is also conserved, since

∂µLµνλ = θλν − θνλ = 0. (11.114)

Comparing eqn. (11.113) with eqn. (11.111), we see that Lµνλ is a generalized
vector product, since the components of r×p are of the form L1 = r2 p3−r3 p2,
or Li = εi jkr j pk . We may then identify the angular momentum 2-tensor as the
anti-symmetrical matrix

Jµν =
∫

dσ L0µν = −J νµ, (11.115)

which is related to the generators of homogeneous Lorentz transformations
(generalized rotations on spacetime) by

Jµν
∣∣∣

pi=0
= χh T µν3+1; (11.116)

see eqn. (9.95). The i j components of Jµν are simply the components of r× p.
The i0 components are related to boosts. Clearly, this matrix is conserved,

∂µ Jµν = 0. (11.117)

Since the coordinates xµ appear explicitly in the definition of Jµν , it is not
invariant under translations of the origin. Under the translation xµ → xµ + aµ,
the components transform into

Jµν → Jµν + (aµ pν + aµ pµ) . (11.118)

(see eqn. (11.5)). This can be compared with the properties of eqn. (9.153).
To isolate the part of Tµν which is intrinsic to the field (i.e. is independent of
position), we may either evaluate in a rest frame pi = 0 or define, in 3 + 1
dimensions, the dual tensor

Sµν = 1

2
εµνρλ J λρ = S∗µν. (11.119)
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The anti-symmetry of the Levi-Cevita tensor ensures that the extra terms in
eqn. (11.118) cancel. We may therefore think of this as being the generator
of the intrinsic angular momentum of the field or spin. This dual tensor is
rather formal though and not very useful in practice. Rather, we consider the
Pauli–Lubanski vector as introduced in eqn. (9.161). We define a spin 4-vector
by

−1

2
mc Sµ ≡ χh Wµ = 1

2
εµνρλ J νρ pλ, (11.120)

so that, in a rest frame,

χh Wµ
rest = −

1

2
mc(0, Si ), (11.121)

where Si is the intrinsic spin angular momentum, which is defined by

Si = J i
∣∣∣

pi=0
= χh TB i = 1

2
χh εi jk T jk

R , (11.122)

with eigenvalues s(s + 1) χh
2 and ms χh , where s = e + f .

11.7.4 Intrinsic spin of tensor fields in 3+ 1 dimensions

Tensor fields are classified by their intrinsic spin in 3 + 1 dimensions. We
speak of fields with intrinsic spin 0, 1

2 , 1,
3
2 , 2, . . . . These labels usually refer

to 3 + 1 dimensions, and may differ in other number of dimensions since they
involve counting the number of independent components in the tensors, which
differs since the representation space is spacetime for the Lorentz symmetry.
The number depends on the dimension and transformation properties of the
matrix representation, which defines a rotation of the field. The homogeneous
(translation independent) Lorentz group classifies these properties of the field in
3+ 1 dimensions,

Field Spin

φ(x) 0

ψα(x)
1
2

Aµ 1

(µα
3
2

gµν 2

where µ, ν = 0, 1, 2, 3. Although fields are classified by their spin properties,
this is not enough to be able to determine the rotational modes of the field. The
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mass also plays a role. This is perhaps most noticeable for the spin-1 field Aµ.
In the massless case, it has helicities λ = ±1, whereas in the massive case it can
take on the additional value of zero. The reason for the difference follows from
a difference in the true spacetime symmetry of the field in the two cases. We
shall explore this below.

From section 9.4.3 we recall that the irreducible representations of the Lorentz
group determine the highest weight or spin s ≡ e + f of a field. If we set
the generators of boosts to zero by taking ω0i T 0i = 0 in eqn. (9.95), then we
obtain the pure spatial rotations of section 8.5.10. Then the generators of the
Lorentz group Ei and Fi become identical, and we may define the spin of a
representation by the operator

Si = Ei + Fi = χh TB i . (11.123)

The Casimir operator for the defining (vector field) representation is then

S2 = χ2
h T 2

B = χ2
h




0 0 0 0
0 2 0 0
0 0 2 0
0 0 0 2


 . (11.124)

This shows that the rotational 3-vector part of the defining representation forms
an irreducible module, leaving an empty scalar component in the time direction.
One might expect this; after all, spatial rotations ought not to involve timelike
components. If we ignore the time component, then we easily identify the spin
of the vector field as follows. From section 8.5.10 we know that in representation
GR, the Casimir operator is proportional to the identity matrix with value

S2 = Si Si = s(s + 1)χ2
h IR, (11.125)

and s = e + f . Comparing this with eqn. (11.124) we have s(s + 1) = 2, thus
s = 1 for the vector field. We say that a vector field has spin 1.

