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Abstract

Given a finite group G and a field K, the faithful dimension of G over K is defined to
be the smallest integer n such that G embeds into GLn(K). We address the problem
of determining the faithful dimension of a p-group of the form Gq := exp(g ⊗Z Fq)
associated to gq := g⊗Z Fq in the Lazard correspondence, where g is a nilpotent Z-Lie
algebra which is finitely generated as an abelian group. We show that in general the
faithful dimension of Gp is a piecewise polynomial function of p on a partition of primes
into Frobenius sets. Furthermore, we prove that for p sufficiently large, there exists a
partition of N by sets from the Boolean algebra generated by arithmetic progressions,
such that on each part the faithful dimension of Gq for q := pf is equal to fg(pf ) for a
polynomial g(T ). We show that for many naturally arising p-groups, including a vast
class of groups defined by partial orders, the faithful dimension is given by a single
formula of the latter form. The arguments rely on various tools from number theory,
model theory, combinatorics and Lie theory.

1. Introduction

Let G be a finite group and let K be a field. The faithful dimension of G over K, denoted by
mfaithful,K(G), is defined to be the smallest possible dimension of a faithful K-representation
of G. The question of computing or estimating mfaithful,K(G) has found many applications. For
instance, it is intimately connected to computing the essential dimension edK(G) of G, defined
by Buhler and Reichstein [BR97], which is the smallest dimension of a linearizable G-variety with
a faithful G-action. It is known [BF13, Proposition 4.15] that edK(G) 6 mfaithful,K(G) for every
finite group G. Karpenko and Merkurjev [KM08] proved that if G is a p-group and K contains
a primitive pth root of unity, then edK(G) = mfaithful,K(G). For further details the reader may
wish to consult [Mer17].

Note that by a result of Brauer, every complex representation of a p-group G is defined over
Q(ζ), where ζ is a primitive |G|th root of unity. This implies that mfaithful,K(G) = mfaithful,C(G)
whenever K ⊇ Q(ζ). Therefore we will only consider complex representations and use the
shorthand mfaithful(G) instead of mfaithful,C(G).
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Polynomiality of the faithful dimension of p-groups

This work is a continuation of [BMS16] in which the faithful dimension of a large class of
p-groups was studied. Let us start by recalling some of the results from [BMS16]. Let F be a
non-Archimedean local field with a discrete valuation ν. We will denote the ring of integers of
F by O, the unique maximal ideal of O by p, and the residue field O/p by Fq, the finite field
of order q := pf , where f is the absolute inertia degree of F . The number e = ν(p) is called the
absolute ramification index of F .

For a (commutative and unital) ring R and an integer k > 1, the kth Heisenberg group with
entries in R, denoted by Heis2k+1(R), consists of (k+ 2)× (k+ 2) matrices of the form Ik+2 +A,
where A is strictly upper triangular and all of its entries other than those on the first row and
the last column are zero. Similarly, Uk(R) denotes the subgroup of unitriangular matrices in
GLk(R), so that H2k+1(R) ⊆ Uk+2(R). In [BMS16, Theorem 1.1] we proved that

mfaithful(Heis2k+1(O/pn)) =

ξ−1∑
i=0

fqk(n−i), (1)

where ξ = min{e, n}. Also, when char(O/p) 6= 2, in [BMS16, Theorem 1.2] we showed that

mfaithful(G) = mfaithful(Heis2k+1(O/pn)),

for any subgroup G of Uk+2(O/pn) that contains Heis2k+1(O/pn). In particular for F = Fp((T )),
where p > 3, we obtained

mfaithful(Uk(Fp[[T ]]/(Tn))) =

n−1∑
i=0

p(k−2)(n−i) for all k > 3.

The latter statement implies that if p > 3 then

mfaithful(Uk(Fp)) = pk−2 for all k > 3. (2)

The right-hand side of (2) is a polynomial in p. Note that Uk(Fp) = exp(uk ⊗ Fp), where uk is
the Lie algebra of strictly upper triangular matrices with entries in Z (for the definition of the
exponential map in this context, see § 2). Equation (2) suggests the following problem.

Problem 1.1 (Polynomiality problem). Among all nilpotent Z-Lie algebras g which are finitely
generated as abelian groups, characterize those for which there exists a polynomial g(T ), only
depending on g, such that

mfaithful(exp(g⊗Z Fp)) = g(p),

for all sufficiently large primes p.

This problem is the central guiding principle of this work. Before stating our results, let us
mention that the methods applied in [BMS16] were based on a suitably adapted version of the
Stone–von Neumann theory, whose application is mostly limited to groups of nilpotency class 2.
In this paper, we will replace the Stone–von Neumann theory by Kirillov’s orbit method for
finite p-groups. The orbit method was initially introduced by Kirillov [Kir62] to study unitary
representations of nilpotent Lie groups. This machinery was later adapted to other classes of
groups, such as p-adic analytic groups, finitely generated nilpotent groups, and finite p-groups
(see [How77b, How77a] and [Kaz77, Proposition 1]). Jaikin-Zapirain [Jai06] used this machinery
to study the representation zeta functions of compact p-adic analytic groups. These zeta functions
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have also been studied by Avni et al. [AKOV13]. We refer the reader to these papers and
references therein for more details.

Our approach to Problem 1.1 relies heavily on the notion of the commutator matrix associated
to a nilpotent Z-Lie algebra. Since its introduction in the work of Grunewald and Segal [GS84]
as a tool for classification of torsion-free finitely generated nilpotent groups, the notion of the
commutator matrix has been used in studying a large variety of problems related to finite
and infinite groups. Voll [Vol05, Vol04] has used commutator matrices in his works on normal
subgroup lattices of nilpotent groups. Stasinski and Voll [SV14] also employed them to study
the representation growth of infinite groups. In addition, O’Brien and Voll [O’BV15] used
commutator matrices for counting conjugacy classes and characters of certain finite p-groups.
In our work, we relate the faithful dimension of finite p-groups to the question of existence of
sufficiently many points in general position on rank varieties associated with the commutator
matrices that were considered by O’Brien and Voll.

2. Main results

Before we state our results we will need to set some notation. Let g be a Lie algebra over a
commutative ring R. For x ∈ g, the map defined by y 7→ [x, y] is denoted by adx. Let (gl)l>1

denote the descending central series of g. In other words we set g1 := g, and we define gl+1 for
l > 1 inductively, as the R-submodule of g generated by commutators of the form [x, y], where
x ∈ g and y ∈ gl. The commutator subalgebra of g will be denoted by g′. Note that g′ = g2. The
Lie algebra g is said to be nilpotent if gc+1 = 0 for some c ∈ N. If c is the smallest integer with
this property, then g is said to be c-step nilpotent or nilpotent of class c.

Suppose now that g is a finite Z-Lie algebra whose cardinality is a power of p, and assume
that g is nilpotent of class c < p. One may define a group operation on g by the Campbell–
Baker–Hausdorff formula: for all x, y ∈ g we define the group multiplication by

x ∗ y :=
∑
n>0

(−1)n+1

n

∑
(a1,b1),...,(an,bn)

aj+bj>1

(
∑

16i6n ai + bi)
−1

a1!b1! · · · an!bn!
(adx)a1(ady)

b1 · · · (adx)an(ady)
bn−1(y),

where if bn = 0 then the last term (ady)
bn−1(y) is dropped. Plainly, if bn > 1, or if bn = 0 and

an > 1, then the corresponding summand vanishes. Note that the above sum is finite, because g
is nilpotent. The group defined in this way is denoted by exp(g). For instance, when g is 2-step
nilpotent and p > 3, the group multiplication of exp(g) takes the simple form

x ∗ y = x+ y + 1
2 [x, y],

and when g is 3-step nilpotent and p > 5 we obtain

x ∗ y = x+ y + 1
2 [x, y] + 1

12 [x, [x, y]] + 1
12 [y, [y, x]].

Similar formulas can be written for any given nilpotency class when p is large enough. The group
exp(g) defined above is a p-group of nilpotency class c. In fact Lazard proved [Khu88, ch. 9] that
every p-group G of nilpotency class c < p arises in this way from a unique Lie algebra g := Lie(G).

From now on, for a c-step nilpotent Z-Lie algebra g which is finitely generated as an abelian
group, and for q := pf with p > c, we set

gq := g⊗Z Fq and Gq := exp(gq),

where Fq is the finite field with q elements.
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Polynomiality of the faithful dimension of p-groups

2.1 A palette of possibilities
To illustrate the range of possibilities that can arise, we will start this section with three examples,
and then state our main results. We will elaborate on these examples in § 5.

Example 2.1 (Elliptic curve). Let a be a non-zero integer. Consider the Z-Lie algebra ga,
introduced by Boston and Isaacs [BI04, § 3], which is spanned as a free Z-module by {v1, . . . , v9},
subject to the relations

[v1, v4] = [v2, v5] = [v3, v6] = v7, [v1, v5] = [v2, v6] = v8, [v1, v6] = av9, [v2, v4] = [v3, v4] = v9.

All other brackets [vi, vj ] with i < j vanish. It will be shown in § 5.2 that if p is a sufficiently
large prime (p > 1800 will suffice) and p does not divide a, then

mfaithful(exp(ga ⊗Z Fp)) = 3p2.

As we will see in the proof, the uniformity in p is related to the fact that for such values of p
the cubic curve Y 2 = 4aX3 +X2 − 4X has a non-zero rational point over Fp. Note that in this
example, aside from a finite set of primes, the value of mfaithful(exp(ga ⊗Z Fp)) is given by one
polynomial in p.

Example 2.2 (Binary quadratic form). Consider the Z-Lie algebra g spanned as a free Z-module
by {v1, . . . , v6} subject to the relations

[v1, v2] = [v3, v4] = v5, [v1, v4] = [v2, v3] = v6,

where all other commutators [vi, vj ] with i < j are defined to be 0. Then in § 5.3 we will show
that for odd primes p, the value of mfaithful(Gp) is given by two different polynomials along two
arithmetic progressions, namely,

mfaithful(Gp) =

{
2p if p ≡ 1 (mod 4),

2p2 if p ≡ 3 (mod 4).

Put more formally, set

P1 := {p > 3 : p ≡ 1 (mod 4)} and P2 := {p > 3 : p ≡ 3 (mod 4)}.

Also, set g1(T ) := 2T and g2(T ) := 2T 2. Then mfaithful(Gp) = gi(p) for all p ∈Pi, i = 1, 2.

As the next example shows, even this is not the end of the story.

Example 2.3 (Binary cubic form). Consider the Z-Lie algebra g spanned as a free Z-module by
{v1, . . . , v8} with the following relations:

[v1, v4] = [v2, v5] = [v3, v6] = v7, [v1, v5] = [v2, v6] = [v3, v5] = v8, [v3, v4] = −v8.

All other commutators [vi, vj ] with i < j vanish. Let p be an odd prime. In § 5.4 we will show
that

mfaithful(Gp) =


p2 + p3 if

(
p

23

)
= −1,

2p3 if p is represented by the form 2x2 + xy + 3y2,

2p2 if p is represented by the form x2 + xy + 6y2 or p = 23,
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where
( ·
p

)
is the Legendre symbol. The conditions defining this function split the set of prime

numbers p> 3 into disjoint sets P1,P2 and P3. On each one of these sets, one of the polynomials
g1(T ) = T 2 + T 3, g2(T ) = 2T 3 and g3(T ) = 2T 2 is applicable. It is worth mentioning that by
Gauss genus theory, the sets P2 and P3 are not unions of arithmetic progressions (for example
see [Kus67]).

Example 2.4 (Lee’s Lie algebra). Consider the Z-Lie algebra g spanned as a free Z-module by
{v1, . . . , v8} with the following relations:

[v1, v4] = [v2, v5] = v6, 2[v1, v5] = [v3, v4] = 2v7, [v2, v4] = [v3, v5] = v8.

All other commutators [vi, vj ] with i < j vanish. This Lie algebra was defined in [Lee16]. Let p
be an odd prime. In § 5.5 we will show that

mfaithful(Gp) =


p+ 2p2 if p ≡ 2 (mod 3) or p = 3,

3p if p ≡ 1 (mod 3) and p is represented by the form x2 + 27y2,

3p2 if p ≡ 1 (mod 3) and p is not represented by the form x2 + 27y2.

We remark that in [Lee16], the author computes the order of the automorphism group of the Lie
algebra gp. The formula obtained in [Lee16] is given by different polynomials depending on the
splitting of λ3 − 2 in Fp, and therefore its cases are parallel to the ones that appear above.

