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The impact of viscoplastic droplets on a free surface of water is studied. The droplet
undergoes an elasto-plastic deformation at the early stages of water entry. At large
time, the yield stress dominates; therefore, the droplet solidifies and reaches an
equilibrium shape. Depending on the impact velocity and the rheology of the droplet,
the final morphologies vary from pear-shaped to capsules that contain bubbles. We
perform an analysis of the orders of magnitude of the forces and introduce the relevant
dimensionless groups. Furthermore, we categorize the final shapes in a phase diagram
and analyse their geometrical properties. The process presents a method of making
non-spherical beads and capsules with tunable shapes and provides information on
the general problem of the impact of highly deformable objects on a liquid surface.

Key words: drops

1. Introduction
In the classical water-entry problem, a solid object passes through a water–air

interface and forms an air cavity, which later retracts, resulting in the formation
of a liquid jet. The problem has been extensively studied for more than a century
since Worthington (1908), and the effects of the relevant physical parameters, such as
density ratio, wettability and impact velocity, have been characterized (see Truscott,
Epps & Belden (2014) for a review). The dynamics of water entry, however, differ
when the deformability of the impacting object changes. A recent study on the impact
of elastomeric spheres on water demonstrated that the deformation of the object upon
impact and its consequent vibration notably change the shape of the air cavity (Hurd
et al. 2017). In the same context, one can look at the impact of an immiscible droplet
(e.g. water droplet on a bath of oil) as an ultimate case of water entry of highly
deformable objects, where the capillary forces tend to keep the shape spherical. In
such systems, the higher the inertia, the higher the deformation of the droplet, and,
eventually, fragmentation can occur (Lhuissier et al. 2013). Note that, in comparison
with the classic water-entry experiments, where the density of the impacting object
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Viscoplastic water entry 597

is much larger than the density of the liquid bath (e.g. steel ball impacting water), a
liquid–liquid system typically features a smaller impactor, a lower density ratio, and
therefore a smaller impact momentum.

In the present study, we investigate the water entry of a viscoplastic (also known
as yield stress) object. Such a material, if not sufficiently stressed, behaves like an
elastic solid, but once the stress exceeds a critical value (the yield stress), the material
deforms like a viscous fluid (typically with a nonlinear viscosity). Yield stress is a
common property in many of the materials we deal with on a daily basis, such as
toothpaste, cosmetic creams or muds. Besides, several industrial fluids such as waxy
oil feature this property (see Balmforth, Frigaard & Ovarlez (2014), Coussot (2014)
and Bonn et al. (2017) for reviews). A few studies have previously investigated the
impact and spreading of viscoplastic droplets on a solid surface. It is shown that yield
stress can prohibit the recoil of the droplet, retard the deformation after the drop has
reached the maximum shape, and prevent splashing (German & Bertola 2009; Luu
& Forterre 2009; Jalaal & Stoeber 2014; Blackwell et al. 2015; Jalaal, Balmforth &
Stoeber 2015; Jalaal 2016; Jalaal et al. 2018).

The present scenario offers a version of a water-entry problem, in a sense that an
initially solid material passes through an air–water interface. The system, nevertheless,
diverges from classical water-entry experiments in some ways. We expect that the
complex rheological properties of the soft impacting object change the dynamics of
the entry. First, if the stress due to the impact is larger than the yield stress, the
drop might undergo a (local or global) deformation, which in turn can change the
dynamics of the cavity. Second, the density of the impacting object is higher for
the majority of previous water-entry experiments (also see Truscott, Epps & Techet
2012). In comparison to the impact of immiscible droplets onto a water bath, the
solid-like properties of the impacting object, i.e. yield stress and elasticity, as well as
the shear-rate-dependent viscosity, alter the dissipation mechanism during the impact.
Furthermore, we expect a static droplet shape when the exerted stress is below the
yield stress everywhere inside the droplet.

Regarding applications, the subject of this work is directly relevant to the
production of capsules, beads and non-spherical particles (see e.g. Wang et al. 1997;
Beesabathuni et al. 2015; Lee, Beesabathuni & Shen 2015) where droplets polymerize,
passing through a liquid–air interface. Apart from its possible direct applications, the
current study might give a broader perspective on the general physics of impact
and penetration of deformable objects that undergo elasto-plastic deformations (Lush
1983; Peseux, Gornet & Donguy 2005).

The paper is organized as follows: in § 2, we provide information on the properties
of the materials used and describe the experimental conditions; in § 3, we first explain
the phenomena observed in the tests, followed by the force analysis and quantitative
measurements; § 4 concludes the results.

