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Abstract. If (L;/) is an Ockham algebra with dual space (X;g), then it is known
that the semigroup of Ockham endomorphisms on L is (anti-)isomorphic to the
semigroup A{X\g) of continuous order-preserving mappings on X that commute with g.
Here we consider the case where L is a finite boolean lattice and / is a bijection. We begin
by determining the size of A(X\g), and obtain necessary and sufficient conditions for this
semigroup to be regular or orthodox. We also describe its structure when it is a group, or
an inverse semigroup that is not a group. In the former case it is a cartesian product of
cyclic groups and in the latter a cartesian product of cyclic groups each with a zero
adjoined.

An Ockham algebra (L\f) is a bounded distributive lattice L on which there is
defined a dual endomorphism /. For the basic properties of Ockham algebras we refer the
reader to [1]. The most obvious example of an Ockham algebra is, of course, a boolean
algebra (B;'). In general, a boolean lattice can be made into an Ockham algebra in many
different ways. Throughout what follows we shall assume that the Ockham algebra (L;/)
is of finite boolean type, in the sense that L is a finite boolean lattice and / is a dual
automorphism. Then (L;/) necessarily belongs to the Berman class Kp0 for some p. If
L = 2* then, by [1, Chapter 4], the dual space (X\g) is such that X is discretely ordered
with \X\ = k, and g is a permutation on X such that g2p = id*. We shall denote by
X,,... , Xm the orbits of g. For each / we choose and fix a representative x, e Xt. Defining
c,- = \Xj\, for each i, we therefore have

^ = fe,gfe),g2(jC/),-..,gc'"I(JC/)}-
Consider the set A(X;g) consisting of those mappings •d:X-* X that commute with

g. By duality [2] we know that (A(X\g), °) is a semigroup that is (anti-)isomorphic to the
semigroup End((L;/), °) of Ockham endomorphisms on L. By considering A(X\g) we
can therefore obtain properties of End(L;/). Our principal objective is to determine
precisely when this semigroup is regular. For this purpose, we begin by observing the
following results.

THEOREM 1. / / # e A(X\ g), then for every Xt there exists an Xt such that d(Xj) = Xj.

Proof. Given xh let / be such that •d(xi) e Xj. Observe first that every y e •diXi) is of
the form y = •d{gr'(xi)), where 0 « r, < c,. Since d, g commute, we have y = gr'(#(*,)) e Xj.
It follows that diXj) g Xj. On the other hand, since #(*,) E XJ we have #(*,) = gs'(Xj),
where 0 *£ s, < c,-. It follows that, since g2p = id -̂,

whence Xj g •d(Xi). Combining these observations, we obtain ^(X,) = Xj. O

THEOREM 2. / / bu..., bm e X, with bt e X,. for each i, then the following statements
are equivalent:
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(1) there exists a (necessarily unique) d e A(X;g) such that d(xt) = bj for each i;
(2) cti | c, for each i.

Proof. (1)=>(2). From gc'(;c,) = ;t, we obtain gCl(#(*,-)) = #(*,•)• If (1) holds, then
gc'(bj) = £>,. Since bj e X,t we deduce that ch | c,.

(2)=>(1). Every y e X belongs to a unique Xt and so is of the form y = gr(xt) with
0 « r < Cj. We can therefore define mapping d: X -»A" by

Clearly, #(*,) = #(g°(*,)) = g>,) = b.
To see that d E A(A";g), we shall make use of the observation that

b,. (A)

In fact, by (2) we can write c, = d,c, whence, using the fact that gc'{bj) = bh we have

There are two cases to consider. Suppose that y = gr(Xj) is an arbitrary element of X.
(a) If r<q, - 1, then

(b) If r = c , - 1 , then

= gcibd = 6, [by (/I)];

In each case we have gd(y) = &g(y) and so •d e
That # is unique follows from the fact that if <p e A(X;g) is also such that <p(x,)

then, since the JC, form a set of representatives of the orbits of g, we have <p = #. O

COROLLARY. For eac/i ;, de/zne 7, = {/; c; | c,}.

