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It is becoming increasingly clear that the strong spatial and temporal fluctuations
observed in a narrow Reynolds number regime around the laminar–turbulent transition
in shear flows can best be understood using the concepts and techniques from a
seemingly unrelated discipline – statistical mechanics. During the last few years,
a consensus has begun to emerge that these phenomena reflect an underlying
non-equilibrium phase transition exhibited by a model of interacting particles on a
crystalline lattice, directed percolation, that seems very far from fluid mechanics. Now,
Chantry et al. (J. Fluid Mech., vol. 824, 2017, R1) have developed a truncated-mode
computation of a model shear flow, capable of simulating systems far larger and longer
than any previous study and have for the first time generated enough statistical data
that a high-precision test of theory is feasible. The results broadly confirm the theory,
extending the class of flows for which the directed percolation scenario holds and
removing any remaining doubts that non-equilibrium statistical mechanical critical
phenomena can be exhibited by the Navier–Stokes equations.
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1. Introduction

The laminar–turbulence transition in shear flows has presented a challenge
to theoretical understanding since Reynolds began the systematic and scientific
exploration of the phenomenon in pipe flow, more than 130 years ago (Reynolds
1883). Reynolds used injected dye to follow the flow, and discovered that the onset
of turbulence in a pipe does not occur uniformly in space or time. Instead, he found
that the dye made flow patterns that were laminar in some regions, but interspersed by
local ‘flashes’ of turbulence (nowadays called puffs) where the flow was stochastic and
irregular, at least for a certain time τ . Later work showed that as the Reynolds number
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(Re) is increased, puffs split after a time τs and occupy a greater fraction of the pipe,
until eventually a small disturbance can trigger a growing ‘slug’ of turbulence that
would lead to a completely turbulent flow domain at long times. This sequence of
events occurs in a range of Reynolds numbers, approximately 1800 < Re < 2500,
and is very different in character from other well-studied transitions that occur in
fluid flow. Thus, from inception, the field of transitional pipe flow turbulence has
been preoccupied with a seemingly simple conceptual question: at what Re can the
transition to turbulence be said to have taken place?

Modern experiments have confirmed and quantified Reynolds’ original findings.
Most notably, in a tour de force by Hof et al. (2008), Avila et al. (2011), it was
shown that both the puff lifetime τ and the puff splitting time τs increase rapidly with
Re (well fit by the functional form exp(exp(a + bRe)), so that there is no apparent
Re which marks the point beyond which a uniform state of turbulence has an infinite
lifetime and is the stable state.

These and other characteristics suggest that the laminar–turbulent transition, in pipe
flow at least, is sub-critical in nature, with the turbulent state arising discontinuously
from the laminar state through a finite amplitude instability as Re exceeds a critical
value Rec whose value is not universal but depends on the perturbation of the flow.
Other shear flows, such as plane Couette and Taylor–Couette with a stationary inner
cylinder, also transition to turbulence in this way.

Regardless of the specific flow realisation, the natural assumption would be that a
description for the transition would emerge from the framework of bifurcation and
dynamical systems theory, and indeed, in early work on spatio-temporal intermittency
in coupled map lattices, the relevance to transitional pipe turbulence was specifically
noted and explored (see Kaneko 1984). In 1986, Pomeau (1986) initiated the modern
era of sub-critical transitional turbulence with a prescient comment that brought
the topic firmly into the realm of statistical mechanics. He pointed out that the
interspersed patches of turbulence in the laminar background near the transition
would either grow by diffusing their energy to neighbouring locations, or would die
by suddenly, undergoing a fluctuation to the laminar state. From this slender basis,
he suggested that the dynamics resembles the behaviour of a statistical mechanical
model of particles hopping on a lattice: so-called directed percolation (DP), and
he postulated that this model’s critical behaviour would describe the sub-critical
laminar–turbulent transition. Later theoretical works showed semi-quantitatively that
DP behaviour seemed to arise from simple partial differential equation caricatures of
spatio-temporal intermittency (see, e.g. Chate & Manneville 1987). Moreover, recent
direct numerical simulations (DNS) of pipe flow showed the presence of turbulent
energy oscillations between small-scale nascent turbulence and a long-wavelength
azimuthal flow (a zonal flow), described by a predator–prey-like stochastic model that
could be mapped directly into DP near the critical Re (Shih, Hsieh & Goldenfeld
2016) using statistical mechanics techniques. Finally, recent experiments in a high
aspect ratio Taylor–Couette system (Lemoult et al. 2016) and in channel flow (Sano
& Tamai 2016) show scaling behaviour consistent with the DP predictions. Despite
these advances, direct and detailed verification that the Navier–Stokes equations
generated stochastic solutions in the DP universality class has seemed out of reach
due to the huge system sizes needed to observe the predicted effects. Moreover, an
open question remains as to the broad applicability of the DP scenario.

