ON CARTAN PSEUDO GROUPS

A. M. RODRIGUES

Let M be a domain in an Euclidean space and let Γ be a pseudo group of transformations^{*} of M. We say that Γ is a Cartan pseudo group [1, 2] if the following conditions are satisfied:

1) There exists a domain M' and a projection $\rho : M \to M'$, such that the orbits of Γ are the fibers of the projection ρ . We assume moreover that there is a system of coordinates (x) of M' and a system of coordinates (x, y) of M such that the fibers of ρ are defined by (x) = constants,

2) There are forms ω^i , $\tilde{\omega}^{\lambda}$, $i = 1 \cdots m$, $\lambda = 1 \cdots n$, defined in D such that a) $(\omega^i, \tilde{\omega}^{\lambda})$ is a basis of the space of linear forms at every point of M,

where $c_{jk}^{i}, a_{j\lambda}^{i}$ are functions on M which depend on (x) only,

c) $\omega^r = dx^r$ for $1 \le r \le \text{dimension } M'$,

d) The matrices $a_{\lambda} = \|a_{j\lambda}^i\|$ are linearly independent at every point of M,

e) Let π_1 and π_2 be respectively the projections of $M \times M$ into the first and second factors. The closed differential system Σ on $M \times M$, with independent variables $\mathbf{x} \circ \pi_1$, $\mathbf{y} \circ \pi_1$ generated by

$$\begin{aligned} x^r \circ \pi_1 - x^r \circ \pi_2 &= 0, \ 1 \leq r \leq \text{dimension } M', \\ \pi_1^* \omega^i - \pi_2^* \omega^i &= 0 \qquad 1 \leq i \leq m \end{aligned}$$

is in involution at every integral point,

3) A local transformation f of M is in Γ if and only if f preserves the forms ω^i , i.e. $f^*\omega^i = \omega^i$, i = 1, ..., m.

In this note we prove that every differential form on M which is invariant under all transformations of a Cartan pseudo group Γ is a linear combination of the forms ω^i the coefficient being functions of x only.

Received on 1 May, 1962.

^{*} All maps and differential forms considered in this note are assumed to be analytic.

Put $\sigma^i = \pi_1^* \omega^i - \pi_2^* \omega^i$, $\tau^{\lambda} = \pi_1^* \widetilde{\omega}^{\lambda} - \pi_2^* \widetilde{\omega}^{\lambda}$. The set $(\pi_1^* \omega^i, \pi_1^* \widetilde{\omega}^{\lambda}, \sigma^i, \tau^{\lambda})$ is a basis of differential forms on every point of $M \times M$. Let *E* be a contact element of $M \times M$ at the integral point $(u_1, u_2) \in M \times M$ such that the forms $\pi_1^* \omega^i$ and $\pi_1^* \widetilde{\omega}^{\lambda}$ are linearly independent on *E* and denote by σ^i / E the restriction of σ^i to *E*. Put $\mathbf{x} = \rho(u_1) = \rho(u_2)$ and write

$$\sigma'/E = p_j^i(\pi_1^*\omega^j)/E + p_\lambda^i(\pi_1^*\widetilde{\omega}^\lambda)/E$$

$$\tau^\lambda/E = q_\lambda^j(\pi_1^*\omega^j)/E + q_\mu^\lambda(\pi_1^*\widetilde{\omega}^\mu)/E.$$

E is an integral element of Σ if and only if

(2)
$$p_j^i = p_\lambda^i = q_\mu^\lambda = 0$$
$$a_{j\lambda}^i(x)q_k^\lambda - a_{k\lambda}^i(x)q_j^\lambda = 0$$

for every choice of the indices i, j, k.

Let V and V' be vector spaces of dimensions v and v' over the real field and let L be a vector space of linear maps of V into V' of dimension n. Take basis of V and V' and let $a_{\lambda} = ||a_{j\lambda}^{i}||$, $i = 1, \ldots, v'$, $j = 1, \ldots, v$, $\lambda = 1, \ldots, n$ be a basis of L. The space $\mathscr{D}(L)$ of all linear maps $b : V \to L$, $b = ||b_{j}^{\lambda}||$ such that

$$a_{j\lambda}^i b_k^\lambda - a_{k\lambda}^i b_j^\lambda = 0$$

for every choice of i, j, k, is called the derived space of L.

Let s_1 be the maximum rank of the matrix $A_1 = ||a_{j\lambda}^i t_1^j||$ when the vector $(t_1^1, t_1^2, \ldots, t_1^p)$ varies in \mathbb{R}^p . Put $A_2 = ||a_{j\lambda}^i t_2^j||$ and let s_2 be the maximum rank of the matrix $||A_1||_{A_2}||$ when the vectors $(t_1^1, \ldots, t_1^p), (t_2^1 \cdots t_2^p)$, vary independently in \mathbb{R}^p . Define an integer s_i in a similar way for each $i, 1 \le i \le v-1$. The integers s_i are called the characters of L. If δ is the dimension of $\mathscr{D}(L)$ it can be proved [3, page 4] that

(3)
$$\delta \leq \boldsymbol{n} \cdot \boldsymbol{v} - (s_1 + \cdots + s_{v-1}).$$

The space L is called involutive when the equality holds in (3).