Although the vector transformation leads us to a value for the highest weight
spin, this does not necessarily tell us about the intermediate values, because
there are two ways to put together a spin-1 representation. One of these applies
to the massless (transverse) field and the other to the massive Proca field, which
was discussed in section 9.4.4. As another example, we take a rank 2-tensor
field. This transforms like

Gµν → L ρ
µ L σ

ν Gρσ . (11.126)

In other words, two vector transformations are required to transform this, one
for each index. The product of two such matrices has an equivalent vector form
with irreducible blocks:
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(1, 1)︸ ︷︷ ︸ ⊕ (1, 0)⊕ (0, 1)︸ ︷︷ ︸ ⊕ (0, 0)︸ ︷︷ ︸.

traceless + anti-symmetric + trace
symmetric

This is another way of writing the result which was found in section 3.76 using
more pedestrian arguments. The first has (2e + 1)(2 f + 1) = 9 (e = f = 1)
spin e+ f = 2 components; the second two blocks are six spin-1 parts; and the
last term is a single scalar component, giving 16 components in all, which is the
number of components in the second-rank tensor.

Another way to look at this is to compare the number of spatial components
in fields with 2s + 1. For scalar fields (spin 0), 2s + 1 gives one component. A
4-vector field has one scalar component and 2s+1 = 3 spatial components (spin
1). A spin-2 field has nine spatial components: one scalar (spin-0) component,
three vector (spin-1) components and 2s+ 1 = 5 remaining spin-2 components.
This is reflected in the way that the representations of the Lorentz transformation
matrices reduce into diagonal blocks for spins 0, 1 and 2. See ref. [132] for a
discussion of spin-2 fields and covariance.

It is coincidental for 3 + 1 dimensions that spin-0 particles have no Lorentz
indices, spin-1 particles have one Lorentz index and spin-2 particles have two
Lorentz indices.

What is the physical meaning of the spin label? The spin is the highest weight
of the representation which characterizes rotational invariance of the system.
Since the string of values produced by the stepping operators moves in integer
steps, it tells us how many distinct ways, m + m ′, a system can spin in an
‘equivalent’ fashion. In this case, equivalent means about the same axis.

11.7.5 Helicity versus spin

Helicity is defined by

λ = Ji p̂i . (11.127)

Spin s and helicity λ are clearly related quite closely, but they are subtly
different. It is not uncommon to refer loosely to helicity as spin in the literature
since that is often the relevant quantity to consider. The differences in rotation
algebras, as applied to physical states are summarized in table 11.3. Because
the value of the helicity is not determined by an upper limit on the total
angular momentum, it is conventional to use the component of the spin of the
irreducible representation for the Lorentz group which lies along the direction
of the direction of travel. Clearly these two definitions are not the same thing. In
the massless case, the labels for the helicity are the same as those which would
occur for m j in the rest frame of the massive case.

From eqn. (11.127) we see that the helicity is rotationally invariant for
massive fields and generally Lorentz-invariant for massless p0 = 0 fields.
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Table 11.3. Spin and helicity.

Casimir  c = m j

Massive j ( j + 1) 0,± 1
2 ,±1, . . . ,± j

Massless 0 0,± 1
2 ,±1, . . . ,∞

It transforms like a pseudo-scalar, since Ji is a pseudo-vector. Thus, the
sign of helicity changes under parity transformations, and a massless particle
which takes part in parity conserving interactions must have both helicity states
±λ, i.e. we must represent it by a (reducible) symmetrized pair of irreducible
representations: ( + 0

0 −
)

or

(
0 +
− 0

)
. (11.128)

The former is the case for the massless Dirac field (λ = ± 1
2 ), while the

latter is true for the photon field Fµν (λ = ±1), where the states correspond
to left and right circularly polarized radiation. Note that, whereas a massive
particle could have λ = 0,±1, representing left transverse, right transverse
and longitudinal angular momentum, a massless (purely transverse) field cannot
have a longitudinal mode, so λ = 0 is absent. This can be derived more
rigorously from representation theory.

In refs. [45, 55], the authors study massless fields with general spin and show
that higher spins do not necessarily have to be strictly conserved; only the Dirac-
traceless part of the divergence has to vanish.