2. Experiments
2.1. Viscoplastic fluids

For our experiments, we used a mixture of Milli-Q water and a commercial hair
gel at five different concentrations. The polymeric solution is essentially an aqueous
mixture of Carbopol that is pH-neutralized with triethanolamine (see Dinkgreve et al.
2016). To increase the visibility of the droplets during the recordings, a small quantity
(0.02 wt %) of ink (Trypan Blue by Sigma) is added to the solution. Finally, the
samples are centrifuged at 2000 r.p.m. for 5 min to obtain a homogeneous mixture
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FIGURE 1. (Colour online) (a) The results of the oscillatory shear tests: symbols
connected with lines correspond to storage (G ′), and the dashed lines correspond to the
loss (G ′′) moduli, respectively. The symbols denote the measurements for the samples
listed in the legend. The polymer concentration decreases from sample 1 to 5. The
vertical lines refer to the values of the yield stress, τ0, from Herschel–Bulkley (HB) fits.
The magnitudes of G ′0 and G ′′0 are shown on the y-axis. (b) Flow curves from the γ̇ ,
shear-rate-controlled, tests: the symbols are the same as in panel (a). The lines correspond
to the HB fits (2.1). The inset shows the values of the apparent viscosity at low stresses.

without bubbles. We performed the rheological measurements using a rotational Anton
Paar rheometer (MCR 502) with a cone-and-plate configuration (2◦ angle and mean
gap of 1 mm). Rough surfaces were used in the measurements to avoid slip effects at
low shear rates (Roberts & Barnes 2001). First, we performed the oscillatory tests
for a range of shear stresses (roughly 0.03 Pa–100 Pa) at the fixed frequency of
1 Hz to identify the storage (G ′) and loss (G ′′) moduli. The values of G ′ and G ′′
were independent of the oscillation frequency within the range of 0.1–10 Hz. Second,
we obtained the steady-state flow curves of the materials in shear-rate-controlled (γ̇ -
controlled) experiments, where the samples were initially pre-sheared for 2 min in an
upward ramp of 10−2 s−1 < γ̇ < 500 s−1. Thereafter, the stress was measured in a
downward ramp in the same range. The flow curves were independent of waiting times
longer than 1 s. No hysteresis was observed in the up and down shear-rate ramps,
suggesting negligible thixotropy. Additionally, we repeated the rheology measurement
over the course of several days of the experiments to confirm that the samples retain
their properties throughout the experiments.

Figure 1 summarizes the rheology of the materials used in our experiments. The
results of the oscillatory tests reveal an elastic-dominant behaviour at low stresses,
where G ′ ≈ 10G ′′. Above a certain stress, the values of the storage modulus drop
by orders of magnitude. Meanwhile, the loss modulus initially increases, crosses the
curves of the storage modulus and then sharply decreases. Such behaviour shows a
transition at a critical stress, from an elastic solid-like material (with weak viscous
properties) to an elasto-viscoplastic material (with weak elastic properties). The
flow curves (figure 1b) display the characteristics of the materials above the critical
stress. The samples feature a shear-thinning behaviour, i.e. the viscosity reduces with
increasing shear rate. Moreover, the measured stress values approach the yield stress
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Sample τ0 (Pa) K (Pa sn) n G ′0 (Pa)

1 20.63 4.20 0.424 41.89
2 17.24 3.58 0.430 36.53
3 13.64 2.92 0.434 30.42
4 11.20 2.58 0.434 26.63
5 7.87 1.70 0.426 17.61

TABLE 1. Values of yield stress (τ0), consistency index (K), flow index (n) and storage
modulus (G ′0), from (2.1).

when γ̇ → 0. Consequently, the apparent viscosity diverges at this limit (see the inset
in figure 1b). We use a simple elasto-viscoplastic constitutive model to characterize
our samples:

τ = G ′0 γ if τ < τ0 and τ = τ0 +K γ̇ n if τ > τ0, (2.1a,b)

where γ is the strain, G ′0 = G ′(τ → 0), and K and n are the consistency and flow
indices, respectively. The model assumes the material to be a linear elastic solid, as
long as the shear stress is below the yield stress. Otherwise, if the stress is above
the yield stress, the material flows like a Herschel–Bulkley (HB) fluid (Herschel &
Bulkley 1926; also see Saramito 2009). In (2.1), if n< 1, the fluid is shear thinning;
if n>1, the fluid is shear thickening. For G ′0=0 and n=1, the model above reduces to
a Bingham model (Bingham 1917), where, if τ > τ0, the fluid flows with a constant
plastic viscosity (µp = K). Note that equation (2.1) ignores the viscous contribution
below the yield stress and does not include any elasticity above it (i.e. viscoelasticity).