1 = 1

m

Proof. Let 5,-= U Xj. Then we can define a mapping i//:A(Ar;g)-» x B, by the
>ey, 1 = 1

prescription ^(•d) = ( ^ ( ^ 0 , . . . , #(xm)). It follows immediately from Theorem 2 that t/> is
a bijection. Consequently,

[ 2 j ) O
1=1 1=1 v^v, '

In order to investigate the regularity of A(X\ g) we require the following concepts.

DEFINITION. With g, m, c, as above, consider the set Pg = {c,; i = 1 , . . . , m) ordered by
divisibility. The length of (Pg; |) will be called the dimension of g and denoted by dimg.

DEFINITION. For /', /, k e { 1 , . . . , m) we shall say that (/,;, k) is a pathological triple
associated with g if i, j , k are distinct with ck - cy | c, and c; # c,.
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THEOREM 3. The semigroup A(X; g) is regular if and only if dim g < 2 and there is no
pathological triple associated with g.

Proof. ^>. Suppose, by way of obtaining a contradiction, that dim g s* 2 or that
there is a pathological triple associated with g. Then there exist distinct i,j, k such that
ck \Cj\ c, and Cj<ct. By Theorem 2, we can define 1? e A(X;g) by setting

= xj, &(xt)=x,(t${i,j,k}).

Then, by Theorem 1, we have

d(Xk) = #(A}) = Xk, V{Xi) = Xj, #(X,) = X,(t * {i,j, k}).

Since, by hypothesis, A(X\g) is regular, there exists (p<=A(X\g) such that dtpd = d.
Applying each side to *, we obtain •d<p(xj) = Xj. It follows from this that (p(xj) e Xt.
Theorem 2 now gives the contradiction c, | c,-.

<£:. Conversely, suppose that dim g < 2 and there is no pathological triple associated
with g. Observe first that if -d e A(X\g) then, for every i,

\&(Xl)\^\Xl\^^Xl)=-9(Xi). (1)

In fact, given d e A(X\g) let / be such that |#(A",)| ¥=• \X,\. By Theorem 1 there exist ;, k
such that •d(Xi) = A} and ^(Xj) = #(A}) = Xk\ also by Theorem 2, we have c* |c,| c,-. Note
that /T^/ since, by hypothesis, Cj¥"Ct and consequently, since dimg<2, we have
c* = Cj<Cj. It follows that k ¥^i. In fact, we have k =/ , for otherwise (i,j,k) would be a
pathological triple, contradicting the hypothesis. Consequently, &2(Xj) = d(Xj) = Xk = Xj
and therefore #2(.Y,) = &(X,).

Now let •d e A(X\g) and consider the set

Let n:A—»{1,... ,/w} be given by

( ) i{ i ; J:; e

Since x; e ^(X^(j)) it follows from Theorem 1 that •d(XKy)) = A'y. Consequently, for every
;' E A, there is a unique Sj e {0,... , c, - 1} such that

Define

if Sj = 0;
; - Sj, otherwise.

Then from the above we have

Consider next the sets
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Note that for every ;' e A2 there is a unique Vj e {0,... , c, - 1} such that

V(Xi) = g\xi). (3)

In fact, we have \d(XnU))\ = \Xj\ = cj^cnU) = \X^j)\ and so, by (1), we deduce that
$2{Xn(j)) = d{Xn(j))\ that is #(A}) = Xh whence (3) follows.

Using Theorem 2 we can now define <p e A(X;g) by setting

g'ix*u)), ify'e^i;
^'-'Kxj), if jeA2.

We show as follows that #<p# = #, whence A(A'; g) is regular. For this purpose, observe
that tp satisfies the property

(VjeA) •&<p(xJ)=xl. (4)

In fact, if; e Ax then, by (2), we have

also if; e A2 then, by (3),

= gc'... gc'(Xj) = Xj.