The important point to note here is that in each one of the above examples, the set of
primes can be decomposed into finitely many arithmetically defined sets, such that the value
of mfaithful(Gp) on each one of these sets is given by a polynomial. Let us explain this in more
detail. For a polynomial g(T ) ∈ Z[T ], denote by Vg the set of primes p for which the congruence
g(T ) ≡ 0 (mod p) has a solution. We will call Vg an elementary Frobenius set. Let P denote the
set of prime numbers. By a Frobenius set we mean an element of the Boolean algebra inside
the power set of P that is generated by elementary Frobenius sets. In other words, a Frobenius
set is a finite union of sets of the form

Vg1 ∩ · · · ∩ Vgk ∩ V
c
gk+1
∩ · · · ∩ Vcgl .

We remark that every Frobenius set is a Frobenian set, as defined by Serre [Ser12, § 3.3.1], but the
converse does not hold. For more details about the connection between Frobenius and Frobenian
sets, see [Lag83].

For p > 2 the equation x2 + 1 = 0 has a solution in Fp if and only if p ≡ 1 (mod 4). This
shows that the sets appearing in Example 2.2 are Frobenius sets. One can see that the sets
Pi in Example 2.3 are Frobenius sets as follows. First, using the quadratic reciprocity law one
can easily verify that the set P1 consists of those primes p > 3 for which the equation x2 + 23
has no solution in Fp. The other two parts are based on the less trivial fact that p > 3 can
be represented by the quadratic form a2 + ab + 6b2 (respectively, 2a2 + ab + 3b2) if and only if
p 6∈P1 and x3 − x− 1 has a solution (respectively, no solution) in Fp. Consequently, each Pi is
a Frobenius set.

Let P be any set of primes. The Dirichlet density of P is defined by

d(P) := lim
s→1+

∑
p∈P p−s∑
p∈P p

−s ,
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Polynomiality of the faithful dimension of p-groups

if the limit exists. The Chebotarev density theorem implies that any infinite Frobenius set
has a positive Dirichlet density. It follows from Dirichlet’s theorem on primes in arithmetic
progressions that the Dirichlet density of the sets Pi in Example 2.2 is positive. For the sets Pi

in Example 2.3, positivity of the Dirichlet density can be proved by class field theory. For more
details we refer the reader to [Cox13, Theorem 9.12].

With this preparation, we are now ready to state our first result.

Theorem 2.5. Let g be a nilpotent Z-Lie algebra of nilpotency class c which is finitely generated
as an abelian group. Then there exist a partition P1, . . . ,Pr of the set of prime numbers
larger than c into Frobenius sets, and polynomials g1(T ), . . . , gr(T ) with non-negative integer
coefficients, depending only on g, such that

mfaithful(Gp) = gi(p) for all p ∈Pi,

where 1 6 i 6 r.

The proof of this theorem relies on a theorem of Ax [Ax67] from model theory (see also van
den Dries [VdDri91]), coupled with a parameterization of irreducible representations provided
by the Kirillov machinery. As we shall see, studying mfaithful(Gp) leads to questions related to the
existence of rational points over finite fields of certain determinantal varieties associated with
the commutator matrix. We remark that our proof is effective and we can use its method to
describe the associated Frobenius sets and polynomials. We will demonstrate this by a detailed
analysis of the above examples after we give the proof of Theorem 2.5.

One can also consider mfaithful(Gq) for q := pf when the prime p is fixed and f varies. Let P
be one of the Frobenius sets in Theorem 2.5 with the associated polynomial g(T ) ∈ Z[T ]. The
following example shows that it is not necessarily true that

mfaithful(Gq) = fg(q) for all f > 1.

Example 2.6. Take g as in Example 2.2 and set P := P2, where P2 is as in the same example.
Recall that

mfaithful(Gp) = 2p2 for all p ∈P.

However, in § 5.3 we shall demonstrate that

mfaithful(Gq) =

{
2fq f is even,

2fq2 f is odd.

Nevertheless, we prove the following theorem which shows that in general, the behaviour of
mfaithful(Gq) for q := pf with p fixed is very similar to the above example.

Theorem 2.7. Let g be a nilpotent Z-Lie algebra of nilpotency class c which is finitely generated
as an abelian group. Fix a prime p > C, where C is the constant given in (31). Then there exist
a partition A1, . . . ,Ar of the set of natural numbers, and polynomials g1(T ), . . . , gr(T ) with
non-negative integer coefficients, depending on p and g, such that:

(1) each Ai, 1 6 i 6 r, is a union of a finite set and finitely many arithmetic progressions;

(2) for all 1 6 i 6 r, if q = pf where f ∈ Ai, then mfaithful(Gq) = fgi(q).

The proof of Theorem 2.7 uses Dwork’s theorem on rationality of zeta functions of varieties
and the Skolem–Mahler–Lech theorem.
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Remark 2.8. It would be interesting to obtain a uniform generalization of Theorems 2.5 and 2.7.

At this point two remarks are in order. On the one hand, Theorems 2.5 and 2.7 set an upper
limit on how complicated the value of mfaithful(Gq) as a function of p and f can be. It would be
desirable to know to what extent the collection of functions appearing in Theorem 2.5 can
be realized as mfaithful(Gq) for some Lie algebra g. On the other hand, one may still hope that
at least for a large class of naturally arising Lie algebras g, the function mfaithful(Gq) is given by
a single polynomial. In the next section we address these two problems.

2.2 Pattern groups
Let us begin this section by introducing a large class of nilpotent groups which can be viewed as
a generalization of the nth Heisenberg group Heis2n+1(Fq) defined in the introduction.

Set [n] := {1, 2, . . . , n}, and let ([n],≺) be a partially ordered set. Without loss of generality,
we can assume that if i ≺ j then i < j. To this partial order we assign the pattern Lie algebra

g≺ := SpanZ{eij : i ≺ j} ⊆ gl(n,Z),

where eij denotes the n× n matrix whose unique non-zero entry is a 1 in the (i, j) position.
Note that g≺ is nilpotent since the commutator relation

[eij , ekl] = δjkeil − δliekj

ensures that g≺ is a subalgebra of the Lie algebra un of strictly upper-triangular n by n matrices.
For instance, the (2n+ 1)-dimensional Heisenberg Lie algebra corresponds to the partial order

1 ≺ 2, 3, . . . , n+ 1 ≺ n+ 2. (3)

For all i ≺ j define
α(i, j) := #{k ∈ [n] : i ≺ k ≺ j}.

Moreover, the length of ([n],≺), denoted by λ≺, is defined to be the maximum value of r such
that there exists a chain i0 ≺ · · · ≺ ir in ([n],≺). For instance the length of the partial order given
in (3) is equal to 2. We remark that λ≺ is equal to the nilpotency class of g≺ (see Lemma 4.1).

Definition 2.9. An ordered pair (i, j) is called an extreme pair if i is a minimal element in
([n],≺), j is a maximal element in ([n],≺), and i ≺ j. The set of extreme pairs will be denoted
by Iex.

We can now state our theorem on the faithful dimension of pattern groups.

Theorem 2.10. Let ≺ be a partial order of length λ≺ on the set [n], and let q := pf where
p > λ≺. Then

mfaithful(exp(g≺ ⊗Z Fq)) =
∑

(i,j)∈Iex

fqα(i,j).

Theorem 2.10 generalizes (2), and its proof relies on Kirillov theory and more specifically on
an explicit description of the size of coadjoint orbits in terms of combinatorial data of the
partial order. Note that by Theorems 2.5 and 2.7, a priori there is no reason to expect
the faithful dimension to be given by a single formula of the form fg(pf ) for a polynomial g(T ).
Theorem 2.10 is proved by a detailed analysis of the size of coadjoint orbits and a combinatorial
lemma due to Rado and Horn.
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Question 2.11. Let F be a non-Archimedean local field with the ring of integers O, the unique
maximal ideal p and the associated residue field Fq. Is it true that mfaithful(exp(g≺ ⊗ZO/pn)) is
given by the formula

ξ−1∑
`=0

∑
(i,j)∈Iex

fq(n−`)α(i,j), ξ = min{n, e}, (4)

where f is the absolute inertia degree and e is the absolute ramification index of F? Formula (4)
is suggested by (1) and Theorem 2.10.

An immediate consequence of Theorem 2.10 is the following corollary.

Corollary 2.12. For any non-zero polynomial g(T ) ∈ Z[T ] with non-negative coefficients, there
exists a nilpotent Z-Lie algebra g which is finitely generated as an abelian group such that

mfaithful(Gq) = fg(q),

when p > deg g(T ) + 2 and f > 1.

2.3 Relatively free nilpotent groups
In this section we will turn to free objects in certain categories of nilpotent Lie algebras. Let
fn,c := fn,c(Z) be the free nilpotent Z-Lie algebra on n generators and of class c; it is defined
to be the quotient algebra fn/f

c+1
n , where fn is the free Z-Lie algebra on n generators, and fc+1

n

denotes the (c+ 1)th term in the lower central series of fn starting with f1n = fn. It is well known
that the rank of the quotient fcn/f

c+1
n (as a Z-module) is given by Witt’s formula

rn(c) :=
1

c

∑
d|c

µ(d)nc/d,

where µ is the Möbius function. Using the orbit method one can prove that

mfaithful(exp(fn,c ⊗Z Fq)) > rn(c)fq.

This lower bound is sharp for fn,2 and fn,3.

Theorem 2.13. Let n > 2 and let Fq be the finite field with q = pf elements. Then, we have:

(1) mfaithful(exp(fn,2 ⊗Z Fq)) = ((n2 − n)/2)fq for p > 3;

(2) mfaithful(exp(fn,3 ⊗Z Fq)) = ((n3 − n)/3)fq for p > 5.

The proofs of these results involve explicit computations with Hall bases and rely on a subtle
combinatorial optimization.

Remark 2.14. For 2 6 c 6 6, the value of mfaithful(exp(f2,c ⊗Z Fp)) is given by Table 1.
In § 7.4, we outline the computations that yield the values of mfaithful(exp(f2,c ⊗Z Fp)) in

Table 1. However, we are not able to obtain any general formula for mfaithful(exp(f2,c ⊗Z Fp))
in terms of c.

For a Lie algebra g, let (Dkg)k>0 be the derived series of g. Thus D0g = g, Dg = [g, g], and
Dk+1g = [Dkg, Dkg] for k > 1. Note that g/D2g is the largest metabelian quotient of g. When
g = fn,c, this quotient is called the free metabelian Lie algebra of class c on n generators and will
be denoted by mn,c.
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Table 1. The faithful dimension for 2-generated relatively free nilpotent groups of small
nilpotency.

c Condition mfaithful(exp(f2,c ⊗Z Fp))
2 p > 3 p

3 p > 5 2p

4 p > 5 3p

5 p > 7 2p2 + 4p

6 p > 7 p3 + 3p2 + 5p

Theorem 2.15. Let c > 2. Then mfaithful(exp(m2,c ⊗Z Fq)) = (c− 1)fq for q := pf with p > c.

In the course of the proof of Theorem 2.15 we will see that computing the faithful dimension
of exp(m2,c ⊗Z Fq) is linked to rational normal curves, that is, the image of the Veronese map
given by

νc−2 : P1(Fq) → Pc−2(Fq), [X0 : X1] 7→ [Xc−2
0 : Xc−3

0 X1 : · · · : Xc−2
1 ].

This suggests that other tools (e.g. from the theory of determinantal varieties) might be relevant
in the more general situation.

3. Preliminaries

In this section we introduce some notation and prove a number of basic facts which will be
used throughout this paper. In particular, we will explain the connection between faithful
representations and the central characters of their irreducible components. We will also briefly
recall the orbit method.

Notation. Let G be a group with the identity element 1. The centre and the commutator subgroup
of G will be denoted, respectively, by Z(G) and G′ = [G,G]. For an abelian p-group G, we write

Ω1(G) := {g ∈ G : gp = 1},

which is a Z/pZ-vector space. The Pontryagin dual of an abelian group A, i.e. Hom(A,C∗),
will be denoted by Â. Evidently, when A is an elementary abelian p-group, Â has a canonical
Z/pZ-vector space structure. We denote the cardinality of a set S by #S.

3.1 Central characters of faithful representations of p-groups
Let A be a finite abelian group. We denote the minimal number of generators of A by d(A). For
an exact sequence of finite abelian groups 0 → A1 → A → A2 → 0, the numbers d(A), d(A1)
and d(A2) satisfy the inequalities

max{d(Ai) : i = 1, 2} 6 d(A) 6 d(A1) + d(A2). (5)

The number of invariant factors of A will be denoted by d′(A). It can be easily seen from
elementary divisor theory that d′(A) = d(A). Evidently mfaithful(A) 6 d′(A). Now for a given
faithful representation ρ : A → GLm(C), by decomposing ρ into irreducible components and
applying (5) we obtain d(A) = d′(A) 6 mfaithful(A). This implies that

mfaithful(A) = d(A) = d′(A).

In particular, we obtain the following lemma.
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Lemma 3.1. For a finite abelian p-group A,

d(A) = d′(A) = mfaithful(A) = dimZ/pZ(A⊗Z Z/pZ) = dimZ/pZ(Ω1(A)).