The coefficients τ0, K, n and G ′0 are listed in table 1 for the fluids used in the
experiments. The higher the concentration of the polymer, the higher the yield stress
and the elastic storage modulus, i.e. the solid-like behaviour of the material is more
pronounced and the required stress to result in yielding is higher. The value variation
of the flow indices is nevertheless negligible. One can also compare the magnitude
of the yield stress listed in table 1 with the values of stress at which the curves of
G ′ and G ′′ cross over (yet another technique to measure the yield stress). The vertical
lines in the plot indicate the values of τ0 from the HB fits. These values are slightly
smaller than the ones where the curves of G ′ and G ′′ cross. This is consistent with
recent measurements of a similar type of viscoplastic fluid (Dinkgreve et al. 2016).

Recent work measuring the surface tension of Carbopol solutions found that its
deviation from that of water was small (less than 10 %) and that it did not vary
strongly with polymer concentration (Manglik, Wasekar & Zhang 2001; Jørgensen
et al. 2015). Here, we do not measure the surface tension ourselves and use the
fiducial value of σ = 0.072 N m−1 for both water and the gel. We measured the
density of the solutions using an Anton Paar DMA-35 density meter. The density
of the used water is 998.3 kg m−3, and the density of the viscoplastic gels varied
between 1000.0 and 1002.0 kg m−3. Note that, although the gels are in essence
miscible in water, the diffusion time scale is much larger than the time scale of our
experiments, i.e. Pe = U0Ds/D� 1, where Pe is the Péclet number, D is the mass
diffusion coefficient, U0 is the impact velocity, and Ds is a characteristic length scale
of the order of magnitude of the diameter of the droplet. Hence, the droplets are
effectively immiscible in the time frame considered here.
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FIGURE 2. (Colour online) (a) Experimental set-up for the investigation of viscoplastic
water entry. The shown dimensions are not to scale. (b) Shape of the droplets before
impact for different gels (symbols are the same as in figure 1). (c) Variation of the aspect
ratio versus J = τ0Ds/σ . The solid line is an empirical fit of A0 = e−1.25J .

2.2. Experimental set-up and initial shapes

Figure 2(a) shows a sketch of the set-up used for the impact test experiment. The drop
of the viscoplastic fluid forms quasi-statically at the tip of a nozzle connected to a
syringe pump. The inner and outer diameters of the nozzle are 1.15 mm and 1.65 mm,
respectively. Droplets detach under their weight with a reproducible shape. The impact
velocity is adjusted by varying the height of the nozzle and was measured just before
the impact, using an image processing code. The bath, filled with Milli-Q water, is
a cylindrical container with a diameter and height of 6 cm and 10 cm, respectively.
The size of the bath is big enough such that it does not influence the impact process.
The diffused light of the SLG-50S LED Fiber Optic Illuminator illuminates the water
surface and a Photron FASTCAM SA-1.1 high-speed camera, connected to a Zeiss
Milvus 100 mm f /2.0 Macro-Planar T∗ lens, records the process. The resolution of
the images is set to 1024 × 1024 pixels at a frame rate of 5000 frames per second
and a shutter speed of 8000 s−1 to eliminate motion blur at high impact velocities.
This results in a spatial resolution of ∼64 µm in the air and ∼54 µm in water. We
correct the measurements for optical diffraction inside the container.

It was shown previously that the shape of a viscoplastic droplet detaching from a
nozzle is mainly determined by the size of the nozzle, the yield stress and the surface
tension (German & Bertola 2010). If the capillary pressure is much larger than the
yield stress, the droplet will reach a spherical shape after the pinch-off. However, if
the yield stress dominates, the droplet will become more prolate. Figure 2(b) illustrates
the shape of the droplets for different gels. As expected, the larger the yield stress,
the smaller the aspect ratio of the droplet (A0 = D0/H0). For the fixed diameter of
the nozzle, we characterize this geometrical parameter with a non-dimensional number
J = τ0Ds/σ , where Ds = (6V/π)1/3 is the diameter of a spherical droplet of the
same volume, V . The final results follow an empirical fit of A0 = e−1.25J . Note that
the volume of the droplets for the range of the yield stresses we used do not vary,
resulting in a constant value of Ds = 3.2± 0.1 mm.
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5 mm t = 6 ms
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t = 10 mst = 4.8 ms t = 13 ms t = 17.2 ms t = 40 ms