Now let xeX with d(x) e Xj. Then d(x) = gr(Xj) for some r with 0 « r « c , - - l ,
whence g2p~r(d(x)) = -dig^'^x)) = xf. It follows that;' e A Applying •dcp, we deduce by
(4) that

= #<p(Xj) = Xj = g2p-r-9(x),

whence, g being a bijection, •dipdix) = d(x) and so •#<p-i? = -9, as required. O

EXAMPLE 1. By Theorem 3, the smallest X such that A(X;g) is not regular arises
when m = 3 and

Hence |A] = 4 with c, = 1, c2 = 1, and c3 = 2. By the Corollary of Theorem 2,
2. 2. 4 = 16.

We now proceed to consider the question of when, as a regular semigroup, A(Ar; g)
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is orthodox, inverse, or a group. We begin with the orthodox case, and for this purpose
we shall use the following results.

THEOREM 4. / / c, = c,- > 1 for some i, j with i 9^j, then A(Ar; g) is not orthodox.

Proof. Without loss of generality, we may suppose that C] = c2> 1. Using Theorem 2,
we can define a , )3e A(X;g) as follows:

<*(*i) = x2, a(Xi) = Xi(i s= 2);

P(x1)=xu P(x2) = g(x1), p(xl) = xi(i*3).

Clearly, a and p are idempotent, but a/3 is not. To see this, observe that

aP(x2) = ag(xi) = gar(*i) = g(x2);

a/3a/3(x2) = a/3g(*2) = gaf3(x2) = g\x2).

Since c2> 1 we have g2(*2) ^ g f e ) and therefore a/3 is not idempotent. O

THEOREM 5. / / \X\ > 2 and c, = c; = l for some i,j with i^j, then A(X\g) is not
orthodox.

Proof. Since \X\ > 2 there are at least three distinct orbits. Without loss of generality
we may assume that c, = c2 = 1. Using Theorem 2, we can define a, /3 e A(X;g) as
follows:

a(xl) = xu a(x2) = x2, 01(̂ 3) = ̂ ,, a(X,) =xh (i &4);

P(xl) = x2, P(x,) = xh(i&2).

Clearly, a and /3 are idempotent. However

aP(x?) = a(x3) = xu

= a(x2) = x2,

and so a/3 is not idempotent. O

If Ms denotes the set of minimal elements of the ordered set (Pg, |), let

\ = {i;CisMg}.

For each •d e A(A"; g) define also

A, = {/;

THEOREM 6. // the c, ore distinct, then

Proo/ Let / e Ag and i? e A(X;g). By Theorem 1, we have &(Xi) = A} for some ;';
also, by Theorem 2, we have c; | c,. Since c, is minimal in Pg, it follows that cy = c,, whence
; = i. Thus •d(Ar

/) = Xt and consequently 1 G /,.>. Hence we see that As c p
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To obtain the reverse inclusion, let Ag denote the complement of Ag in { 1 , . . . , m) and
observe from the definitions that

There therefore exists a mapping TT:AS—> Ag with the property that cn(i) | c,. Consequently,
by Theorem 2, we can define <p e A(X;g) by setting

= Jx,-, if / E Ag;
\xx(i), if / e Ag.

It suffices to prove that 7V c Ag. Suppose, by way of obtaining a contradiction, that i E 1V

and i £ Ag. Then since / e 7V we have <p(A",) = A",; also, since i ^ Ag, we have <p(xl) = jcff(/)

whence, by Theorem 1, <p(Xt) = Xn{i). We conclude that A", = A" ,̂,, whence j = n(i), which
is absurd since by hypothesis ;' ̂  Â  and n(i) s Ag. O

THEOREM 7. Suppose that dimg<2 and the Cj are distinct. If •9(Xi)^Xh then
,) = Xj for some j e Ag.