11.7.6 Fractional spin in 2+ 1 dimensions

The Poincaré group in 2 + 1 dimensions shares many features of the group
in 3 + 1 dimensions, but also conceals many subtleties [9, 58, 77]. These
have specific implications for angular momentum and spin. In two spatial
dimensions, rotations form an Abelian group SO(2) ∼ U (1), whose generators
can, in principle, take on eigenvalues which are unrestricted by the constraints
of spherical harmonics. This leads to continuous phases [89, 138], particle
statistics and the concept of fractional spin. It turns out, however, that there is a
close relationship between vector (gauge) fields and spin in 2 + 1 dimensions,
and that fractional values of spin can only be realized in the context of a gauge
field coupling. This is an involved topic, with a considerable literature, which
we shall not delve into here.
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11.8 Work, force and transport in open systems

The notion of interaction and force in field theory is unlike the classical
picture of particles bumping into one another and transferring momentum. Two
fields interact in the manner of two waves passing through one another: by
interference, or amplitude modulation. Two fields are said to interact if there is
a term in the action in which some power of one field multiplies some power of
another. For example,

Sint =
∫
(dx)

{
φ2 AµAµ

}
. (11.129)

Since the fields multiply, they modulate one another’s behaviour or perturb
one another. There is no explicit notion of a force here, and precisely what
momentum is transferred is rather unclear in the classical picture; nevertheless,
there is an interaction. This can lead to scattering of one field off another, for
instance.

The source terms in the previous section have the form of an interaction,
in which the coupling is linear, and thus they exert what is referred to as a
generalized force on the field concerned. The word generalized is used because
J does not have the dimensions of force – what is important is that the source
has an influence on the behaviour of the field.

Moreover, if we place all such interaction terms on the right hand side of
the equations of motion, it is clear that interactions also behave as sources for
the fields (or currents, if you prefer that name). In eqn. (11.129), the coupling
between φ and Aµ will lead to a term in the equations of motion for φ and for
Aµ, thus it acts as a source for both fields.

We can express this in other words: an interaction can be thought of as a
source which transfers some ‘current’ from one field to another. But be wary
that what we are calling heuristically ‘current’ might be different in each case
and have different dimensions.

A term in which a field multiplies itself, φn , is called a self-interaction. In
this case the field is its own source. Self-interactions lead to the scattering of
a field off itself. The classical notion of a force was described in terms of the
energy–momentum tensor in section 11.3.

11.8.1 The generalized force Fν = ∂µT µν

There is a simple proof which shows that the tensor Tµν is conserved, provided
one has Lorentz invariance and the classical equations of motion are satisfied.
Consider the total dynamical variation of the action

δS =
∫

δS

δgµν
δgµν +

∫
δS

δq
δq = 0. (11.130)
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Since the equations of motion are satisfied, the second term vanishes identically,
leaving

δS = 1

2
√

g
∫
(dx)Tµνδg

µν. (11.131)

For simplicity, we shall assume that the metric gµν is independent of x , so that
the variation may be written (see eqn. (4.88))

δS =
∫
(dx)Tµν

[
gµλ(∂νε

λ)+ gλν(∂µε
λ)
] = 0. (11.132)

Integrating by parts, we obtain

δS =
∫
(dx)

[−2∂µT µν
]
εν = 0. (11.133)

Since εµ(x) is arbitrary, this implies that

∂µT µν = 0, (11.134)

and hence T µν is conserved. From this argument, it would seem that T µν

must always be conserved in every physical system, and yet one could imagine
constructing a physical model in which energy was allowed to leak away. The
assumption of Lorentz invariance and the use of the equations of motion provide
a catch, however. While it is true that the energy–momentum tensor is conserved
in any complete physical system, it does not follow that energy or momentum
is conserved in every part of a system individually. If we imagine taking
two partial systems and coupling them together, then those two systems can
exchange energy. In fact, energy will only be conserved if the systems are in
perfect balance: if, on the other hand, one system does work on the other, then
energy flows from one system to the other. No energy escapes the total system,
however.