t = 18.8 mst = 8 ms t = 20.8 ms t = 35 ms t = 41 ms
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FIGURE 3. (Colour online) Water entry of a viscoplastic droplet (sample 3; see table 1
for the properties) at different impact velocities: (a) U0 = 0.32 m s−1 (τ =Ds/U0 = 10×
10−3); (b) U0 = 0.72 m s−1 (τ = 4.44 × 10−3); (c) U0 = 1.12 m s−1 (τ = 2.86 × 10−3);
(d) U0 = 1.41 m s−1 (τ = 2.27× 10−3); and (e) U0 = 2.07 m s−1 (τ = 1.55× 10−3). See
supplementary movies available at https://doi.org/10.1017/jfm.2019.32.

3. Results
3.1. Phenomenology

This section outlines the qualitative mechanics of water entry of viscoplastic fluids.
Figure 3 shows the entry of a droplet of sample 3 for a range of impact velocities
0.32 < U0 < 2.07 m s−1. At the lowest impact velocity shown (figure 3a, with
U0 = 0.32 m s−1), the droplet undergoes a slight deformation, predominantly at the
bottom, where it first hits the surface. The droplet rapidly reaches an equilibrium
shape once it is fully submerged (t≈ 17 ms, which corresponds to a non-dimensional
time of t∗ = U0t/Ds ≈ 1.7). In this regime, the comparison with the initial shape of
the droplet reveals that the final shape features a flattened bottom and an unchanged
top. This suggests that only the bottom of the droplet shears and experiences the
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plastic deformation, while the top of the droplet falls freely. Here, we call such a
morphology a pear shape. The elastic deformation in this regime is minimal and the
size of the water cavity is small. Furthermore, after reaching an equilibrium shape, the
droplet sinks in the bath because of the density difference. Hereafter, the dynamics
is simply a solid-body falling motion. The falling motion of the droplets occasionally
features fluttering or a rotating motion (not shown here), previously observed for
falling non-spherical particles (e.g. Auguste, Magnaudet & Fabre 2013).

Figure 3(b) depicts the impact process at U0 = 0.72 m s−1. Similar to figure 3(a),
the majority of the deformation occurs at the early moments after the droplet touches
the water surface (0 < t < 16 ms) and it affects only the bottom of the droplet.
However, due to a higher impinging velocity, the stress on the droplet surface
is higher and, consequently, the bottom of the droplet suffers more from plastic
deformation. The top of the droplet does not deform, meaning it falls freely. We
still call such a final morphology a pear-like shape, as long as the brims of the
final shape are pointing downwards. Figure 3(c) shows the process of water entry
at U0 = 1.12 m s−1, where the further increase of the impact velocity results in
more substantial deformation of the droplet. Again, the majority of the deformation
occurs at the early stage of entry, and afterwards the droplet rapidly approaches a
static shape. In comparison to figure 3(b), the brims are now larger, thinner and
highly plastically deformed. Additionally, the depth of the air cavity at such speed
is comparable to the size of the droplet. The cavity forms at the early stages of the
droplet penetration and retracts while the droplet is still deforming. The retraction,
however, does not lead to the formation of a Worthington jet. At this speed, one can
also observe a late elastic deformation of the brims. After the droplet detaches from
the cavity, it decelerates, the shear stress rapidly decreases, and therefore the thin
brim bends back elastically (this can be seen by comparing the last two images in
figure 3c). The elastic deformation leads to a larger equilibrium time, t ≈ 35 ms in
this particular case. See appendix B for more quantitative details on the dynamics
of the droplets and the cavities. We refer to this morphology as the sombrero shape,
when the brim is facing upwards, and the tip of the peak in the middle of the droplet
is higher than the tip of the brim. In some cases, the thin brim of the sombrero
droplets is unstable and breaks due to the excessive shear stresses. The softer the gel,
or the stronger the impact, the thinner the brim is, and consequently it is more likely
to break.

Increasing the impact velocity at some point will lead to the formation of a bubble
and a Worthington jet. Figure 3(d) shows the images of an impact at U0= 1.42 m s−1.
At this velocity, the size of the cavity is larger, and it has a strong effect on the
dynamics of the droplet. Initially, the droplet grows radially while the cavity expands.
While retracting, the cavity and consequent flow inside the bath pull the droplet
towards its centre. The cavity finally breaks into two parts. A large portion of the
cavity that initially has a very sharp tip collapses and forms a Worthington jet
that later disintegrates. The second part is an air bubble that initially sticks to the
viscoplastic droplet (similar to the attached cavities in solid-body water entry). The
bubble, however, detaches later on and stays above the droplet in the low-pressure
wake zone. It finally rises to the surface of the bath (not shown here). The final shape
of the droplet now looks like a bowl with a sharp edge. We refer to this morphology
as a bowl-shaped droplet.