Proof. By Theorem 1, there exists; such that #(A",) = Xt with clearly, / ¥= i. Also, by
Theorem 2, we have c; | c, with cy < c,. The hypothesis that dim g < 2 now gives cy E A/g
and therefore / e Ag. O

THEOREM 8. / / dim g < 2 and the c, are distinct, then

/ * n / , = /*, (Vtf ,?eA(*;g))

Proof. If / E /,, fl 7̂ ,, then i?(p(A',) = T?(A",) = A", gives t E /,,V. Conversely, if / e /,,v,
then we have

WXi) = ^-- (B)

Suppose, by way of obtaining a contradiction that i $ 1^. Then (̂A",) ¥=• Xt and so, by
Theorem 7, there exists j E Ag such that <p(Xj) = Xt. By Theorem 6, we have / E /,, and so
d(Xj) = Xj. Consequently, •d(p(Xi) = #P0) = Xh which contradicts (B) since / ¥^j. Hence
(' E 7V and so (p(Xt) = A",. It now follows from (B) that ^(A1,) = X, and so / E 7,̂ . Hence
i e /fl D /,. O

In order to determine when A(A";g) is orthodox we must consider separately the
cases |A"|s£2 and \X\>2. In the former case, A(A";g) is always orthodox. In fact, A(A";g)
reduces to the trivial group when lA'l = 1, and when |A"| = 2 there are two possibilities.

(1) g has a single orbit (that is, m = 1).
In this case A(A"; g) is isomorphic to the group Z2.

(2) g has two orbits {that is, m = 2).
In this case, g is the identity map on X and A(A";g) is the full transformation semigroup
on X, and for |A"| = 2 this is orthodox.

The situation when lA'l > 2 is as follows.

THEOREM 9. If\X\ > 2, then the semigroup A(A"; g) is orthodox if and only if dim g<2
and the c, are distinct.

Proof ^>. Suppose that A(A";g) is orthodox. Then, by Theorem 3, dimg<2 and,
by Theorems 4 and 5, the c, are distinct.
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<^. Conversely, suppose that the conditions hold. Since the c, are distinct, there can
be no pathological triple associated with g and therefore, by Theorem 3, A(X;g) is
regular. To see that it is orthodox, let -d, <p be idempotents of A(X\g). Then we have

(C)

To see this, observe that
(1) if i e /,,„, then •dip(Xi) = X, and so, by Theorem 8, #(*,-) = X, and <p(A",) = Xh

whence •dcp(Xi) = V(X,) £ <p(X)\
(2) If i g /,,„,, then by Theorem 7 there exists ; e Ag such that #<p(^.) = A}. But, by

Theorem 6, <p(A}) = Xj. Hence we have #</>(*,-) = <p(A}) = <p(X).
Thus, in all cases, #(?(*,) c ^(A') and therefore #<pW £ «p(Ar).
Using (C) we now have, for every x e A\ d(p(x) e (p(A') and so there exists t e X

such that T?<P(JC) = <p(t). Consequently,

= <p2(t) =

and so (pd<p = -d(p. It follows from this that •dcp is idempotent, whence A(X;g) is
orthodox. O

EXAMPLE 2. The smallest X such that A(A"; g) is regular but not orthodox arises when
m ~ 3 and Ci = c2 = c3 = 1. In this case we have |A"| = 3 and |A(A"; g)| = 3 . 3 . 3 = 27.

We now proceed to consider the question of when A(X;g) is a group and, more
generally, an inverse semigroup. As we shall see, in each of these cases it is commutative.
For this purpose we shall use the following results.

THEOREM 10. / / ct = Cj, for some i,j with i^j, then A(X\g) contains a pair of
idempotents that do not commute.