Let E be a finite elementary abelian p-group equipped with the canonical Z/pZ-vector space
structure. Every one-dimensional representation χ : E → C∗ factors uniquely as χ = ε◦χ◦, where
χ◦ ∈ Hom(E,Z/pZ) and the embedding ε : Z/pZ → C∗ is defined by

ε(x+ pZ) = exp((2πix)/p).

Hence the Z/pZ-linear map

Ê → Hom(E,Z/pZ), χ 7→ χ◦, (6)

provides an isomorphism of Z/pZ-vector spaces between Ê and Hom(E,Z/pZ). Now, let G be a
finite p-group. Applying (6) to Ω1(Z(G)), we obtain the Z/pZ-isomorphism

Hom(Ω1(Z(G)),C∗) → Hom(Ω1(Z(G)),Z/pZ). (7)

Hereafter the Z/pZ-vector space Hom(Ω1(Z(G)),C∗) will be denoted by Ω̂1(Z(G)).

Remark 3.2. Recall the standard fact that for a finite p-group G, every non-trivial normal
subgroup of G intersects Z(G) and hence Ω1(Z(G)) non-trivially. Consequently, a representation
of G is faithful if and only if its restriction to Ω1(Z(G)) is faithful.

We recall the following simple lemma.

Lemma 3.3. Let L,L1, . . . , Ln be linear functionals on a vector space V with respective null
spaces N , N1, . . . , Nn. Then L is a linear combination of L1, . . . , Ln if and only if N contains
the intersection N1 ∩ · · · ∩Nn.

The following observation, due to Meyer and Reichstein [MR10], will play a crucial role in
computing the faithful dimension of p-groups.

Lemma 3.4. Let G be a finite p-group and let (ρi, Vi)16i6n be a family of irreducible
representations of G with central characters χi. Assume that the set of characters

{χi|Ω1(Z(G))
: 1 6 i 6 n}

spans Ω̂1(Z(G)). Then
⊕

16i6n ρi is a faithful representation of G.

Proof. Since the set {χi|Ω1(Z(G))
: 1 6 i 6 n} spans Ω̂1(Z(G)), from the Z/pZ-isomorphism (7)

and Lemma 3.3 we obtain
n⋂
i=1

kerχi|Ω1(Z(G))
= {1}.

Hence
⊕

16i6n ρi is a faithful representation of Ω1(Z(G)). Remark 3.2 implies that
⊕

16i6n ρi is
a faithful representation of G. 2
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Lemma 3.5. Let G be a finite p-group and let ρ be a faithful representation of G with the smallest
possible dimension. Then ρ decomposes as a direct sum of exactly r := d(Z(G)) irreducible
representations

ρ = ρ1 ⊕ · · · ⊕ ρr.

Therefore the set of central characters {χi|Ω1(Z(G))
: 1 6 i 6 r} is a basis of Ω̂1(Z(G)).

Proof. Let ρ =
⊕

16i6n ρi be the decomposition of ρ, and let χi, 1 6 i 6 n, denote the central
character of ρi. Since ρ is faithful and r = d(Z(G)), it follows that n> r. Furthermore, faithfulness
of ρ also implies

⋂n
i=1 kerχi = {1}. Hence, from Lemma 3.3, Lemma 3.4, and the minimality of

dim(ρ) it follows that n = r and also that the set

{χi|Ω1(Z(G))
: 1 6 i 6 r}

is a basis of Ω̂1(Z(G)). 2

3.2 Kirillov’s orbit method
The orbit method was introduced by Kirillov [Kir62] to study unitary representations of simply
connected nilpotent Lie groups. For such a group G with Lie algebra g, this method provides
an explicit bijection between the unitary dual Ĝ of G, and the set Homcont(g,C∗)/G of orbits
of the induced action of G on Homcont(g,C∗), called the coadjoint orbits. Since Kirillov’s work,
this method has been extended to study representations of nilpotent groups in other contexts.
Relevant to this work is the version applicable to finite p-groups, which we now briefly explain.
For more details we refer the reader to [BS08]. Let G be a p-group of nilpotency class c < p. By the
Lazard correspondence, there exists a unique finite Z-Lie algebra g := Lie(G) of cardinality |G|
and nilpotency class c such that G ∼= exp(g). Note that in the definition of exp(g) the underlying
set of the group is g and the multiplication law is defined by the Campbell–Baker–Hausdorff
formula. Usually we identify the underlying sets of the group G and the Lie algebra g. A simple
application of the Campbell–Baker–Hausdorff formula shows that in this identification the centre
of g (as a Lie algebra) will be mapped onto the centre of G as a group.

Consider now the coadjoint action of G on ĝ := HomZ(g,C∗), defined by

θx(y) := θ

( c∑
n=0

adnx(y)

n!

)
,

where x, y ∈ g and θ ∈ ĝ. Note that since p > c, the sum is well defined.

Theorem 3.6. Assume that p > 3 and let G be a p-group of nilpotency class c < p. Furthermore,
assume that g = Lie(G). Then there exists a bijection between G-orbits Θ ⊆ ĝ and irreducible
representations ρΘ ∈ Ĝ such that Kirillov’s character formula holds:

χΘ(x) := χρΘ(x) = |Θ|−1/2
∑
θ∈Θ

θ(x).

Proof. See [BS08, Theorem 2.6]. 2

Remark 3.7. For an extension of Kirillov’s orbit method to the case p = 2, see [SV14,
Theorem 2.6].
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Let Θ ⊂ ĝ be the orbit of θ0 ∈ ĝ. Then from Kirillov’s character formula we see that the
central character of ρΘ is θ0|Z(g)

and

dim(ρΘ) = |Θ|1/2 = [g : StabG(θ0)]1/2. (8)

Proposition 3.8. The stabilizer of θ0 is given by

StabG(θ0) = {x ∈ g : θ0([x, y]) = 1 ∀y ∈ g}. (9)

Proof. One inclusion is obvious. For the inclusion ⊆ note that

StabG(θ0) = {x ∈ g : θx0 (y) = θ0(y), ∀y ∈ g} =

{
x ∈ g : θ0

( c∑
n=0

adnx(y)

n!

)
= θ0(y), ∀y ∈ g

}
.

Fix x ∈ StabG(θ0). Then

θ0

( c∑
n=1

adnx(y)

n!

)
= 0 for all y ∈ g. (10)

Choose an arbitrary element y ∈ gc−1. Since gc+1 = 0, it follows from (10) that θ0(adx(y)) = 0.
Next choose an arbitrary y ∈ gc−2, and note that

c∑
n=1

adnx(y)

n!
= adx(y) +

ad2
x(y)

2
.

In light of the previous step, θ0(adx(y)) = 0. Continuing this process, the claim follows for all
y ∈ g. 2

Let us now illustrate the power of the orbit method by showing how it can be used to compute
the faithful dimension of certain 2-step nilpotent groups.

Proposition 3.9. Let G be a 2-step nilpotent p-group, where p > 3. Assume that Z(G) is cyclic.
Then mfaithful(G) =

√
[G : Z(G)].

Proof. Let ρ be a faithful representation of G of minimal dimension. Since the centre of G is
cyclic, it follows from Lemma 3.5 that ρ is irreducible. By the Lazard correspondence G = exp(g),
where g is a finite Lie algebra of class 2. It suffices to show that dim ρ =

√
[g : Z(g)]. Thanks to

the orbit method, there exists θ0 ∈ ĝ such that

χρ(x) =
1√
|Θ|

∑
θ∈Θ

θ(x),

where Θ is the G-orbit of θ0. Therefore

dim ρ =
√
|Θ| =

√
[g : StabG(θ0)].

Recall that we identify Z(G) with Z(g). The restriction to Z(g) of the central character of ρ is
θ0, and so θ0 : Z(g) → C∗ is faithful. Now let x ∈ StabG(θ0). Then θ0([x, y]) = 1 for all y ∈ g, so
that [x, y] = 0. Consequently, StabG(θ0) = Z(g). This completes the proof. 2

The class of p-groups covered by Proposition 3.9 includes all the extra special p-groups for
p > 3; a p-group G is called extra special when its centre Z(G) has p elements and G/Z(G) is an
elementary abelian p-group. It is well known that an extra special p-group has order p2n+1 for
some positive integer n. Thus the faithful dimension of G is pn.
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4. Faithful dimension of pattern groups

This section is devoted to the proof of Theorem 2.10. We start by recalling some notation that
was defined in § 2.2. Let ≺ be a partial order on the set [n] := {1, . . . , n}. We can associate to ≺
the Lie algebra defined by

g := g≺ = SpanZ{eij : i ≺ j} ⊆ gl(n,Z).

Recall that the length of ([n],≺), denoted by λ≺, is defined to be the maximum value of r such
that there exists a chain i0 ≺ · · · ≺ ir in ([n],≺).

Lemma 4.1. The nilpotency class of g is equal to the length of ([n],≺).

Proof of Lemma 4.1. First note that

[eij , ekl] = δjkeil − δliekj for i ≺ j and k ≺ l. (11)

From (11) it follows that [eij , ekl] = eil when i ≺ j = k ≺ l and [eij , ekl] = −ekj when
k ≺ l = i ≺ j. In other cases [eij , ekl] = 0. Given a chain i0 ≺ · · · ≺ ir in ([n],≺), one can see
that

ei0,ir = [ei0,i1 , [ei1,i2 , [· · · , eir−1,ir ]] · · ·] 6= 0,

and hence the nilpotency class of g is at least r. Similarly, one can see that a non-zero commutator
of length r + 1 leads to a chain of length r + 1, proving the claim. 2

Recall that Iex is the set of extreme pairs (see Definition 2.9).

Lemma 4.2. The centre Z(g) of g is spanned by {eij : (i, j) ∈ Iex}.

Proof. We first show that eij with (i, j) ∈ Iex is in the centre of g. From (11) it follows that

[eij , ekl] = 0 for all k ≺ l,

since i is minimal and j is maximal. Conversely, suppose z =
∑

i≺j xijeij ∈ Z(g). We show that
for each i1 ≺ j1, if xi1j1 6= 0 then (i1, j1) ∈ Iex. Assume i1 is not minimal, and pick a minimal
element k ≺ i1. Then (11) implies that

0 = [z, eki1 ] = −
∑
i1≺j

xi1jekj ,

and thus xi1j1 = 0, which is a contradiction. A similar argument shows that j1 is maximal. 2

An additive character ψ : Fq → C∗ is called primitive if the pairing

Fq × Fq → C∗, (x, y) 7→ ψ(xy)

is non-degenerate. We fix a primitive character ψ by choosing ι : Fp → C∗ to be a faithful
character and defining ψ(x) := ι(Tr(x)), where Tr := TrFq/Fp : Fq → Fp is the trace map. Using
ψ we can identify the Pontryagin dual of the additive group of Fq with Fq. It follows that all
characters of gq are obtained by vectors b = (bij) ∈

⊕
i≺j Fq, via

ψb

(∑
i≺j

xijeij

)
:= ψ

(∑
i≺j

bijxij

)
.

By Lemma 4.1, the Lie algebra gq has nilpotency class λ≺. In the rest of this section we assume
that p > λ≺. By the orbit method every irreducible representation of Gq is constructed from the
orbit of a character ψb ∈ ĝq in the coadjoint action. We denote the irreducible representation
obtained from ψb by ρb.
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Proposition 4.3. Let b = (bij) be an element of
⊕

i≺j Fq and let ρb be the irreducible
representation of Gq associated to the orbit of ψb. For all (i1, j1) ∈ Iex, if bi1j1 6= 0 then

dim ρb > qα(i1,j1).

Proof. Set I := {(i, j) : i ≺ j}. For x =
∑

i≺j xijeij ∈ StabGq(ψb) and y =
∑

i≺j yijeij ∈ gq, it
follows from (11) that

1 = ψb([x, y]) = ψb

( ∑
i≺j,k≺l

xijykl[eij , ekl]

)
= ψ

(∑
i≺j

∑
i≺k≺j

bij(xikykj − xkjyik)
)

= ψ

(∑
i≺j

(∑
k≺i

bkjxki −
∑
j≺l

bilxjl

)
yij

)
.

Since yij ∈ Fq is arbitrary and ψ is a primitive character, we obtain a system of linear equations

Lij(xst) :=
∑
k≺i

bkjxki −
∑
j≺l

bilxjl = 0, (12)

which describes the stabilizer of ψb. The equations in (12) have coefficients in Fq and are indexed
by pairs i, j such that i ≺ j. We now consider only the linear forms Li1i(xst) and Ljj1(xst), for
i1 ≺ i ≺ j1 and i1 ≺ j ≺ j1. From these i and j, we obtain 2α(i1, j1) linear equations with
coefficients in Fq, as follows:

bi1j1xij1 = −
∑

i≺k 6=j1

bi1kxik, i1 ≺ i ≺ j1,

bi1j1xi1j = −
∑
i1 6=l≺j

blj1xlj , i1 ≺ j ≺ j1. (13)

From bi1j1 6= 0 it follows that xij1 (i1 ≺ i ≺ j1) and xi1j (i1 ≺ j ≺ j1) are dependent variables
and thus, by noticing that each linear form has #I variables, the number of solutions of (13) is
at most

q#I−2α(i1,j1). (14)

Thus the size of the stabilizer (12) is at most (14) and this gives the lower bound by (8). 2

Lemma 4.4. Let b be a non-zero element of Fq. Fix (i, j) ∈ Iex and define b = (bkl)k≺l, where
bij = b and the other components are zero. Then the dimension of the irreducible representation
ρb is qα(i,j).