Physical systems which are coupled to other systems, about which we have
no knowledge, are called open systems. This is a matter of definition. Given
any closed system, we can make an open system by isolating a piece of it and
ignoring the rest. Clearly a description of a piece of a system is an incomplete
description of the total system, so it appears that energy is not conserved in the
small piece. In order to see conservation, we need to know about the whole
system. This situation has a direct analogue in field theory. Systems are placed
in contact with one another by interactions, often through currents or sources.
For instance, Dirac matter and radiation couple through a term which looks like
JµAµ. If we look at only the Dirac field, the energy–momentum tensor is not
conserved. If we look at only the radiation field, the energy–momentum tensor
is not conserved, but the sum of the two parts is. The reason is that we have to
be ‘on shell’ – i.e., we have to satisfy the equations of motion.
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Consider the following example. The (incomplete) action for the interaction
between the Dirac field and the Maxwell field is

S =
∫
(dx)

{
1

4µ0
FµνFµν − JµAµ

}
, (11.135)

where Jµ = ψγµψ . Now, computing the energy–momentum tensor for this
action, we obtain

∂µT µν = Fµν Jµ. (11.136)

This is not zero because we are assuming that the current Jµ is not zero. But
this is not a consistent assumption in the action, because we have not added
any dynamics for the Dirac field, only the coupling JµAµ. Consider the field
equation for ψ from eqn. (11.135). Varying with respect to ψ ,

δS

δψ
= ieγ µAµψ = 0. (11.137)

This means that either Aµ = 0 or ψ = 0, but both of these assumptions make
the right hand side of eqn. (11.136) zero! So, in fact, the energy–momentum
tensor is conserved, as long as we obey the equations of motion given by the
variation of the action.

The ‘paradox’ here is that we did not include a piece in the action for the
Dirac field, but that we were sort of just assuming that it was there. This is a
classic example of writing down an incomplete (open) system. The full action,

S =
∫
(dx)

{
1

4µ0
FµνFµν − JµAµ + ψ(γ µ∂µ + m)ψ

}
, (11.138)

has a conserved energy–momentum tensor, for more interesting solutions than
ψ = 0.

From this discussion, we can imagine the imbalance of energy–momentum
on a partial system as resulting in an external force on this system, just as in
Newton’s second law. Suppose we define the generalized external force by

Fν =
∫

dσ ∂µT µν. (11.139)

The spatial components are

Fi =
∫

dσ ∂0T 0i = ∂t Pi = dp
dt
, (11.140)

which is just Newton’s second law. Compare the above discussion with
eqn. (2.73) for the Poynting vector.

An important lesson to learn from this is that a source is not only a generator
for the field (see section 14.2) but also a model for what we do not know about
an external system. This is part of the essence of source theory as proposed by
Schwinger. For another manifestation of this, see section 11.3.3.

https://doi.org/10.1017/9781009289887.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781009289887.014


11.8 Work, force and transport in open systems 313

11.8.2 Work and power

In chapter 5 we related the imaginary part of the Feynman Green function to
the instantaneous rate at which work is done by the field. We now return to this
problem and use the energy–momentum tensor to provide a new perspective on
the problem.

In section 6.1.4 we assumed that the variation of the action with time,
evaluated at the equations of motion, was the energy of the system. It is now
possible to justify this; in fact, it should already be clear from eqn. (11.78). We
can go one step further, however, and relate the power loss to the notion of an
open system. If a system is open (if it is coupled to sources), it does work, w.
The rate at which it does work is given by

dw

dt
=

∫
dσ ∂µT µ0. (11.141)

This has the dimensions of energy per unit time. It is clearly related to the
variation of the action itself, evaluated at value of the field which satisfies the
field equations, since

�w = −
∫

dσdt ∂µT µ0 = −δS

δt

∣∣∣∣∣
field eqns

. (11.142)

The electromagnetic field is the proto-typical example here. If we consider the
open part of the action (the source coupling),

SJ =
∫
(dx) JµAµ, (11.143)

then, using

Aµ =
∫
(dx) Dµν(x, x ′)J ν(x ′), (11.144)

we have

δS[AJ ] = δ
∫
(dx) JµδAµ

=
∫
(dx)(dx ′)Jµ(x)Dµν(x, x ′)δ J ν(x ′)

=
∫
(dx)(∂µT µ0)δt

= �wδt. (11.145)

The Green function we choose here plays an important role in the discussion,
as noted in section 6.1.4. There are two Green functions which can be used

https://doi.org/10.1017/9781009289887.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781009289887.014


314 11 Position and momentum

in eqn. (11.144) as the inverse of the Maxwell operator: the retarded Green
function and the Feynman Green function. The key expression here is

W = 1

2

∫
(dx)(dx ′)Jµ(x)Dµν(x, x ′)J ν(x ′). (11.146)

Since the integral is spacetime symmetrical, only the symmetrical part of the
Green function contributes to the integral. This immediately excludes the
retarded Green function