Proof. Suppose, without loss of generality, that cx = c2. Using Theorem 2 we can
define a, /3 E A(X;g) as follows:

a(xi) = a(x2) = xu a(x,) = x, (/' 5= 3);

Clearly, a and /3 are idempotent. Moreover, a(l(xl) = Xi and (5a(x1)=x2, so that
aj3^^a. O

THEOREM 11. / / l#c,-|c;-, for some i,j with i^j, then A(X;g) contains a pair of
idempotents that do not commute.

Proof. Suppose, without loss of generality, that 1 T^C, | C2. Using Theorem 2 we can
define a, p e A(X;g) as follows;

a(xO = a(x2) = xu a(x/) = x, (i s= 3);

Clearly, a and /3 are idempotent. Moreover, ap(x2) = g(*i) and Pa(x2) = xj. Since c,
it follows that a/3 ^ j8a. O

THEOREM 12. The following statements are equivalent:
(1) A(X\g) is a group;
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(2) dim g = 0 and the c, are distinct.
m

Moreover, as a group, A(X;g) — X ZCj.

Proof. (1)=£>(2). Suppose that A(X;g) is a group. If m = 1, then X = XX and so
dimg = 0. Also, by Theorem 2, every de(X;g) is given by •dixi) = gr(*i), where
0 ^ r < \X\. Since g has a single orbit it follows that d = gr and therefore A(X; g) = Z|A-,.

If now m > 1 then, by Theorem 10, the c, are distinct. Moreover, c, 7̂  1 for every /. To
see this, suppose that (say) c, = 1. Then, applying Theorem 2 with b^ = b2

 = *, and £>, = x,
for / 5= 3, we obtain # e A(^;g) such that

flOd) = fl(jc2) = *, , #(*,) = JC, (i ̂  3).

This is not possible since by hypothesis A(X\ g) is a group and & is not a bijection.
Suppose now, by way of obtaining a contradiction, that dim g & 1. Then there exist c,,

Cj with c, I c; and Cj<Cj. Since c, ̂  1 we can apply Theorem 11 to produce a pair of
non-commuting idempotents in Af^Vjg). This contradicts the hypothesis that A(X;g) is a
group, and so we conclude that dim g = 0.

(2)=^(1). Conversely, suppose that dimg = 0 and that the c, are distinct. Then for
every 1? e A(T;g) we have, for all i,

#(Xi) = X, (D)

In fact, by Theorem 1, for each / there exists 7 such that •&(Xi) = Xj. If j¥=i, then by
Theorem 2 we have c, | c,, whence the contradiction dimg & 1. Thus we must have ; = i
and so #(*,) = X,.

It follows from (D) that -9 is surjective, and therefore bijective, since X is finite.
Hence A(,Y;g) is a group.

As for the final statement, observe by (D) that every -d e A(X;g) induces a mapping
•di:Xi-*Xi given by #,(*) = -d(x). Let g, be the bijection induced on Xt by g and consider
the mapping

1=1

given by the prescription ip(-d) = ( # , , . . . , #m).
To see that i/> is surjective observe that if we choose q>u..., (pm with <p, e A(Ar,; g,) for

each /, then we can define <peA(A';g) by setting <p(x) = <Pi(x) when x e Xh thereby
obtaining i/>(<p) = (<p,,..., cpm). That if is injective is immediate from the fact that if #,<p
induce the same mapping on the orbits then they are equal. Thus ip is a bijection. Since
clearly (#<p), = #,<p,, it follows that ip is an isomorphism.

Finally, since in the Ockham space (A',; g,) the bijection g, has only one orbit we have,
m

from the above, A(Xt; g,) - Zm = Zc, We conclude that A(X; g) = X Zc, O
1=1

COROLLARY 1. If A(X;g) is a group, then

m

f)i=ric,- o
1=1
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COROLLARY 2. For every integer /: 3=2 there exists an Ockham algebra (L;f) of finite
boolean type such that (L;f) e P*>0 and End(L;/) is a group isomorphic to Zk.