Proof. Set I := {(i, j) : i≺ j}. The proof of Proposition 4.3, namely (12), shows that the stabilizer
of ρb is defined by the equations bxik = 0 and bxkj = 0, where i ≺ k ≺ j. These show that the
stabilizer has cardinality q#I−2α(i,j), and therefore the dimension of ρb is qα(i,j) by (8). 2

Using this we now construct a faithful representation of Gq.

Lemma 4.5. The group Gq has a faithful representation of dimension∑
(i,j)∈Iex

fqα(i,j).
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Proof. First note that Z(Gq) ∼= Z(gq) and so

Ω̂1(Z(Gq)) ∼= Ω̂1(Z(gq)) =
⊕

(i,j)∈Iex

Ω̂1(Fq) ∼=
⊕

(i,j)∈Iex

Fq. (15)

Let ω1, . . . , ωf be a basis of Fq over Fp. For (i, j) ∈ Iex and 1 6 l 6 f , define the vectors
bl(i, j) ∈

⊕
s≺t Fq, with the (i, j) coordinate equal to ωl and the other coordinates equal to 0.

Then the set
{bl(i, j) : 1 6 l 6 f, (i, j) ∈ Iex}

is a basis of Z(gq) as an Fp-vector space. It follows that the set

{ψbl(i,j) : 1 6 l 6 f, (i, j) ∈ Iex}

is a basis of Ω̂1(Z(gq)) and thus of Ω̂1(Z(Gq)) by (15). Since ψbl(i,j) is the central character of
ρbl(i,j), it follows from Lemma 3.4 that the representation

ρ :=
⊕

16l6f

⊕
(i,j)∈Iex

ρbl(i,j)

is faithful. By Lemma 4.4 the dimension of ρbl(i,j) is equal to qα(i,j) and hence

dim ρ =
∑

(i,j)∈Iex

fqα(i,j). (16)

This finishes the proof. 2

We are now ready to prove Theorem 2.10.

4.1 Proof of Theorem 2.10

Write m := #Iex and n := fm. As before, we identify Ω̂1(Z(gq)) with
⊕

(i,j)∈Iex
Fq which has

dimension n as an Fp-vector space. Let ρ be a faithful representation of Gq with the smallest
possible dimension. We will show that the dimension of ρ is bounded from below by the right-
hand side of (16). Using Lemma 3.5 we can decompose ρ as a direct sum of n irreducible
representations, each of which obtained via the orbit method as described above. Hence, we can
write

ρ =

n⊕
k=1

ρak ,

with vectors ak given by

ak = (ast(k))s≺t ∈
⊕
s≺t

Fq.

Since the central character of ρak is the restriction of ψak , Lemma 3.5 implies that the set

{ψak : 1 6 k 6 n} is a basis of Ω̂1(Z(Gq)) and therefore the set

{(aij(k))(i,j)∈Iex
: 1 6 k 6 n}

is a basis of the Fp-vector space
⊕

(i,j)∈Iex
Fq. At this point we need a combinatorial lemma whose

proof relies on a theorem of Rado and Horn.
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Lemma 4.6. Let V be an m-dimensional Fq-vector space. Suppose that S = {v1, . . . , vfm} is a
basis of V viewed as a vector space over the subfield Fp. Then there exists a partition S1, . . . , Sf
of S into f sets of size m such that each Si is a basis of V as an Fq-vector space.

We will use the following theorem of Rado and Horn [Hor55]. The proof of this theorem
itself is based on Hall’s marriage theorem and ideas from matroid theory. We refer the reader
to [Bol86, § 18] for more details.

Theorem 4.7 (Rado–Horn). Let V be a vector space over a field E and let {vi : 1 6 i 6M} be
a set of non-zero vectors in V . Then the following statements are equivalent.

(i) The set {1, . . . ,M} can be partitioned into sets {Aj}kj=1 such that {vi : i ∈ Aj} is a linearly
independent set for all j = 1, 2, . . . , k.

(ii) For all non-empty subsets J ⊆ {1, . . . ,M},

#J 6 k dimE SpanE{vj : j ∈ J}.

Proof of Lemma 4.6. We apply Theorem 4.7 with k = f to the set of vectors S. Consider an
arbitrary set J ⊆ {1, . . . ,mf} and let d = dimFq SpanFq{vj : j ∈ J}. Then

#SpanFq{vj : j ∈ J} = qd = pfd.

Clearly SpanFp{vj : j ∈ J} ⊆ SpanFq{vj : j ∈ J}, and since {vj : j ∈ J} is linearly independent
over Fp we obtain

p#J = #SpanFp{vj : j ∈ J} 6 #SpanFq{vj : j ∈ J} = pfd.

It follows from the above inequality that

#J 6 f dimFq SpanFq{vj : j ∈ J}.

Thus by the Rado–Horn theorem, the set {1, . . . , fm} can be partitioned into A1, . . . ,Af such
that each of the sets {v` : ` ∈ Ai} is linearly independent over Fq. Note that #Ai 6 m since
dimFq V = m. But the Ai partition {1, . . . ,mf} and so Ai has the size m which implies that
{v` : ` ∈ Ai} is a basis of V over Fq. 2

We return to the proof of Theorem 2.10. Set V =
⊕

(i,j)∈Iex
Fq, which is an Fp-vector space

of dimension n = mf . Also set vk = (aij(k))(i,j)∈Iex
∈ V . Recall that S = {vk : 1 6 k 6 n} is

a basis of V as an Fp-vector space and so by Lemma 4.6 there exist f disjoint sets S1, . . . , Sf ,
each of size m, such that each S` is a basis of V as an Fq-vector space. For 1 6 ` 6 f , let A`
denote an m×m matrix whose rows are elements of S`. Note that A` is invertible, since S` is a
basis of V as an Fq-vector space. Using the Leibniz expansion of the determinant of A, we can
assume that up to a permutation of the rows, all of the diagonal entries of A` are non-zero. Thus
Proposition 4.3 implies that∑

(i,j)∈Iex

qα(i,j) 6
∑
ak∈S`

dim ρak for 1 6 ` 6 f.

Summing over all `, we obtain

f
∑

(i,j)∈Iex

qα(i,j) 6 dim ρ,

which finishes the proof.

1633

https://doi.org/10.1112/S0010437X19007462 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X19007462


M. Bardestani, K. Mallahi-Karai and H. Salmasian

5. The commutator matrix of nilpotent Lie algebras

We now consider general nilpotent Lie algebras by rebuilding the argument presented in § 4. Let
g be a nilpotent Z-Lie algebra of nilpotency class c which is finitely generated as an abelian
group, and let Fq be a finite field with q = pf elements. We set gq := g ⊗Z Fq throughout this
section. In order to apply the orbit method, we will also assume that p > c. Existence of torsion
elements in g and some of its quotients results in some technical difficulties which are addressed
in what follows.

We call a subset S of a finitely generated abelian group Γ a semibasis if it represents a basis
over Z of the free abelian group Γ/Γtor, where Γtor denotes the subgroup of torsion elements of
Γ. Clearly #S = rkZΓ. We define e(Γ) to be the largest prime divisor of the exponent of Γtor.

Remark 5.1. Let v1, . . . , vd be Z-linearly independent vectors in a finitely generated abelian
group Γ such that rkZ(Γ) = d, and let M be the subgroup of Γ generated by the vi. Set q := pf ,
where f is a positive integer and p is a prime such that p > e(Γ/M). Then the elements v1⊗Z 1,
. . . , vd ⊗Z 1 form a basis of the Fq-vector space Γq := Γ⊗Z Fq.

Remark 5.2. For every prime p we have [g, g]q = [gq, gq]. The equality Z(gq) = Z(g)q also holds
for p sufficiently large. An explicit lower bound for p can be obtained as follows. Let v1, . . . ,vn
be a semibasis of g/Z(g), and let w1, . . . ,wm be a semibasis of [g, g]. Then for 1 6 i < j 6 n we
can write [vi,vj ] =

∑m
k=1 λ

k
ijwk+yij , where λkij ∈ Z and yij ∈ [g, g]tor. Setting xj+n(k−1),i := λkij ,

we obtain an mn × n matrix X := [xa,b]. Now for every n × n submatrix X ′ of X we define
m(X ′) := max{p : p | det(X ′)}, where m(X ′) := 1 whenever det(X ′) = ±1. Further, set m(X) :=
minX′{m(X ′)}, where the minimum is taken over n × n submatrices of X. For the equality
Z(gq) = Z(g)q it is enough to assume that p > C1, where

C1 := max{m(X), e([g, g]), e(g/[g, g])}.

Now let w1, . . . ,wl1 be a semibasis of Z(g) ∩ [g, g]. Let wl1+1, . . . ,wm be elements of g
which represent a semibasis of [g, g]/(Z(g)∩ [g, g]). Finally, let z1, . . . , zl2 be elements of g which
represent a semibasis of Z(g)/(Z(g) ∩ [g, g]). It is straightforward to verify that the vectors
{w1, . . . ,wm, z1, . . . , zl2} are Z-linearly independent. Clearly the choice of these vectors implies
that rkZ(Z(g) + [g, g]) = l2 +m. Let M be the Z-submodule of g generated by the wi, 1 6 i 6m,
and the zj , 1 6 j 6 l2, and set

C2 := e(g/M).

From Remark 5.1 it follows that if p > max{C1, C2}, where C1 is defined in Remark 5.2, then
after tensoring with Fq, these vectors form a basis of the Fq-vector space [gq, gq] + Z(gq).

Now let v′1, . . . ,v
′
n be elements of g which represent a semibasis of g/Z(g). For 1 6 i < j 6 n,

there exist integers ηkij , 1 6 k 6 m, such that the elements

v′i,j :=

(
[v′i,v

′
j ]−

m∑
k=l1+1

ηkijwk

)
∈ [g, g]

are torsion modulo [g, g]∩Z(g). Set K equal to the exponent of ([g, g]/[g, g]∩Z(g))tor. It follows
that Kv′i,j ∈ [g, g] ∩ Z(g) for every 1 6 i < j 6 n. Now set vi := Kv′i for 1 6 i 6 n. Then there

exist integers λkij such that

[vi,vj ] =
m∑
k=1

λkijwk + xij for every 1 6 i < j 6 n, (17)

where xij ∈ ([g, g] ∩ Z(g))tor. We remark that λkij = K2ηkij for l1 + 1 6 k 6 m.
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For each 1 6 i, j 6 n, we define the linear forms

Λij(T1, . . . , Tm) :=

m∑
k=1

λkijTk ∈ Z[T1, . . . , Tm].

It is clear that Λii = 0 and Λij = −Λji for 1 6 i, j 6 n. The commutator matrix of g (relative to
the chosen ordered basis) is the skew-symmetric matrix of linear forms defined by

Fg(T1, . . . , Tm) := [Λij(T1, . . . , Tm)]16i,j6n ∈ Mn(Z[T1, . . . , Tm]). (18)

This matrix has previously been used in several papers, such as those by Grunewald and
Segal [GS84], Voll [Vol05, Vol04], O’Brien and Voll [O’BV15], Avni, Klopsch, Onn and Voll
[AKOV13], and Stasinski and Voll [SV14].

The following theorem expresses the faithful dimension of Gq as the solution to a rank
minimization problem. For the next theorem, we set

C3 := e((g/Z(g))tor).

Theorem 5.3. Let g be a nilpotent Z-Lie algebra of nilpotency class c which is finitely generated
as an abelian group. If p > max{c, C1, C2, C3}, then

mfaithful(Gq) = min


l1∑
`=1

fqrkFq (Fg(x`1,...,x`m))/2 :

x11 · · · x1l1
...

. . .
...

xl11 · · · xl1l1

 ∈ GLl1(Fq)

+ fl2,

where m := rkZ([g, g]), l1 := rkZ([g, g] ∩ Z(g)) and l2 := rkZ(Z(g)/Z(g) ∩ [g, g]).

Remark 5.4. We note that when n = 0, the commutator matrix is the zero matrix and thus
from Theorem 5.3 we obtain mfaithful(Gq) = (l1 + l2)f . This formula can also be obtained from
Lemma 3.1 since in this case for p as in Theorem 5.3 the group Gq is abelian.