2. Overview

Against this background, Chantry, Tuckerman & Barkley (2017) now report an
unprecedented large-scale direct numerical simulation of a planar shear flow, showing
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in great detail that DP provides a quantitative and detailed description of the complex
flow structures that emerge in a large flow domain. The size of the flow domain is
very important to capture the necessary phenomena, because of the huge separation
of time scales that emerges near the transition. To date, the state-of-the-art was the
plane Couette simulations of Duguet, Schlatter & Henningson (2010), conducted
in a spatial domain whose [x, y, z] dimensions were [800h, 2h, 356h] where 2h is
the gap between the walls, and which lasted O(104) time units. In contrast, the
study of Chantry et al. (2017) was in a computational domain of streamwise and
spanwise size 2560h × 2560h, and lasted O(106) time units; thus it was not simply
an incremental improvement on the state-of-the-art. In fact, this difference is critically
important, because it is well established that the order of a phase transition can be
incorrectly ascertained if the domain is too small or the observation time is too short,
and Chantry et al. (2017) rehearse these arguments using coupled map lattices in the
first part of their paper.

So, how did Chantry et al. (2017) make such a significant step, and what did they
find?

First of all, they chose to study a simplified form of Couette flow between parallel
boundaries, known as Waleffe flow. In the simplification, they changed the boundary
conditions to be stress free rather than no slip. This trick might seem unphysical but
enables researchers to simulate the interior of the flow domain beyond the complicated
boundary layer structure at the walls. Secondly, the Waleffe flow, being an outcome of
stress-free boundary conditions, has no rapidly varying boundary layers near the walls,
and thus can be well represented by only four modes in the direction normal to the
walls, while the remaining directions are treated using standard spectral methods.

Turning now to their results, we need first to describe DP in a little more detail.
In DP, particles can hop on a periodic lattice in d dimensions, such as square or
triangular, but bonds between neighbouring sites are only present with a specific
probability p. Particles do not hop if there is no available bond. This percolation
process is directed because the paths traced out by the particles in space–time are
embedded in a d + 1-dimensional space, but the trajectory is always moving in the
direction of increasing time. The statistical geometry of DP clusters near the critical
percolation probability where trajectories first percolate through the system obeys
a host of power-law scaling relations, analogous to those arising in the theory of
second order or continuous phase transitions. For example, correlation lengths in
the space and time dimensions diverge near criticality, a characteristic of second
order phase transitions, both in and out of equilibrium (see, e.g. Goldenfeld 1992).
Because the correlation length is much larger than the lattice in the critical region,
DP behaves essentially like a continuum model, and can describe the Navier–Stokes
equations near their critical point. This is precisely analogous to the way in which
the liquid–gas phase transition has exactly the same critical behaviour as an array of
ferromagnetic electron spins on a crystal lattice (Goldenfeld 1992).

Chantry et al. (2017) measured what fraction of the flow was turbulent according
to a criterion set in advance for the energy possessed by the velocity deviation
from the laminar state. They found that this fraction grows from zero above a critical
Rec=173.80 with a power law ε0.583, where ε≡ (Re−Rec)/Rec. They also showed that
there are patches where laminar and turbulent regions alternate within the flow, with
a characteristic length that obeys scaling laws with associated exponents measured,
in agreement with the existing phase transition theory for DP. Their work shows
beyond reasonable doubt that this simulation based on the Navier–Stokes equations
is exhibiting a non-equilibrium phase transition in the DP universality class.
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3. Outlook

For the last decade, attention has focused on identifying the statistical features of the
laminar–turbulent transition. Now that a consensus is forming that DP is indeed the
correct description in several model experimental and computational flows, the next
step is surely to understand the mechanism of the transition. Traditionally, this would
involve identifying the underlying small-scale flow instability, e.g. a self-sustaining
process (see Waleffe 1997). However, this would not be sufficient here. The reason is
that a comprehensive description of transitional turbulence needs to account for the
statistical mechanical universality class, not just the underlying instability, and this
itself is dominated by long-wavelength physics, as we have seen above. This requires
an understanding of the nonlinear statistical interactions between the appropriate
degrees of freedom, and even in the context of equilibrium phase transition cannot
be done systematically starting from a first principles description (e.g. quantum
electronics in the case of magnets). Instead, there is no known alternative but to
use symmetry, conservation laws and the likely structure of turbulent–mean flow
interactions to generate the generic form of an effective long-wavelength description
of the transition, as was proposed by Shih et al. (2016) for pipe flow. Nevertheless,
the combination of a firm understanding of underlying flow instabilities and an equally
firm quantitative description of the long-wavelength statistical features of transitional
turbulence, as found by Chantry et al. (2017), means that the field is now entering
an exciting phase, invigorated by the interplay between fluid dynamics and statistical
mechanics.
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