Proof. C o n s i d e r t h e p r i m e f a c t o r i s a t i o n k = X\ /?" ' . F o r i = l,...,m le t Xt•.=
1=1

{JC/.I, . . . , Jc,,c,} be a set of cardinality c, = pf and choose the Xt to be pairwise disjoint. Let

X = \JXt and define g :X-* X by
/=i

g(Xi,j)=xiJ+1 (mode,).

Then clearly g is a permutation on X with orbits Xu... ,Xm. Now since k = lem {c,; / =
1,. . . ,m] we have g* = id* and therefore the Ockham space (X;g) is such that its dual
algebra (L;f) is of finite boolean type and belongs to the class P*i0. Since clearly
dim g = 0 and the c, are distinct, it follows from Theorem 12 that A(A"; g) is a group, of
the same cardinality as the group of Ockham automorphisms on L. For each i we have

I = {j; cj I c,} = {;;/>;<| pf '} = {/}.

Consequently, by the Corollary of Theorem 2,

i=\jsJ{ 1 = 1 /=1

and, by Theorem 12, A(*; g) = Zt. O

THEOREM 13. The following statements are equivalent:
(1) A ^ ; g) is an inverse semigroup that is not a group;
(2) dim g = 1, the c, are distinct, and g has a {necessarily unique) fixed point.

Proof. (1) => (2). If (1) holds then, by Theorem 3, dim g < 2 and, by Theorem 10, the
c, are distinct. Since A{X; g) is not a group, it follows by Theorem 12 that dim g = 1.

To prove that g has a fixed point, we show that at least one c, = 1 (whence only one
c, = 1). Suppose, to the contrary, that every c,^ 1. Since dimg = 1 there exist c,, c, with
ct\Cj. It follows from Theorem 11 that A{X;g) is not an inverse semigroup, a
contradiction. Hence g has a fixed point.

(2)^>(1). If (2) holds then, by Theorem 3, A{X;g) is regular and, by Theorem 12, it
is not a group. Let x^ be the fixed point of g. Then for every d e A{X\ g) we have

#(X,) = XI or £(*,) = * , = {*,}. (£)

In fact, by Theorem 1 we have d{Xj) = Xj for some ;'. Suppose that ; ̂  i. Then, by
Theorem 2, c, | c,. We must then have c; = 1 since otherwise dim g z* 2, a contradiction.
Hence A} = Xt and consequently we have that i?(A',) = X,.

We now use (£) to prove that A{X;g) is inverse. For this purpose, let a, fi E
A(Ar;g). We shall show that a, /3 commute, and for this it suffices to prove that a/3 and
/3a coincide on every Xt.

Since xx is the only fixed point of g, it is clear that a/3 and /3a agree on Xj = {xt}. To
show that they agree on Xt with / # 1, we must consider several cases.

(a)
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In this case /3(JC,) = gr(*,), where 0=£r<c, and aP(Xi) = gr(a(xj)). Two sub-cases,
according to (£), arise:

(a,) «(*,) = *,.
Here a(x,) = gs(j:,) where 0 =£ .s < c,, and we have

Pa(x,) = Ptgs(Xi)) = g*(/3(*,)) = gr+5(Xi).

(a2) *(*,) =
Here we have

(b)
In this case similar calculations to the above reveal that aj3(jr,) = j3a(x,).

It follows from the above that a/3 = /3a. Hence A{X; g) is a commutative regular
semigroup and therefore is inverse. O

COROLLARY. If A(X;g) is inverse, then it is commutative.

Proof. This follows from the above and Theorem 12. O

EXAMPLE 3. By Theorem 13, the smallest X such that A(Ar; g) is inverse but not a
group arises when m = 2 and d = 1, c2 = 2. Here \X\ = 3 and \K{X\g)\ = 3. The smallest
corresponding algebra is such that L — 23.