5.1 Proof of Theorem 5.3
In this section we assume that p is chosen as in Theorem 5.3. By abuse of notation, we denote
the images in gq of the vi, the wi and the zi that are chosen above by the same letters. Let
ψ : Fq → C∗ be the primitive additive character defined in § 4. Choose a basis

{u1 + (Z(gq) + g′q), . . . ,ul3 + (Z(gq) + g′q)}

of gq/(Z(gq) + g′q). Since p > C2, the set

{w1, . . . ,wl1 ,wl1+1, . . . ,wm, z1, . . . , zl2 ,u1, . . . ,ul3}

is a basis of gq. For

a = (a1, . . . , al1 , al1+1, . . . , am, b1, . . . , bl2 , c1, . . . , cl3) ∈ Fm+l2+l3
q , (19)

let ψa ∈ ĝq be defined by

ψa

( l1∑
i=1

wiwi +

m∑
i=l1+1

wiwi +

l2∑
i=1

zizi +

l3∑
i=1

uiui

)

:= ψ

( l1∑
i=1

aiwi +

m∑
i=l1+1

aiwi +

l2∑
i=1

bizi +

l3∑
i=1

ciui

)
.
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The assignment a 7→ ψa identifies ĝq with Fm+l2+l3
q . For a as in (19), we write a = (a′,a′′,b, c),

where a′ ∈ Fl1q , a′′ ∈ Fm−`1q , b ∈ Fl2q and c ∈ Fl3q , and define the projection maps

proj1 : Fm+l2+l3
q −→ Fm+l2

q , proj2 : Fm+l2+l3
q −→ Fl1+l2

q , proj3 : Fm+l2+l3
q −→ Fmq ,

by proj1(a) = (a′,a′′,b), proj2(a) = (a′,b), and proj3(a) = (a′,a′′).
In the rest of this section, we identify Z(Gq) with Z(gq). Let ρ be an irreducible representation

of Gq. By the orbit method, ρ is obtained from a character θ ∈ ĝq, whose restriction to Z(gq)
coincides with the central character of ρ. Assume that θ = ψa for some a ∈ Fm+l2+l3

q , whose
entries are indexed as in (19). Our next goal is to prove that

dim ρ = qrkFq (Fg(a1,...,am))/2 = qrkFq (Fg(proj3(a)))/2. (20)

The proof is similar to the argument of [O’BV15, Lemma 3.3], but for the reader’s convenience
we provide some details. Proposition 3.8 implies that Z(gq) ⊆ StabGq(θ). Since p > C3, it follows
that K is invertible in Fq, so that after tensoring by Fq the vi form a basis of gq/Z(gq). For
x =

∑n
i=1 xivi ∈ StabGq(θ) and y =

∑n
i=1 yivi ∈ gq/Z(gq) we have θ([x, y]) = 1. From (17) and

the fact that p > C1 it follows that

ψ

( n∑
i=1

( ∑
16r<i

m∑
k=1

akλ
k
rixr −

∑
i<s6n

m∑
k=1

akλ
k
isxs

)
yi

)
= ψa

( ∑
16i<j6n

m∑
k=1

λkij(xiyj − xjyi)wk

)
= 1.

Since ψ is a primitive character, it follows that StabGq(θ)/Z(gq) is defined by the linear equations

∑
i<s6n

m∑
k=1

akλ
k
isxs −

∑
16r<i

m∑
k=1

akλ
k
rixr = 0, 1 6 i 6 n.

Consequently, x =
∑n

i=1 xivi ∈ StabGq(θ)/Z(gq) if and only if (x1, . . . , xn) ∈ kerFg(a1, . . . , am).

The last statement implies that #StabGq(θ) = qdimFq (gq)−rkFq (Fg(a1,...,am)). Equality (20) now
follows from (8).

Definition 5.5 (Admissible sets of vectors). A set of vectors

{a` ∈ Fm+l2+l3
q : 1 6 ` 6 (l1 + l2)f}

is called an admissible set of vectors if {proj2(a`) : 1 6 ` 6 (l1 + l2)f} is a basis of the Fp-vector
space Fl1+l2

q .

Now let ρ̃ be a faithful representation of Gq with the smallest possible dimension. Note that
the dimension of Ω1(Z(gq)) = Z(gq) over Fp is (l1 + l2)f and Z(Gq) ∼= Z(gq). Therefore

Ω̂1(Z(Gq)) ∼= Ω̂1(Z(gq)) ∼=
l1+l2⊕
`=1

Fq.

Thus by Lemma 3.5 the representation ρ̃ decomposes into (l1 + l2)f irreducible representations

ρ̃ =

(l1+l2)f⊕
`=1

ρa` , a` ∈ Fm+l2+l3
q ,
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where the representation ρa` is obtained by ψa` ∈ ĝq. Since the restriction of ψa` is the central
character of ρa` , it follows from Lemma 3.5 that the set

{ψa` |Ω̂1(Z(gq))
: 1 6 ` 6 (l1 + l2)f}

is a basis of Ω̂1(Z(gq)) and therefore the set

{proj2(a`) : 1 6 ` 6 (l1 + l2)f}

is a basis of the Fp-vector space Fl1+l2
q . To summarize, we have proven that for each faithful

representation ρ̃ with the smallest possible dimension we can find an admissible set of vectors

{a` ∈ Fm+l2+l3
q : 1 6 ` 6 (l1 + l2)f}

such that

dim(ρ̃) =

(l1+l2)f∑
`=1

qrkFq (Fg(proj3(a)))/2. (21)

Conversely, let {a` ∈ Fm+l2+l3
q : 1 6 ` 6 (l1 + l2)f} be an admissible set of vectors. Then by

Lemma 3.4, we can construct a faithful representation ρ̃, not necessarily of minimal dimension,
such that its dimension is equal to (21). In the definition of admissible vectors we considered
Fl1+l2
q as an Fp-vector space. We now consider Fl1+l2

q as an Fq-vector space and define the following
notion.

Definition 5.6 (Regular sets of vectors). A set of vectors

{a` ∈ Fm+l2+l3
q : 1 6 ` 6 l1 + l2},

is called a regular set of vectors if the set {proj2(a`) : 1 6 ` 6 (l1 + l2)} is a basis of the Fq-vector
space Fl1+l2

q .

We now claim that

mfaithful(Gq) = min

{ l1+l2∑
`=1

fqrkFq (Fg(proj3(a`)))/2 : {a` ∈ Fm+l2+l3
q }l1+l2

`=1 is a regular set

}
. (22)

Let {ω1, . . . , ωf} be a basis of Fq over Fp and let

{a` ∈ Fm+l2+l3
q : 1 6 ` 6 l1 + l2}

be a regular set of vectors that minimizes (22). Clearly {ωia` : 1 6 i 6 f, 1 6 ` 6 l1 + l2} is an
admissible set of vectors and

l1+l2∑
`=1

fqrkFq (Fg(proj3(a`)))/2 =

f∑
i=1

l1+l2∑
`=1

qrkFq (Fg(proj3(ωia`)))/2 > mfaithful(Gq).

Conversely, let ρ̃ be a faithful representation with the smallest possible dimension. From the
above discussion we obtain an admissible set of vectors

{a` ∈ Fm+l2+l3
q : 1 6 ` 6 (l1 + l2)f}.
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From Lemma 4.6 this set can be partitioned into f sets Bi in which each Bi is a regular set of
vectors. Without loss of generality assume that∑

a`∈B1

qrkFq (Fg(proj3(a`)))/2 6
∑
a`∈Bi

qrkFq (Fg(proj3(a`)))/2 2 6 i 6 f.

Thus ∑
a`∈B1

fqrkFq (Fg(proj3(a`)))/2 6 dim(ρ̃),

which proves the claim.
We are now ready to finish the proof of Theorem 5.3. Let {a` ∈ Fm+l2+l3

q : 1 6 ` 6 l1 + l2}
be a regular set of vectors. Let A ∈ GLl1+l2(Fq) be the matrix whose rows are

proj2(a1), . . . , proj2(al1+l2).

Therefore

A =



a11 · · · a1l1 b11 · · · b1l2
...

. . .
...

...
. . .

...
al11 · · · al1l1 bl11 · · · bl1l2

a(l1+1)1 · · · a(l1+1)l1 b(l1+1)1 · · · b(l1+1)l2
...

. . .
...

...
. . .

...
a(l1+l2)1 · · · a(l1+l2)l1 b(l1+l2)1 · · · b(l1+l2)l2


,

where proj2(ai) = (ai1, . . . , ail1 , bi1, . . . , bil2). The first l1 columns of A are linearly independent
over Fq, and therefore we can find an invertible l1 × l1 submatrix of the first l1 columns. By
possibly permuting the rows of A we can assume that this submatrix lies at the intersection of
the first l1 rows and l1 columns of A. It is clear that

l1+l2∑
`=1

qrkFq (Fg(a`1,...,a`m))/2 >
l1∑
`=1

qrkFq (Fg(a`1,...,a`m))/2 + l2.

From this and (22) we conclude that

mfaithful(Gq) > min


l1∑
`=1

fqrkFq (Fg(a`1,...,a`m))/2 :

a11 · · · a1l1
...

. . .
...

al11 · · · al1l1

 ∈ GLl1(Fq)

+ fl2. (23)

Conversely, let
{a`(l1+1), . . . , a`m}16`6l1

be an arbitrary set of elements of Fq and let

B :=

a11 · · · a1l1
...

. . .
...

al11 · · · al1l1

 ∈ GLl1(Fq)

be an arbitrary invertible matrix. Then the rows of the matrix(
B 0
0 Il1×l1

)
∈ GLl1+l2(Fq)

1638

https://doi.org/10.1112/S0010437X19007462 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X19007462


Polynomiality of the faithful dimension of p-groups

are projections (under proj2) of a regular set of vectors in Fm+l2+l3
q . Similar to the proof of (22),

using this regular set of vectors we can construct a faithful representation of Gq of dimension

l1∑
`=1

fqrkFq (Fg(a`1,...,a`m))/2 + fl2.

From this we conclude that

mfaithful(Gq) 6 min


l1∑
`=1

fqrkFq (Fg(a`1,...,a`m))/2 :

a11 · · · a1l1
...

. . .
...

al11 · · · al1l1

 ∈ GLl1(Fq)

+ fl2. (24)

Therefore, by combining (23) and (24) we obtain Theorem 5.3.
We now address Examples 2.1, 2.2, 2.3, and 2.6 in detail. By a straightforward calculation,

one can verify that in all of these examples C1 = C2 = C3 = 1, and hence Theorem 5.3 is
applicable for p > 2.

5.2 Details for Example 2.1
From the defining bracket relations we deduce that g′a = Z(ga) = SpanZ{v7, v8, v9}
and so ga is a 2-step nilpotent Lie algebra. From the relations we also obtain the following
commutator matrix:

Fg(T1, T2, T3) =

(
0 M

−M tr 0

)
, M := M(T1, T2, T3) =

T1 T2 aT3

T3 T1 T2

T3 0 T1

.
Observe that the determinant of M is

g(T1, T2, T3) := T3T
2
2 + T 3

1 − T1T2T3 − aT1T
2
3 .

By Theorem 5.3 the faithful dimension of Ga,p = exp(ga⊗Z Fp), for p > 3, is the minimum value
of

prkFp (M(x11,x12,x13)) + prkFp (M(x21,x22,x23)) + prkFp (M(x31,x32,x33)) (25)

subject to the condition x11 x12 x13

x21 x22 x23

x31 x32 x33

 ∈ GL3(Fp). (26)

Let p be a prime not dividing a. Computing all 2× 2 minors of M shows that

2 6 rkFp(M(x, y, z)) 6 3

unless x = y = z = 0. Let us consider the question of existence of a vector (x, y, z) ∈ F3
p such

that x 6= 0 and
g(x, y, z) = y2z + x3 − xyz − axz2 = 0. (27)

Obviously we should take z 6= 0 Picking x = 1, we obtain the equation zy2− zy+ (1− az2) = 0,
whose discriminant with respect to y is equal to 4az3 + z2 − 4z. Thus to solve (27) it
suffices to show that for any non-zero a ∈ Z the curve Y 2 = 4aX3 + X2 − 4X has a rational
point in Fp with X 6= 0. This can be done by noticing that Y 2 − 4aX3 −X2 + 4X is absolutely
irreducible [Sch76, Corollary, p. 13] and thus by Hasse’s bound on the number of Fp-points of
elliptic curves [Sch76, Theorem 2A, p. 10] one can verify that such a point exists for p > 1800.
Let (1, y, z) be a solution of (27). Then the vectors (0, 1, 0) and (0, 0, 1) and (1, y, z) satisfy (26),
and minimize (25). Thus the faithful dimension of Ga,p is equal to 3p2.
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5.3 Details for Examples 2.2 and 2.6
We discuss these examples together by proving the following formula:

mfaithful(Gq) =


2fq if p ≡ 1 (mod 4),

2fq if p ≡ 3 (mod 4) and f is even,

2fq2 if p ≡ 3 (mod 4) and f is odd.