11.8.3 Hydrodynamic flow and entropy

Hydrodynamics is not usually regarded as field theory, but it is from hydro-
dynamics (fluid mechanics) that we derive notions of macroscopic transport.
All transport phenomena and thermodynamic properties are based on the idea
of flow. The equations of hydrodynamics are the Navier–Stokes equations.
These are non-linear vector equations with highly complex properties, and their
complete treatment is outside the scope of this book. In their linearized form,
however, they may be solved in the usual way of a classical field theory, using
the methods of this book. We study hydrodynamics here in order to forge a
link between field theory and thermodynamics. This is an important connection,
which is crying out to be a part of the treatment of the energy–momentum tensor.
We should be clear, however, that this is a phenomenological addition to the field
theory for statistically large systems.

A fluid is represented as a velocity field, Uµ(x), such that each point in a
system is moving with a specified velocity. The considerations in this section do
not depend on the specific nature of the field, only that the field is composed of
matter which is flowing with the velocity vector Uµ. Our discussion of flow will
be partly inspired by the treatment in ref. [134], and it applies even to relativistic
flows. As we shall see, the result differs from the non-relativistic case only by a
single term. A stationary field (fluid) with maximal spherical symmetry, in flat
spacetime, has an energy–momentum tensor given by

T00 = H
T0i = Ti0 = 0

Ti j = Pδi j . (11.147)

In order to make this system flow, we may perform a position-dependent boost
which places the observer in relative motion with the fluid. Following a boost,
the energy–momentum tensor has the form

T µν = Pgµν + (P +H)UµU ν/c2. (11.148)

The terms have the dimensions of energy density. P is the pressure exerted by
the fluid (clearly a thermodynamical average variable, which summarizes the
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microscopic thermal motion of the field). H is the internal energy density of the
field. Let us consider the generalized thermodynamic force Fµ = ∂νT µν . In a
closed thermodynamic system, we know that the energy–momentum tensor is
conserved:

Fµ = ∂νT µν = 0, (11.149)

and that the matter density N (x) in the field is conserved,

∂µNµ = 0, (11.150)

where Nµ = N (x)Uµ. If we think of the field as a plasma of particles, then
N (x) is the number of particles per unit volume, or number density. Due to its
special form, we may write

∂µNµ = (∂µN )Uµ + (∂µUµ), (11.151)

which provides a hint that the velocity boost acts like a local scaling or
conformal transformation on space

−c2dt2 + dxi dxi →−c2dt2 +'2(U )dxi dxi . (11.152)

The average rate of work done by the field is zero in an ideal, closed system:

dw

dt
=

∫
dσ UνFν

=
∫

dσ
[
Uµ∂µP − ∂µ ((P +H)Uµ)

]
= 0. (11.153)

Now, noting the identity

N∂µ

(
P +H

N

)
= ∂(P +H)−

(
∂µN

N

)
(P +H), (11.154)

we may write

dw

dt
=

∫
dσ Uµ

[
∂µP − N

(
P +H

N

)]
. (11.155)

Then, integrating by parts, assuming that Uµ is zero on the boundary of the
system, and using the identity in eqn. (11.151)

dw

dt
= −

∫
dσ NUµ

[
P∂µ

(
1

N

)
+ ∂µ

(H
N

)]

= −
∫

dσ NUµ
[
P∂µV + ∂µH

]
, (11.156)
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where V is the volume per particle and H is the internal energy. This expression
can be compared with

T dS = PdV + dH. (11.157)

Eqn. (11.156) may be interpreted as a rate of entropy production due to the
hydrodynamic flow of the field, i.e. it is the rate at which energy becomes
unavailable to do work, as a result of energy diffusing out over the system
uniformly or as a result of internal losses. We are presently assuming this to
be zero, in virtue of the conservation law, but this can change if the system
contains hidden degrees of freedom (sources/sinks), such as friction or viscosity,
which convert mechanical energy into heat in a non-useful form. Combining
eqn. (11.156) and eqn. (11.157) we have

−
∫

dσNUµ(∂µS)T =
∫

dσUν∂µT µν = 0. (11.158)

From this, it is useful to define a covariant entropy density vector Sµ, which
symbolizes the rate of loss of energy in the hydrodynamic flow. In order to
express the right hand side of eqn. (11.158) in terms of gradients of the field and
the temperature, we integrate by parts and define. Let

c(∂µSµ) = ∂µ
(

Uν
T

)
T µν, (11.159)

where

Sµ = N SUµ − UνT µν

T
. (11.160)