EXAMPLE 4. The smallest A' such that A.(X; g) is orthodox but not inverse arises when
m = 2 and c, = 2, c2 = 4. Here \X\ = 6 and \A(X\ g)\ = 2(2 + 4) = 12.

When A(X; g) is inverse but not a group, we can describe its structure in terms of a
cartesian product of cyclic groups each with a zero adjoined.

THEOREM 14. If A(X;g) is inverse but not a group, then

( g )
i = 2

Proof. As before, let x^ be the fixed point of g. For each i 5=2 define V̂  = Z, U {x^}.
Define g, :^-»y; by gi(y) = g(y) and let T J , : ^ - ^ ^ be the constant mapping given by
r)i(y) = Xi- Then A(^;g,) is a group with zero. To see this, let a E A(Y;;g(). Then either
a(xi)=xi (in which case a = 17,) or a(x,)eAr, and so ofa) = gifc) with 0 ^ r < c , (in
which case a =g\ and is therefore a bijection). It follows that A(y);gl-) = Z°.

Now define i/f:A(A";g)-» X A(^;g,) as in the proof of Theorem 12 to obtain an
1=2

isomorphism A(X; g) = X Z°. O
1=2

COROLLARY 1. If A(X;g) is inverse but not a group, then

)| = n ( l + c,). O
1=2
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COROLLARY 2. For every integer k^l there exists an Ockham algebra (L;/) of finite
boolean type such that (L;f) ePk0 and End(L;/) is an inverse semigroup isomorphic to
ft

Proof. Let X^ = {xlA} and X2 = fe.i, • • •, *2,*} be disjoint sets of cardinalities 1 and k.
Define a permutation g on X = Xi U X2 by setting

g(*i.i) = *i,i . g(*2.i) = *2,i+i (mod A:).

Clearly, XUX2 are the orbits of g. By Theorems 13 and 14 we have that A(X;g) is an
inverse semigroup isomorphic to Z°. O

Finally, in view of the above results, it is natural to consider the situation that holds
when \A(X;g)\ is a prime.

THEOREM 15. If(L;f) is an endomorphism regular Ockham algebra of finite boolean
type and End(L;/) is of prime cardinality p then End(L;/) is isomorphic either to the
group Zp or to the inverse semigroup lPp-\ (p^ 3).

Proof. As usual, let (X\g) be the dual space of (L;/). If A(X;g) is a group then, by
Theorem 12 and its Corollary 1, we have necessarily m = \ and c^=p, whence

Suppose now that A(A"; g) is not a group. Without loss of generality we may suppose
that cx =£ c2 =£... =£ cm. Observe that

(fl)p3»3.
In fact, suppose that p =2. Then necessarily g^id*; for otherwise A(X;g) is the full
transformation semigroup on X, and this can never have cardinality 2. Since, by
hypothesis, |A(A"; g)\ = 2 it follows that A(X; g) = {id^, g} = Z2, a contradiction.

(b) m^l.
In fact, suppose that m = 1. Then, by the Corollary of Theorem 2, we have cx= p whence
A(X; g) is a group by Theorem 12, a contradiction.

(C) C!<C2.

In fact, if C] = c2 then Jx = {/; c; | c j = {;'; c; | c2} = /2, whence we have 2 c, = 2 cy = r say,

and clearly r 2» 2. The Corollary of Theorem 2 now gives the contradiction r2 \ p.
(d) 2 cy = 1.

In fact, if E c,- ̂  1 then by the Corollary of Theorem 2 and the fact that p is prime we

have II (X c.) = 1, whence c, < c2 = . . . = cm = 1 which is absurd.

It follows from these observations that 7, = {1} and c, = 1. Then II (E c,) = p gives
<=2 ;eJ,

m = 2 and 2 cy=p. It follows that /2 = {1,2} and therefore p = c1(c1+c2) = 1+ c2

whence c2 = p -1. It now follows by Theorems 13 and 14 that A(A ;̂ g) = Zp_,. O
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