The commutator relations imply that g′ = Z(g) = SpanZ{v5, v6}, and that g is a 2-step
nilpotent Lie algebra. The commutator matrix of g can be easily seen to be

Fg(T1, T2) =

 0 T1 0 T2

−T1 0 T2 0
0 −T2 0 T1

−T2 0 −T1 0

.
Note that detFg(T1, T2) = (T 2

1 + T 2
2 )2. By Theorem 5.3 the faithful dimension of Gq is given by

min

{
fqrkFq (Fg(x11,x12))/2 + fqrkFq (Fg(x21,x22))/2 :

(
x11 x12

x21 x22

)
∈ GL2(Fq)

}
.

For p ≡ 1 (mod 4), let α denote a square root of −1 in Fq. Then the trivial lower bound 2fq can be
realized by the choice of vectors (α, 1) and (−α, 1). We now consider the case p ≡ 3 (mod 4). For
these primes, observe that −1 is a square in Fq if and only if f is even. By the above argument
the faithful dimension of Gq is 2fq when f is even. Now suppose that f is odd. Then −1 is
not a square in Fq, and therefore detFg(a1, a2) 6= 0 for all non-zero vectors (a1, a2) ∈ F2

q . This
implies that

rkFq(Fg(a1, a2)) = 4 for all 0 6= (a1, a2) ∈ F2
q .

Therefore the faithful dimension of Gq is at least 2fq2, which can be realized by the standard
basis.

5.4 Details for Example 2.3
The commutator relations imply that g′ = Z(g) = SpanZ{v7, v8}, implying that g is a 2-step
nilpotent Lie algebra with the commutator matrix given by

Fg(T1, T2) =

(
0 M

−M tr 0

)
where M := M(T1, T2) =

 T1 T2 0
0 T1 T2

−T2 T2 T1

. (28)

By Theorem 5.3 the faithful dimension of Gp is given by

min

{
prkFp (M(x11,x12)) + prkFp (M(x21,x22)) :

(
x11 x12

x21 x22

)
∈ GL2(Fp)

}
.

A simple inspection of 2×2 minors of M shows that for a non-zero vector (T1, T2), the matrix
M(T1, T2) has rank at least 2, implying mfaithful(Gp) > 2p2. Note that detM = T 3

1 − T1T
2
2 − T 3

2

is the homogenization of the polynomial T 3
1 − T1 − 1. This leads us to consider the number of

roots of f(T ) = T 3 − T − 1 over Fp.
At this point we will make a digression and consider the more general question of determining

the number of roots of a given integer polynomial over finite fields. Let Cf be the companion
matrix of a given polynomial f(T ) ∈ Z[T ], and set M(T1, T2) = T1Id×d − T2Cf , where
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d := deg f(T ). The determinant of M(T1, T2) is the homogenization of f(T ). This construction
leads to a general collection of interesting examples of 2-step nilpotent Lie algebras with
commutator matrix as in (28). We refer the reader to Serre’s book [Ser12, § 2.1.2] or his beautiful
paper [Ser03] for more details on what follows.

Let f(T ) ∈ Z[T ] be a monic integer polynomial. The discriminant of f(T ) is defined to be

Discf = ∆2
f , ∆f =

∏
16i<j6n

(αi − αj),

where α1, . . . , αn are the roots of f(T ) in an algebraic closure of Q. Note that since f(T ) is a
monic polynomial, the discriminant Discf is in Z. Henceforth, p will denote an odd prime which
does not divide Discf . Denote the reduction of f(T ) modulo p by f̄ . Then the roots of f̄(T ) are
also simple. Define Of = Z[α1, . . . , αn] and let p be a prime ideal of Of such that p ∩ Z = pZ.
Such an ideal exists since Of is integral over Z. For such a prime we can define a unique element
in the Galois group of f , which is called the Frobenius automorphism.

Theorem 5.7 (Dedekind). Let E = Q(α1, . . . , αn) be the splitting field of f(T ). There exists
a unique element σp ∈ Gal(E/Q) such that σp(α) ≡ αp mod p, for all α ∈ Of . Moreover, if
f̄(T ) = f1(T ) · · · fg(T ) with fi irreducible over Fp of degree ni, then σp, when viewed as a
permutation of the roots of f , has the cyclic decomposition σ1 · · ·σg with σi a cycle of length ni.

Proof. See [Jac85, Theorems 4.37 and 4.38]. 2

For a monic integer polynomial f(T ) ∈ Z[T ] define

Nf (p) := #{a ∈ Fp : f(a) = 0}.

Theorem 5.7 shows that Nf (p) also counts the number of fixed points of σp permuting the roots
of f .

Let OE be the ring of integers of E and P be a prime ideal of OE such that P ∩ Z = pZ,
where p does not divide the discriminant of E. Then, as above, one can prove the existence of
a unique automorphism σP ∈ Gal(E/Q) such that σP(α) ≡ αp (mod P) for all α ∈ OE . Let
P∩Of = p. Since the elements of Gal(E/Q) are uniquely determined by their restrictions to Of ,
we have σP = σp. The automorphism σp is called the Frobenius automorphism and it describes
the splitting behaviour of the prime p. It is well known that p splits completely in E if and only
if σp is the identity element. Now let P and P′ be two primes in OE lying above the rational
prime p. One can show (see [Neu99, § 9] for more details) that there exists τ ∈ Gal(E/Q) such
that τσPτ

−1 = σP′ . This implies that the conjugacy class of σP is independent of the choice of
P. Let us now turn to the question of computing Nf (p) when f(T ) is a cubic polynomial. The
following proposition relates the Legendre symbol of the discriminant of f to the number of the
irreducible factors of f̄ .

Proposition 5.8. Let f(T ) ∈ Z[T ] be a monic irreducible polynomial of degree n with the
discriminant D, and suppose p is an odd prime which does not divide the discriminant of f . If
f̄ = f1 · · · fg with fi irreducible over Fp then

(
D
p

)
= (−1)n−g, where

( ·
p

)
is the Legendre symbol.

Proof. Continuing to use the same notation as before, we denote the splitting field of f by E
and its ring of integers by OE . Set D = Discf and set K = Q(

√
D) which is a subfield of E.

Let p be a prime in OE lying over p and write ℘ = p ∩ K. Then σ℘ := σp|K is the Frobenius
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automorphism assigned to ℘ in K/Q. Suppose σp is an even permutation. Then σp(∆f ) = ∆f

and so σ℘ is trivial over K, which implies that
(
D
p

)
= 1. If, on the other hand, σp is an odd

permutation, then σp(∆f ) = −∆f , and σ℘ is not-trivial, implying that
(
D
p

)
= −1. We have thus

shown that sgn(σp) =
(
D
p

)
. Let ni = deg fi. Viewing σp as a permutation of the roots of f , from

Theorem 5.7, we obtain
sgn(σp) = (−1)

∑g
i=1(ni−1) = (−1)n−g,

since
∑g

i=1 ni = n. This finishes the proof. 2

As an application we obtain the following result.

Corollary 5.9. Let f(T ) ∈ Z[T ] be an irreducible monic cubic polynomial with discriminant
D, and suppose p is an odd prime which does not divide D. Then

Nf (p) =


0 or 3 if

(
D

p

)
= 1,

1 if

(
D

p

)
= −1.

We now turn to the special case f(T ) = T 3 − T − 1. The discriminant of f is −23 and then
by the quadratic reciprocity we deduce that for p 6= 23

Nf (p) =


0 or 3 if

(
p

23

)
= 1,

1 if

(
p

23

)
= −1.

When
( p

23

)
= 1, we will need the reduction theory of binary quadratic forms to determine Nf (p).

We refer the reader to [Fla89, ch. 2, § 8] for more details. Let ∆ < 0 be an integer and assume
that ∆ ≡ 0, 1 (mod 4). The modular group SL2(Z) acts on

Σ∆ := {g(x, y) = ax2 + bxy + cy2 : a, b, c ∈ Z, a > 0, gcd(a, b, c) = 1, b2 − 4ac = ∆},

by linear change of variables. By the reduction theory of positive definite integral binary quadratic
forms (for example see [Cox13, Theorem 3.9]), the number h(∆) of SL2(Z)-orbits is finite. This
number is called the class number of ∆. In the case at hand, we have h(−23) = 3, and SL2(Z)-
orbits of Σ−23 are represented by the forms x2 + xy + 6y2 and 2x2 ± xy + 3y2. Note that
2x2 + xy + 3y2 and 2x2 − xy + 3y2 are GL2(Z)-equivalent and thus represent the same set of
integers. It is easy to show that

( p
23

)
= 1, if and only if p is represented by exactly one of the

form x2 +xy+6y2 or 2x2 +xy+3y2 (see [Fla89, Proposition 10.2]). Let L be the cubic extension
of Q obtained by adding a root of f(T ) and set K = Q(

√
−23).

E
2

K

3

2

L

Q
3
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Note that Gal(E/Q) = S3. For p 6= 23, set pOK = pp. Since the class number of K is 3

and E is unramified over K, E is the Hilbert class field of K, i.e. the maximal unramified

abelian extension of K. From this we can conclude that p splits completely in E if and only if p is

a principal ideal [Cox13, Corollary 5.25]. Moreover, note that the ring of integers of the quadratic

extension K is Z[(1 +
√
−23)/2] and so p is a principal ideal if and only if p = x2 + xy + 6y2.

Putting all these together, we conclude that p = x2 + xy + 6y2 if and only if p splits completely

in E. This means that T 3 − T − 1 has three roots in Fp if and only if p = x2 + xy + 6y2.

This also shows that p = 2x2 +xy+3y2 if and only if T 3−T −1 has no root in Fp. Consequently,

Nf (p) =


1 if

(
p

23

)
= −1,

0 if p is of the form 2x2 + xy + 3y2,

3 if p is of the form x2 + xy + 6y2.

(29)

Let NX(p) denote the number of rational points of the projective variety X := T 3
1 −T1T

2
2 −T 3

2 = 0

in P1(Fp). Then from (29), for all p 6= 23 we obtain

NX(p) =


1 if

(
p

23

)
= −1,

0 if p is of the form 2x2 + xy + 3y2,

3 if p is of the form x2 + xy + 6y2.

When
( p

23

)
= −1, we have NX(p) = 1 and hence the faithful dimension of Gp equals p2 + p3.

When p is of the form 2x2 + xy + 3y2 then NX(p) = 0 and so the minimum is exactly 2p3.

This implies that the faithful dimension is 2p3. In the remaining case, we can find distinct

points (x11, x12) and (x21, x22) in X. Since M(x11, x12) and M(x21, x22) have both rank 2,

it follows that in this case the faithful dimension is 2p2. Moreover, T 3
1 − T1 − 1 has a double

root and a simple root in F23. Thus the same argument shows that in this case the faithful

dimension is 2(23)2.

5.5 Details for Example 2.4

The commutator relations imply that g′ = Z(g) = SpanZ{v6, v7, v8}, implying that g is a 2-step

nilpotent Lie algebra with the commutator matrix given by

Fg(T1, T2, T3) =

(
0 M

−M tr 0

)
, M := M(T1, T2, T3) =

 T1 T2

T3 T1

2T2 T3

.
For a given odd prime p, and a non-zero vector (T1, T2, T3) ∈ F3

p, the rank over Fp of M is equal

to 1 if and only if (T1, T2, T3) is proportional to (λ2/2, λ/2, 1) such that λ3 − 2 = 0, and is

equal to 2 otherwise. Set f(λ) = λ3 − 2. As noted in [Lee16, Corollary 2.3],

Nf (p) =


1 if p ≡ 2 (mod 3) or p = 3,

3 if p ≡ 1 (mod 3) and p is represented by the form x2 + 27y2,

0 if p ≡ 1 (mod 3) and p is not represented by the form x2 + 27y2.

The rest of the argument is similar to Example 2.3.
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6. Proofs of Theorems 2.5 and 2.7

Before we begin the proofs of Theorems 2.5 and 2.7, let us recall the setting. As before, let g be
a nilpotent Z-Lie algebra of nilpotency class c which is finitely generated as an abelian group,
and set q := pf for some f > 1. Let Fg(T1, . . . , Tm) denote the matrix of linear forms that is
defined in (18). Since Fg(T1, . . . , Tm) is a skew-symmetric n × n matrix it follows that for all
x1, . . . , xm ∈ Fq, the rank of Fg(x1, . . . , xm) is an even number no larger than n. Let M be the
set of all integer vectors µ = (a1, . . . , al1) ∈ Zl1 , with 0 6 ai 6 n/2, and assign to each µ ∈ M
the polynomial of degree at most n/2 given by

gµ(T ) = T a1 + · · ·+ T al1 + l2.