The zeroth component, cS0 = N S, is the entropy density, so we may interpret
Sµ as a spacetime entropy vector. Let us now assume that hidden losses can
cause the conservation law to be violated. Then we have the rate of entropy
generation given by

c(∂µSµ) =
[
− 1

T
(∂νUµ)+ 1

T 2
(∂νT )Uµ

]
T µν. (11.161)

We shall assume that the temperature is independent of time, since the simple
arguments used to address statistical issues at the classical level do not take into
account time-dependent changes properly: the fluctuation model introduced in
section 6.1.5 gives rise only to instantaneous changes or steady state flows. If
we return to the co-moving frame in which the fluid is stationary, we have

Ui = ∂µU 0 = ∂t T = 0, (11.162)
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and thus

(∂µSµ) = −
[
− 1

c2T
(∂tUi )+ 1

T 2
(∂i T )

]
T 0i

+ 1

2T
(∂iU j + ∂ jUi )T

i j . (11.163)

Note the single term which vanishes in the non-relativistic limit c →∞. This is
the only sign of the Lorentz covariance of our formulation. Also, we have used
the symmetry of T i j to write ∂iU j in an i j-symmetric form.

So far, these equations admit no losses: the conservation law cannot be
violated: energy cannot be dissipated. To introduce, phenomenologically,
an expression of dissipation, we need so-called constitutive relations which
represent average ‘frictional forces’ in the system. These relations provide a
linear relationship between gradients of the field and temperature and the rate of
entropy generation, or energy stirring. The following well known forms are used
in elementary thermodynamics to define the thermal conductivity κ in terms of
the heat flux Qi and the temperature gradient; similarly the viscosity η in terms
of the pressure P:

Qi = −κ dT

dxi

Pi j = −η∂Ui

∂x j
. (11.164)

The relations we choose to implement these must make the rate of entropy
generation non-negative if they are to make thermodynamical sense. It may
be checked that the following definitions fulfil this requirement in n spatial
dimensions:

T 0i = −κ (∂i T + T ∂tUi/c
2
)

T i j = −η
(
∂iU j + ∂ jUi − 2

n
(∂kU k)δi j

)
− ζ(∂kU k)δi j , (11.165)

where κ is the thermal conductivity, η is the shear viscosity and ζ is the bulk
viscosity. The first term in this last equation may be compared with eqn. (9.217).
This makes use of the definition of shear σi j for a vector field Vi as a conformal
deformation

�i j = ∂i Vj + ∂ j Vi − 2

n
(∂k V k)δi j . (11.166)

This is a measure of the non-invariance of the system to conformal, or shearing
transformations. Substituting these constitutive equations into eqn. (11.163),
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one obtains

c∂µSµ = κ

T 2
(∂i T + T ∂0Ui/c)(∂

i T + T ∂0U i/c)

= η

2T

(
∂iU j + ∂ jUi

) (
∂ iU j + ∂ jU i

)
=

(
ζ + 4

n
ζ

)
1

T
(∂kU k)2. (11.167)

11.8.4 Thermodynamical energy conservation

The thermodynamical energy equations supplement the conservation laws for
mechanical energy, but they are of a different character. These energy equations
are average properties for bulk materials. They summarize collective micro-
scopic conservation on a macroscopic scale.

∂µT µν = H + T dS + PdV + dF (11.168)

S = k ln' (11.169)

T dS = kT
d'

'
= 1

β

d'

'
. (11.170)

11.8.5 Kubo formulae for transport coefficients

In section 6.1.6, a general scheme for computing transport coefficients was
presented, but only the conductivity tensor was given as an example. Armed
with a knowledge of the energy–momentum tensor, entropy and the dissipative
processes leading to viscosity, we are now in a position to catalogue the most
important expressions for these transport coefficients. The construction of the
coefficients is based on the general scheme outlined in section 6.1.6. In order to
compute these coefficients, we make use of the assumption of linear dissipation,
which means that we consider only first-order gradients of thermodynamic
averages. This assumes a slow rate of dissipation, or a linear relation of the
form

〈variable〉 = k∇µ〈source〉, (11.171)

where ∇µ represents some spacetime gradient. This is the so-called constitutive
relation. The expectation values of the variables may be derived from the
generating functional W in eqn. (6.7) by adding source terms, or variables
conjugate to the ones we wish to find correlations between. The precise meaning
of the sources is not important in the linear theory we are using, since the source
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Table 11.4. Conductivity tensor.