Let L(x) be the space of endomorphisms of \mathbb{R}^m generated by the matrices $a_{\lambda}(x) = ||a_{j\lambda}^i(x)||$ and denote by $s_1(x), \ldots, s_{m-1}(x), \delta(x)$ the characters and the dimension of the derived space of L(x); Σ is in involutions at every integral point if and only if $\delta(x)$ is constant and L(x) is involutive for every x. When Σ is involutive the characters $s_i(x)$ are independent of x.

Let now f be a transformation of Γ . Applying f^* to equation (1) we have

$$d\omega^{i} = \frac{1}{2} c^{i}_{jk} \omega^{j} \wedge \omega^{k} + a^{i}_{jk} \omega^{j} \wedge f^{*} \widetilde{\omega}^{\lambda}$$

hence,

$$a_{j_{\lambda}}^{i}(f^{*}\widetilde{\omega}^{\lambda}-\widetilde{\omega}^{\lambda})\wedge\omega^{j}=0$$

and the linear form $a_{j\lambda}^i(f^*\tilde{\omega}^{\lambda}-\tilde{\omega}^{\lambda})$ is a linear combination of the form ω^j . Since the matrices a_{λ} are linearly independent we have

(4)
$$f^*\widetilde{\omega}^{\lambda} = \widetilde{\omega}^{\lambda} + h_j^{\lambda}\omega^j.$$

Substituting (4) in (1) we have

$$a_{j\lambda}^i h_k^\lambda - a_{j\lambda}^i h_j^\lambda = 0.$$

Conversely let u_1 , u_2 be two points of M such that $\rho(u_1) = \rho(u_2) = x$ and let h_j^{λ} be an element of the derived space of L(x). Let E be the integral contact element of Σ at the point $(u_1, u_2) \in M \times M$ whose coordinates are $p_j^i = p_{\lambda}^i = q_{\mu}^{\lambda} = 0$, $q_j^{\lambda} = h_j^{\lambda}$. Let f be the transformation of M defined by an integral manifold of Σ whose tangent space at the point (u_1, u_2) is E. Then $f(u_1) = u_2$ and, at the point u_1

$$f^*\widetilde{\omega}^{\lambda} = \widetilde{\omega}^{\lambda} + h_i^{\lambda}\omega^i$$

for $1 \leq \lambda \leq n$.

Assume now that the differential form ω is invariant under Γ and write

$$\omega = \alpha_i \omega^i + \beta_\lambda \widetilde{\omega}^\lambda.$$

Given $u_1, u_2 \in M$ with $\rho(u_1) = \rho(u_2) = x$ there exists $f \in \Gamma$ such that $f(u_1) = u_2$ and, at the point $u_1, f^*\tilde{\omega}^{\lambda} = \tilde{\omega}^{\lambda}$. It follows that $\alpha_i, \beta_{\lambda}$ depend only on x. Assume that there exists x such that not all coefficients $\beta_{\lambda}(x)$ are zero. Then we can take ω to be one of the forms $\tilde{\omega}^{\lambda}$. Hence, there exists a system of forms $(\omega^i, \tilde{\omega}^{\lambda})$ which satisfy conditions 2) and 3) and such that $\tilde{\omega}^n$ is an invariant form of Γ . Then, if h_i^{λ} is an element of $\mathscr{D}(L(x))$ we have necessarily $h_i^n = 0$ for every *i*. Let L_0 be the subspace L(x) generated by $a_1(x), \ldots, a_{n-1}(x)$. Any element of $\mathscr{D}(L(x))$ has values in L_0 hence, the dimension of $\mathscr{D}(L_0)$ is $\delta(x)$. Let $s'_1 \cdots s'_{m-1}$ be the characters of (L_0) . By (3)

$$\delta(\mathbf{x}) \leq m(n-1) - [s_1' + \cdots + s_{m-1}'].$$

By the definition of the characters $s_i \le s'_i + 1$. Therefore

A. M. RODRIGUĖS

$$\delta(x) < m \cdot n - [s_1 + \cdots + s_{m-1}]$$

and L(x) is not involutive. Hence all coefficients β are zero and ω is a linear combination of the ω^i with coefficients depending on x only.

The following example shows that the result is not true if we drop the condition that Σ is in involution even if the coefficients $a_{j\lambda}^i$, c_{jk}^i are constant and Γ is transitive. Let Γ be the pseudo group operating on \mathbb{R}^n obtained by localization of the group of rigid motions. Γ is a Lie pseudo group of order 1. Let \mathscr{F} be the space of orthonormal frames of \mathbb{R}^n and denote by $\tilde{\Gamma}$ the prolongation of Γ to \mathscr{F} . In \mathscr{F} we have differential forms ω^i , $\omega_j^i(\omega_j^i + \omega_i^j = 0)$, canonically defined which satisfy equations (1) with constant coefficients. A transformation f of \mathscr{F} is in $\tilde{\Gamma}$ if and only if f preserves the forms ω^i . On the other hand all the forms ω^i , ω_j^i are invariant by the elements of $\tilde{\Gamma}$.

References

- [1] E. Cartan, Sur la structure des groupes infinis de transformations; Ann. Ec. Normale, t. 21, 1904.
- [2] M. Kuranishi, On the local theory of continuous infinite pseudo groups II. Nagoya Mathematical Journal, 1961.
- [3] Y. Matsushima, Sur les algèbres de Lie linèaires semi-involutives, Colloque de Topologie de Strasbourg, 1954.

Princeton University