Since gµ is symmetric in a1, . . . , al1 , we will only consider those integer vectors µ with

a1 6 · · · 6 al1 ,

and order them with the reverse lexicographical order, i.e. µ � µ′ if the rightmost non-zero
component of the vector µ′ − µ is positive. If µ� µ′ and q > l1, then we can easily see that

gµ(q) < gµ′(q). (30)

Since r = #M <∞, we can sort its elements as µ1 � · · · � µr. For a given vector µ, define the
following affine variety associated to µ = (a1, . . . , al1):

Xµ :=

(xij) ∈ Ml1,m(C) : rkC(Fg(xi1, . . . , xim)) = 2ai, det

x11 · · · x1l1
...

. . .
...

xl11 · · · xl1l1

 6= 0

 .

Note that the non-vanishing condition on the determinant can be turned into an equation by
introducing a new variable, standing for the inverse of the determinant. We also remark that Xµ

is defined over Z because Fg(T1, . . . , Tm) is an integer matrix.

6.1 Proof of Theorem 2.5
For µ ∈M set

Σµ := {p > max{l1, c, C1, C2, C3} : Xµ(Fp) 6= ∅},

where the Ci are as in Theorem 5.3. For every integer k such that 1 6 k 6 r, Theorem 5.3
and (30) imply that mfaithful(Gp) = gµk(p) whenever

p ∈Pk := Σµk

∖ ⋃
16i<k

Σµi .

Since finite sets are Frobenius, the assertion of Theorem 2.5 now follows from the following
theorem due to Ax [Ax67, Theorem 1].

Theorem 6.1 (Ax). With the above notation, Σµ is a Frobenius set.

Remark 6.2. An analogue of Theorem 2.5 holds for mfaithful(Gpf ) when f is fixed and p varies.
This statement can be established by a modification of the proof given above and applying
[Ser12, § 7.2.4, Example 2].
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6.2 Proof of Theorem 2.7
The proof of this theorem is similar to that of Theorem 2.5. Hence we will maintain the notation
for the matrix Fg(T1, . . . , Tm), the ordered set M , the polynomial gµ, and the variety Xµ as
above. Now assume that p > C, where

C := max{l1, c, C1, C2, C3}. (31)

Consider the sets

Σ′µ := {f > 1 : Xµ(Fpf ) 6= ∅}.

It follows from a theorem of Dwork [Ser12, p. 6 and § 4.3] that there exists a function ν : C → Z
with finite support such that

NXµ(pf ) := #Xµ(Fpf ) =
∑
z∈C

ν(z)zf . (32)

It is easy to see that the sequence cf = NXµ(pf ) satisfies a linear recurrence relation of the form
cn =

∑r
k=1 akcn−k. We will now invoke the following theorem of Skolem, Mahler and Lech.

Theorem 6.3 (Skolem–Mahler–Lech [MVdP95]). Let {un}n>1 be a sequence of complex
numbers satisfying a linear recurrence equation. Then its zero set {n : un = 0} is a union
of a finite set and a finite number of sets of the form n ≡ a (mod b) for integers a, b.

One can easily verify that the sets of the form F ∪A, where F is finite and A is a finite union
of arithmetic progressions form a Boolean algebra. To complete the proof of Theorem 2.7, note
that from (30) and Theorem 5.3 it follows that if p > C and f ∈ Ak := Σ′µk \

⋃
16i<k Σ′µi then

mfaithful(exp(Gq)) = fgk(q).

7. Free nilpotent Lie algebras

In this section we will consider faithful representations of groups related to free nilpotent
and free metabelian Lie algebras. Let us recall some definitions. The free nilpotent Lie algebra
of class c on n generators, denoted by fn,c, is the free object in the category of n-generated
nilpotent Lie algebras (over Z) of class c. More concretely, fn,c can be constructed from the
free Lie algebra on n generators after quotienting out the ideal generated by commutators of
length c+ 1.

Recall that a Lie algebra l is called metabelian if [[l, l], [l, l]] = 0. Similarly, one can define
the free metabelian Lie algebra of class c on n generators as the free object in the category of
n-generated metabelian Lie algebras of class c.

For computational purposes, it will be convenient to work with Hall bases of free nilpotent
Lie algebras. We will briefly review their constructions, and refer the reader to [Bou98, ch. II]
or [Ser06, ch. IV] for more details.

7.1 Hall bases of free nilpotent Lie algebras
Our exposition of the notion of a Hall basis follows [Bou98, ch. II] or [Ser06, ch. IV]. We
will first need some basic definitions. A set M with a map M ×M → M sending (x, y) 7→ [x, y]
is called a magma. Let X be a set and define inductively a family of sets Xn (n > 1) as
follows: X1 = X and Xn = qp+q=n(Xp × Xq). Let M(X) denote the disjoint union q∞n=1Xn

and define M(X)×M(X) → M(X) via Xp×Xq → Xp+q ⊆M(X). The magma M(X) is called
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the free magma on X. An element w of M(X) is called a non-associative word on X. Its length,
`(w), is the unique n such that w ∈ Xn.

Definition 7.1. A Hall set relative to X is a totally ordered subset H of M(X) satisfying the
following conditions:

(A) if u ∈ H, v ∈ H and `(u) < `(v), then u < v in the total order;

(B) X ⊆ H and H ∩X2 consists of the products [x, y] with x, y in X and x < y;

(C) an element w of M(X) of length > 3 belongs to H if and only if it is of the form [a, [b, c]]
with a, b, c in H, [b, c] ∈ H, b 6 a < [b, c] and b < c.

In the rest of this section, [x, y] denotes the Lie bracket of a free Lie algebra. Set Hi =H∩Xi

and let #X = n. The rank of fkn/f
k+1
n is given by Witt’s formula:

rn(k) :=
1

k

∑
d|k

µ(d)nk/d,

where µ is the Möbius function. Under the natural projection fkn → fkn/f
k+1
n , the images of

elements of Hk form a Z-basis of fkn/f
k+1
n . For a proof see [Bou98, ch. II] or [Ser06, Theorem 4.2].

Let fn,c := fn,c(Z) be the free nilpotent Z-Lie algebra on n generators and of class c; it is defined
to be the quotient algebra fn/f

c+1
n . The following facts are well known. Since we do not know a

reference and their proofs are easy, we outline the arguments.

Proposition 7.2. For n > 2 and c > 2, we have the following.

(1) The image of
⋃c
i=1Hi under the natural projection fn → fn,c is a basis of fn,c.

(2) The image of
⋃c
i=2Hi under the natural projection fn → fn,c is a basis of f′n,c.

(3) The image of Hc under the natural projection fn → fn,c is a basis of Z(fn,c).

Proof. The first statement follows from the fact that
⋃∞
i=1Hi is a basis of fn, and the Z-submodule

fc+1
n of fn is generated by

⋃∞
i=c+1Hi. For the second statement, it is now enough to note that⋃c

i=2Hi generates the Z-module f′n,c. The proof of the third statement is similar. 2

Example 7.3. The image of
⋃3
i=1Hi under the natural projection f3 → f3,3 is a basis of f3,3. The

elements of this union are explicitly given as follows:

H1 : x1, x2, x3,

H2 : w9 = [x1, x2], w10 = [x1, x3], w11 = [x2, x3],

H3 : w1 = [x1, [x1, x2]], w2 = [x1, [x1, x3]], w3 = [x2, [x1, x2]], w4 = [x2, [x1, x3]],

w5 = [x2, [x2, x3]], w6 = [x3, [x1, x2]], w7 = [x3, [x1, x3]], w8 = [x3, [x2, x3]].

Note that Z(f3,3) ⊆ f′3,3 and furthermore one can check that the image of {w1, . . . ,w8} is a basis
of Z(f3,3), while the image of {w1, . . . ,w11} is a basis of f′3,3. By an explicit calculation and using
the Jacobi identity, we obtain the following commutator matrix

Ff3,3(T1, . . . , T11) =



0 T9 T10 T1 T2 T4 − T6

−T9 0 T11 T3 T4 T5

−T10 −T11 0 T6 T7 T8

−T1 −T3 −T6 0 0 0

−T2 −T4 −T7 0 0 0

T6 − T4 −T5 −T8 0 0 0

 =

(
F11 F12

−F tr
12 0

)
.
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Now we consider the general case. Set

m :=
c∑

k=2

rn(k) and m1 :=
c−1∑
k=1

rn(k).

By Proposition 7.2, the natural projection maps
⋃c−1
i=1 Hi to a basis of fn,c/(Z(fn,c)). Note that

the commutator matrix Ffn,c(T) ∈ Mm1(Z[T]) is a skew-symmetric matrix whose entries are
Z-linear forms in m variables. We label the variables as follows. For each 2 6 k 6 c we write
T(k) = (T

(k)
1 , . . . , T

(k)
rn(k)), so that T = (T(k))26k6c and

Ffn,c(T) =


F11(T(2)) F12(T(3)) · · · F1(c−1)(T

(c))

F21(T(3)) F22(T(4)) · · · 0
...

...
...

...

F(c−1)1(T(c)) 0 0 0

,
where Fij(T

(i+j)) is the zero matrix if i+ j > c, and Fij(T
(i+j)) = −F tr

ji (T
(i+j)).

In order to use Theorem 5.3 to compute the faithful dimension of exp(fn,c⊗Z Fq) we need to

find rn(c) vectors a` = (a
(k)
` ), 2 6 k 6 c, with a

(k)
` = (a

(k)
`1 , . . . , a

(k)
`rn(k)) such that the vectors a`

minimize

rn(c)∑
`=1

fqrkFq (Ffn,c (a`))/2,

subject to the condition
a

(c)
11 a

(c)
12 · · · a

(c)
1rn(c)

...
...

a
(c)
rn(c)1 a

(c)
rn(c)2 · · · a

(c)
rn(c)rn(c)

 ∈ GLrn(c)(Fq). (33)

Let us define the reduced commutator matrix of fn,c to be

F red
fn,c(Tc) =


0 0 · · · 0 F1(c−1)(T

(c))

0 0 · · · F2(c−2)(T
(c)) 0

...
...

...
...

...

0 F(c−2)2(T(c)) 0 · · · 0

F(c−1)1(T(c)) 0 0 · · · 0

.

In other words, F red
fn,c

is the matrix obtained from Ffn,c by setting the variables T(k) equal to zero

when k 6= c, so that the (i, c − i)-block of F red
fn,c

is equal to Fi(c−i)(T
(c)) for 1 6 i 6 c − 1, and

all other blocks in F red
fn,c

are equal to zero. For instance in Example 7.3, the reduced commutator
matrix is (

0 F12

−F tr
12 0

)
.

Note that for each 2 6 k 6 c, the variables T(k) only occur in the matrices Fij with i+ j = k.
Clearly,

rkFq(Ffn,c(a`)) >
∑
i+j=c

rkFq(Fij(a
(c)
` )). (34)
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Note that the only entries of a` that appear in the invertibility condition (33) are those of a
(c)
` .

Further, by setting all of the components of ak` to zero for 2 6 k < c, we do not increase the
rank of the matrix Ffn,c(a`). Therefore the minima of the two sides of (34) are equal. Thus from
Theorem 5.3 we can conclude the following proposition.

Proposition 7.4. Let F := F red
fn,c

be the reduced commutator matrix of fn,c. Then the faithful

dimension of exp(fn,c ⊗Z Fq) is

min


rn(c)∑
`=1

fqrkFq (F (a`1,...,a`rn(c)))/2 :

 a11 · · · a1rn(c)
...

. . .
...

arn(c)1 · · · arn(c)rn(c)

 ∈ GLrn(c)(Fq)

 .

7.2 Proof of Theorem 2.13
We now prove Theorem 2.13. The proof relies upon an explicit description of the commutator
matrix and so it is combinatorial in nature. First we consider the statement for fn,2. The image
of the set

H1 ∪H2 = {x1, . . . , xn, xij : 1 6 i < j 6 n},

where xij := [xi, xj ] for 1 6 i < j 6 n, is a basis of fn,2. Thus the commutator matrix of fn,2 is

Ffn,2(T) =


0 T12 T13 · · · T1n

−T12 0 T23 · · · T2n

−T13 −T23 0 · · · T3n
...

...
...

. . .
...

−T1n −T2n −T3n · · · 0

.

Observe that each variable Tij , 1 6 i < j 6 n, appears exactly twice. Therefore if exactly one
of the Tij is non-zero, then the rank of the above matrix will be equal to 2. Now by applying
Proposition 7.4, we obtain the statement of the theorem for fn,2.

Let us now turn to the case of fn,3. First note that the reduced commutator matrix of fn,3 is
equal to

F (T(3)) := F red
fn,3(T(3)) =

(
0 F12(T(3))

−F tr
12(T(3)) 0

)
.