Component Response Measure

σ00/c2 induced density charge compressibility
σ0i/c density current –
σi i induced current linear conductivity
σi j induced current transverse (Hall) conductivity

cancels out of the transport formulae completely (see eqn. (6.66)). Also, there is
a symmetry between the variables and their conjugates. If we add source terms

S → S +
∫
(dx)(J · A + JµAµ + Jµν Aµν), (11.172)

then the J ’s are sources for the A’s, but conversely the A’s are also sources for
the J ’s.

We begin therefore by looking at the constitutive relations for the transport
coefficients, in turn. The generalization of the conductivity derived in eqn. (6.75)
for the spacetime current is

Jµ = σµν∂t Aν. (11.173)

Although derivable directly from Ohm’s law, this expresses a general dissipative
relationship between any current Jµ and source Aµ, so we would expect this
construction to work equally well for any kind of current, be it charged or not.
From eqn. (11.171) and eqn. (6.66) we have the Fourier space expression for the
spacetime conductivity tensor in terms of the Feynman correlation functions

σµν(ω) = lim
k→0

i

h̄ω

∫
(dx)e−ik(x−x ′)〈Jµ(x)Jν(x ′)〉, (11.174)

or in terms of the retarded functions. In general the products with Feynman
boundary conditions are often easier to calculate, since there are theorems for
their factorization.

σµν(ω)

∣∣∣
β
≡ lim

k→0

(1− e−h̄βω)

h̄ω

∫
(dx)e−ik(x−x ′)〈Jµ(x)Jν(x ′)〉. (11.175)

The D.C. conductivity is given by the ω → 0 limit of this expression. The
components of this tensor are shown in table 11.4: The constitutive relations for
the viscosities are given in eqn. (11.165). From eqn. (6.67) we have

〈Tµν(x)〉 = δW

δ Jµν(x)
(11.176)
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and

δ〈Tµν(x)〉
δ J ρσ (x ′)

= i

h̄
〈Tµν(x)Tρσ (x ′)〉

= i

h̄
〈Tµρ(x)Tνσ (x ′)〉, (11.177)

where the last line is a consequence of the connectivity of Feynman averaging.
Note that this relation does not depend on our ability to express W [Jµν] in a
quadratic form analogous to eqn. (6.35). The product on the right hand side
can be evaluated by expressing Tµν in terms of the field. The symmetry of the
energy–momentum tensor implies that

Jµν = J νµ, (11.178)

and, if the source coupling is to have dimensions of action, Jµν must be
dimensionless. The only object one can construct is therefore

Jµν = gµν. (11.179)

Thus, the source term is the trace of the energy–momentum tensor, which
vanishes when the action is conformally invariant. To express eqn. (11.165)
in momentum space, we note that Fourier transform of the velocity is the phase
velocity of the waves,

U i (x) = γ dxi

dt
= γ

∫
dnk

(2π)n
eikµxµ

ω

ki

= γ
∫

dnk

(2π)n
eikµxµ

ωki

k2
. (11.180)

The derivative is given by

∂ jU
i = iγ

∫
dnk

(2π)n
eikµxµ

ωki k j

k2
. (11.181)

Thus, eqn. (11.165) becomes

〈Ti j 〉 = −
(
ζ + 4

n
η

)
iγωgi j − η iγω

ki k j

k2
. (11.182)

Comparing this with eqn. (11.176), we have, for the spatial components,

−
(
ζ + 4

n
η

)
gi j glm − ηki k j

k2
glm =

1

h̄ω

∫
(dx) e−ik(x−x ′)〈Til(x)T

i
m(x

′)〉. (11.183)
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Contracting both sides with gi j glm leaves(
ζ(ω)+ 4− n

n
η(ω)

)
=

lim
k→0

− 1

n2h̄ω

∫
(dx)e−ik(x−x ′)〈Ti j (x)T

i j (x ′)〉. (11.184)

The two viscosities cannot be separated in this relation, but η can be related to
the diffusion coefficient, which can be calculated separately. Assuming causal
(retarded relation between field and source), at finite temperature we may use
eqn. (6.74) to write(

ζ(ω)+ 4− n

n
η(ω)

) ∣∣∣
β
≡

lim
k→0

−(1− e−h̄ωβ)

n2h̄ω

∫
(dx)e−ik(x−x ′)〈Ti j (x)T

i j (x ′)〉. (11.185)

The temperature conduction coefficient κ is obtained from eqn. (11.165).
Following the same procedure as before, we obtain

i

h̄

∫
(dx)e−ikµ(x−x ′)µ〈T 0i (x)T 0 j (x ′)

= −g0 jκ(∂ i T + T ∂tU
i/c2)〉

= −ig0 jκ(ki T − T γω2ki/k2). (11.186)

Rearranging, we get

κ(ω) = lim
k→0

−g0 j ki (1− e−h̄ωβ)

h̄
(
k2 − γω2/c2

) ∫ (dx)e−ikµ(x−x ′)µ〈T 0i (x)T 0 j (x ′).