In particular, rkFq(F (T(3))) = 2rkFq(F12(T(3))). Our goal is to find F12(T(3)) explicitly with
respect to the basis obtained by the image of H1 ∪H2 ∪H3. The latter set consists of

H1 = {xi : 1 6 i 6 n},
H2 = {xij := [xi, xj ] : 1 6 i < j 6 n},
H3 = {xijk := [xi, [xj , xk]] : 1 6 j 6 i 6 n, 1 6 j < k 6 n}.

Consider the sets R1 := {1, 2, . . . , n}, R2 := {(i, j) : 1 6 i < j 6 n}, and

R3 := {(i, j, k) : 1 6 j 6 i 6 n, 1 6 j < k 6 n}.

The elements of the Ri parameterize the sets H1,H2 and H3. Set

d := #R3 = rn(3) = (n3 − n)/3,

1648

https://doi.org/10.1112/S0010437X19007462 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X19007462


Polynomiality of the faithful dimension of p-groups

and define

R0
3 := {(i, j, i) : 1 6 j < i 6 n} ∪ {(i, i, k) : 1 6 i < k 6 n},

R+
3 := {(i, j, k) ∈ R3 : j < i < k},

R−3 := {(i, j, k) ∈ R3 : j < k < i}.

It is clear that R3 = R0
3 ∪R

+
3 ∪R

−
3 is a partition of R3. We will now give an explicit description

of F12(T(3)) in terms of these sets. It will be more convenient to use the variables Tα with α ∈ R3

instead of T(3) = (T
(3)
1 , . . . , T

(3)
rn(3)). We will also use T to denote the vector with entries Tα with

α ∈ R3. For instance T213 and T312 correspond, respectively, to T4 and T6 in Example 7.3. For
i ∈ R1 and (j, k) ∈ R2, a simple computation shows that

[xi, [xj , xk]] =

{
xijk if (i, j, k) ∈ R3,

xjik − xkij otherwise.
(35)

Therefore the entry of the matrix F12 in the row associated to i ∈ R1 and column associated to
(j, k) ∈ R2 is given by Tijk if (i, j, k) ∈ R3 and by Tjik − Tkij otherwise.

Lemma 7.5. For 1 6 i, j, k 6 n the following hold.

(a) For i < k, the variable Tiik appears exactly once in F12(T), namely, in row i and column
(i, k).

(b) For j < i, the variable Tiji appears exactly once in F12(T), namely, in row i and column
(j, i).

(c) For (i, j, k) ∈ R+
3 , the variable Tijk appears exactly twice in the entries of F12(T). Namely,

the entry in row i and column (j, k) is equal to Tijk, and the entry in row j and column
(i, k) is equal to Tijk − Tkji.

(d) For (i, j, k) ∈ R−3 , the variable Tijk appears exactly twice in F12(T). Namely, the entry in
row i and column (j, k) is equal to Tijk, and the entry in row j and column (k, i) is equal
to Tkji − Tijk.

Proof of the Lemma 7.5. Parts (a) and (b) of the lemma are clear, since if Tijk appears twice then
i, j, k must be pairwise distinct. We will now prove part (c). Suppose j < i < k. It is clear from (35)
that Tijk can only potentially appear in a bracket of the form [xα, [xβ, xγ ]], where the indices are
permutations of i, j, k and β < γ. This leaves three possibilities (α, β, γ) = (i, j, k), (j, i, k), (k, j, i).
However, since [xk, [xj , xi]] = xkji ∈ H3, the third possibility does not occur. Moreover,

[xj , [xi, xk]] = [xi, [xj , xk]]− [xk, [xj , xi]] = xijk − xkji,

which proves the statement. Part (d) can be proven in a similar way. 2

From this it follows that rkFq(F12(a)) > 1 for every non-zero vector a ∈ Fdq , where d := rn(3).

In the rest of this section, for each α ∈ R3, we will find a vector aα = (a1,α, . . . , ad,α) ∈ Fdq such
that the rank of Mα := F12(aα) is equal to 1 and the Mα are linearly independent matrices
over Fq. It follows that the aα are linearly independent over Fq and thus the matrix (aα)α∈R3 is
invertible. Then from Proposition 7.4 we conclude that the faithful dimension of exp(fn,3⊗Z Fq)
is equal to rn(3)fq when p > 5.

We now construct Mα for α ∈ R3. For every δ = (i, j, k) with 1 6 i, j, k 6 n, define

δ+ := max{i, j, k}, δ− := min{i, j, k}, δ0 := i+ j + k − δ+ − δ−.
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(I): Suppose α = (i, j, k) ∈ R0
3, that is i = k or i = j. In either case, Tijk appears only once

in F12(T) by parts (a) and (b) of Lemma 7.5. Let Mα be the matrix obtained from F12(T) by
setting Tijk = 1 and letting the rest of variables to be zero. Then the rank of Mα is 1.

(II): Let α = (i, j, k) ∈ R+
3 , that is j < i < k. Let Mα be the matrix obtained from F12(T) by

setting Tijk = Tiik = Tjjk = 1, and zero for the rest of variables. From part (c) of Lemma 7.5 we
can see that in this case

Mα =

(j,k) (i,k)


...

...

j · · · Tjjk · · · Tijk − Tkji · · ·
...

...

i · · · Tijk · · · Tiik · · ·
...

...

=

(j,k) (i,k)


...

...

j · · · 1 · · · 1 · · ·
...

...

i · · · 1 · · · 1 · · ·
...

...

.

Note that this matrix has rank 1 and the rows in which non-zero entries are located correspond
to the α− and α0.

(III): Let α = (i, j, k) ∈ R−3 , that is j < k < i. Let Mα be the matrix obtained from F12(T) by
setting Tjjk = Tijk = 1 and Tiki = −1 and zero elsewhere. One can verify that in this case

Mα =

(j,k) (k,i)


...

...

j · · · Tjjk · · · Tkji − Tijk · · ·
...

...

i · · · Tijk · · · Tiki · · ·
...

...

=

(j,k) (k,i)


...

...

j · · · 1 · · · −1 · · ·
...

...

i · · · 1 · · · −1 · · ·
...

...

.

Note that this matrix has rank 1 and the rows in which non-zero entries are located correspond
to the α− and α+.

Let us show that the matrices constructed above are linearly independent. Suppose that

M =
∑
α∈R3

cαMα = 0.

We will show that cα = 0 for all α ∈ R3. Let β = (s, r, t) ∈ R+
3 be an arbitrary element. The

definition of R+
3 implies that r < s < t. Consider the entry of M associated to row s and column

(r, t). Note that since s = β0, a case by case verification shows that the (s, (r, t)) entry of every
matrix Mα with α ∈ R0

3 ∪R
−
3 is equal to zero. Furthermore, the only α ∈ R+

3 for which Mα has
a non-zero entry in row s and column (r, t) is α = β. This gives cβ = 0, which, in turn, shows
that cβ = 0 for all β ∈ R+

3 .
Now let γ = (t′, r′, s′) ∈ R−3 be an arbitrary element. Then from the definition of R−3 we have

r′ < s′ < t′. Consider the entry of M associated to row t′ and column (r′, s′). The (t′, (r′, s′))
entry of every matrix Mα with α ∈ R0

3 is equal to zero. Furthermore, the only α ∈ R−3 for which
Mα has a non-zero entry in row t′ and column (r′, s′) is α = γ. Comparing coefficients yields
cγ = 0. This shows that cγ = 0 for all γ ∈ R−3 . Hence

M =
∑
α∈R0

3

cαMα = 0.
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It is however clear that for distinct α1, α2 ∈ R0
3 non-zero entries of Mα do not overlap. This

implies that cα = 0 for all α ∈ R0
3, and the proof is complete.

7.3 Proof of Theorem 2.15

We first note that, similar to the case of fn,c, one can define the reduced commutator matrix

of mn,c and prove the same result as Proposition 7.4. Let us now turn to the Lie algebra m2,c

generated by x1 and x2. Note that since m2,c is metabelian, the only elements of the Hall basis

whose images in m2,c are non-zero are of the form

[xik , [xik−1
, . . . , [xi1 , x2] · · ·]], (36)

where k 6 c−1 and 1 = i1 6 i2 6 · · · 6 ik 6 2. Moreover, the images in m2,c of the words in (36)

with k = c − 1 form a basis of the centre of m2,c. Write yk` for the image in m2,c of the unique

element of the Hall basis of the form (36) of length k in which the generator x2 occurs ` times.

For instance, y3
1 = [x1, [x1, x2]] and y3

2 = [x2, [x1, x2]]. Then the image of {yc1, . . . , ycc−1} is a basis

of mc
2,c = Z(m2,c) and the image of {yc−1

1 , . . . , yc−1
c−2, y

c
1, . . . , y

c
c−1} is a basis of mc−1

2,c . The fact that

m2,c is metabelian implies that

yk+1
` = [x1, y

k
` ], yk+1

`+1 = [x2, y
k
` ]. (37)

Thus the reduced commutator matrix of m2,c is of the form(
0 F
−F tr 0

)
,

where F is a 2× (c− 2) matrix of the form

F (T1, . . . , Tc−1) =

(
T1 T2 · · · Tc−2

T2 T3 · · · Tc−1

)
.

Note that rkFq(F (a)) > 1 for every non-zero vector a ∈ Fc−1
q , and the matrix F (T1, . . . , Tc−1)

has rank 1 if we set Ti = λi−1, where λ ∈ Fq. Since q > p > c, we can find at least c− 1 distinct

elements λ1, . . . , λc−1 in Fq. Consider the (c− 1)× (c− 1) matrix with the ith row given by

(T1, . . . , Tc−1) = (1, λi, . . . , λ
c−2
i ).

This is the well-known Vandermonde matrix, whose determinant is non-zero. Similar to the proof

of Proposition 7.4, the claim follows from Theorem 5.3.

Remark 7.6. In the above proof, the issue of finding c−1 matrices of rank equal to 1 is intimately

related to finding points in general position on the rational normal curve obtained as the image

of the Veronese map given by

νc−2 : P1(Fq) → Pc−2(Fq), [X0 : X1] 7→ [Xc−2
0 : Xc−3

0 X1 : · · · : Xc−2
1 ].

It is likely that in the cases corresponding to mn,c (for n > 2) and fn,c (for n > 2 and c > 3), the

faithful dimension can be computed using tools from algebraic geometry.
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7.4 Outline of the argument for Remark 2.14

We will only consider the case c = 6, since the other cases are similar (and the calculations are

a bit simpler). For f := f2,6, the reduced commutator matrix is a block matrix of the form

F (x1, . . . , x9) =


0 0 0 0 F1,5

0 0 0 F2,4 0
0 0 F3,3 0 0
0 −F tr

2,4 0 0 0
−F tr

1,5 0 0 0 0

,

where

F1,5(x1, . . . , x9) =

(
x1 x2 + x6 x3 + 2x7 − x9 x4 + 2x8 x6 x7 + x9

x2 x3 x4 x5 x7 − x9 x8

)
,

F2,4(x1, . . . , x9) =
(
x6 x7 x8

)
,

F3,3(x1, . . . , x9) =

(
0 x9

−x9 0

)
. (38)

For p > 7, Proposition 7.4 implies that

mfaithful(Gp) = min


9∑
`=1

prkFp (F (a`1,...,a`9))/2 :

a11 · · · a19
...

. . .
...

a91 · · · a99

 ∈ GL9(Fp)

 . (39)

We can easily verify that rkFp(F1,5(x)) > 1 when 0 6= x := (x1, . . . , x9) ∈ F9
p. Also,

rkFp(F (x1, . . . , x9)) > 4

whenever at least one of x6, x7 or x8 is not zero. Similarly, rkFp(F (x1, . . . , x9)) > 6 whenever

x9 6= 0.

Now let xi := (xi1, . . . , xi9) ∈ F9
p, 1 6 i 6 9, be 9 vectors with det(xij) 6= 0. Thus after

permuting the indices of the xi, we can assume that all of the diagonal entries xii, 1 6 i 6 9,

are non-zero. Hence, from (39) and the above discussion we deduce that the faithful dimension

of Gp is at least p3 + 3p2 + 5p. This dimension can be realized by the rows of following matrix:

1 0 0 0 0 0 0 0 0

1 λ1 λ2
1 λ3

1 λ4
1 0 0 0 0

1 λ2 λ2
2 λ3

2 λ4
2 0 0 0 0

1 λ3 λ2
3 λ3

3 λ4
3 0 0 0 0

1 λ4 λ2
4 λ3

4 λ4
4 0 0 0 0

0 0 µ1 3µ2
1 5µ3

1 1 µ1 µ2
1 0

0 0 µ2 3µ2
2 5µ3

2 1 µ2 µ2
2 0

0 0 µ3 3µ2
3 5µ3

3 1 µ3 µ2
3 0

0 0 0 η 5η2 0 1 2η 1


∈ GL9(Fp),

where the λi and the µi are distinct elements of Fp.
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