(11.187)

To summarize, we note a list of properties with their relevant fluctuations and
conjugate sources. See table 11.5.

11.9 Example: Radiation pressure

The fact that the radiation field carries momentum means that light striking a
material surface will exert a pressure equal to the change in momentum of the
light there. For a perfectly absorbative surface, the pressure will simply be equal
to the momentum striking the surface. At a perfectly reflective (elastic) surface,
the change in momentum is twice the momentum of the incident radiation in
that the light undergoes a complete change of direction. Standard expressions
for the radiation pressure are for reflective surfaces.
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Table 11.5. Fluctuation generators.

Property Fluctuation Source

Electromagnetic radiation Aµ Jµ

Electric current Ji Ai

Compressibility N0 A0

Temperature current T T 0i (heat Q)

The pressure (kinetic energy density) in a relativistic field is thus

Pi = −2T0i = pi c/σ (11.188)

with the factor of two coming from a total reversal in momentum, and σ being
the volume of the uniform system outside the surface. Using the arguments of
kinetic theory, where the kinetic energy density of a gas with average velocity
〈v〉 is isotropic in all directions,

1

2
m〈v2〉 = 1

2
m(v2

x + v2
y + v2

z ) ∼
3

2
mv2

x , (11.189)

we write

Pi ∼ 1

3
〈P〉. (11.190)

Thus, the pressure of diffuse radiation on a planar reflective surface is

Pi = −2

3
T0i . (11.191)

Using eqn. (7.88), we may evaluate this, giving:

Pi = −2

3

(E×H)i
c

= 2

3
ε0 E2. (11.192)

Exercises

Although this is not primarily a study book, it is helpful to phrase a few
outstanding points as problems, to be demonstrated by the reader.

(1) In the action in eqn. (11.61), add a kinetic term for the potential V (x)

�S =
∫
(dx)

1

2
(∂µV )(∂µV ). (11.193)
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Vary the total action with respect to φ(x) to obtain the equation of motion
for the field. Then vary the action with respect to V (x) and show that this
leads to the equations

− φ + (m2 + V )φ = 0

− V + 1

2
φ2 = 0.

Next show that the addition of this extra field leads to an extra term in the
energy–momentum tensor, so that

θµν = 1

2
(∂µφ)(∂νφ)+ 1

2
(∂µV )(∂νV )− 1

2
(m2 + V )φ2. (11.194)

Using the two equations of motion derived above, show that

∂µθµν = 0 (11.195)

so that energy conservation is now restored. This problem demonstrates
that energy conservation can always be restored if one considers all of the
dynamical pieces in a physical system. It also serves as a reminder that
fixed potentials such as V (x) are only a convenient approximation to real
physics.

(2) Using the explicit form of a Lorentz boost transformation, show that a
fluid velocity field has an energy–momentum tensor of the form,

T µν = Pgµν + (P +H)UµU ν/c2. (11.196)

Start with the following expressions for a spherically symmetrical fluid at
rest:

T00 = H
T0i = Ti0 = 0

Ti j = Pδi j . (11.197)

(3) Consider a matter current Nµ = (N , Nv) = N (x)Uµ(x). Show that the
conservation equation ∂µNµ = 0 may be written

∂µNµ = [∂t + £v] , (11.198)

where £D = U i∂i + (∂iU i ). This is called the Lie derivative. Compare
this with the derivatives found in section 10.3 and the discussion found in
section 9.6. See also ref. [111] for more details of this interpretation.
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(4) By writing the orbital angular momentum operator in the form Li =
εi jk x j pk and the quantum mechanical commutation relations [xi , p j ] =
ih̄δi j in the form εi jk x j pk = ih̄, show that

L iεilm = [xl, pm] = ih̄ δlm, (11.199)

and thence

εilm Li Ll = ih̄Lm . (11.200)

Hence show that the angular momentum components satisfy the algebra
relation

[Li , L j ] = ih̄ εi jk Lk . (11.201)

Show that this is the Lie algebra for so(3) and determine the dimension-
less generators T a and structure constants fabc in terms of Li and h̄.
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