Further increase of the impacting momentum results in a surprising regime of
bubble encapsulation (figure 3e). Similar to the previous regime, the droplet expands
with the cavity. The breakup during the retraction, however, is different, where the
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(I) t/† < 0 (II) t/† ¡ 0+ (III) t/† ¡ O(1-10) (IV) t/† ≫ 1

FIGURE 4. Four successive stages of the water entry from left to right. Here τ =D/U0 is
the inertial time scale. This example belongs to the same condition shown in figure 3(b).

location of the pinch-off is inside the viscoplastic droplet, and therefore bubble
encapsulation occurs. Another observation is that, although inertia increases, the
velocity of the jet formed above the surface significantly reduces and it only breaks
into one large droplet. Further increase of the impacting velocity results in bubble
encapsulation while the Worthington jet does not break up at all. The final shape of
the droplet in this regime is close to a sphere and features a bubble inside: a capsule.
Capsules sink slowly due to the buoyancy forces. Indeed, balancing the buoyancy and
gravitational forces results in a critical bubble diameter of Dbub ≈ (

1
2 Dcap)

1/3, where
Dcap is the capsule diameter, i.e. a capsule with a bubble larger than Dbub will rise.
In our experiments, the size of the bubble is always slightly smaller than this value
and therefore the capsules sink slowly.

3.2. Forces and non-dimensional numbers
Section 3.1 highlighted two distinct regimes. At low impact velocities, the influence
of the cavity is minimal. By increasing the inertial effects, the size and the influence
of the cavity become more pronounced, and bubble entrainment occurs. We inspect
these two regimes separately, and compare our results to previous studies.

We look at the forces acting in the regime of low inertia (pears and sombreros)
in four temporal stages, as shown in figure 4. Before the impact (t < 0), the droplet
is falling freely under gravity (stage I). Comparing the viscous drag forces in air
(∼ρairU2

0CDD2
s ) and the yield stress forces (∼τ0D2

s ) results in a non-dimensional
number of the form IY = C−1

D τ0/ρairU2
0 . Prior to the impact, a typical value for the

Reynolds number is Re= ρairU0Ds/µair ∼O(100), which results in a drag coefficient
of CD ∼ O(1). Therefore, we estimate IY ∼ O(10), meaning that the shear stress
forces are not strong enough to induce plastic deformation. For the same period, a
comparison between the yield stress and the surface tension forces results in the
number J = τ0Ds/σ . As previously discussed in § 2.2, J ∼ O(0.1–1), meaning that
the capillary action can be strong enough to deform the droplets. In our experiments,
we have observed that the droplets slightly deform just after the pinch-off: the
sharp tips (high-curvature regions) locally smooth and the droplet slightly retracts.
Nonetheless, after a short time (which is much smaller than the falling time in all
cases), the droplet reaches an equilibrium shape before impacting on the free surface
(shown in figure 2b).

The early stages of the impact (stage II), i.e. the moment after the contact between
the viscoplastic droplet and the water bath, can be associated with shock-type
characteristics (Korobkin & Pukhnachov 1988). More complexities might also develop
due to the effect of the air layer, as well as the elasto-plastic deformation of the
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droplet. We do not address this regime in detail; nevertheless, in appendix A, we
provide an analysis that manifests a pressure wave with a magnitude much larger
than the yield stress at an effective time scale of ∼O(10−6 s). In our experiments,
we do not see any particular deformation of the droplet as a consequence of such a
pressure impulse.

Although the droplet decelerates in the early moments after it hits the surface,
its velocity (Ud) is still comparable with the impact velocity: 0.1U0 . Ud < U0

(also known for other impact and penetration problems (Yarin, Rubin & Roisman
1995; Berberović et al. 2009)). The penetration velocity at this stage results in a
velocity gradient at the droplet–bath interface and hence an azimuthal vorticity (stage
III in figure 4). In a classic Newtonian system, such vorticity typically leads to
the emergence of vortex rings (see Thomson et al. 1886; Peck & Sigurdson 1994;
Dooley et al. 1997; San Lee et al. 2015; Thoraval, Li & Thoroddsen 2016). For a
viscoplastic droplet, the rollup deformation due to the vortex rings is not only damped
due to the total viscosity, but also ceases when the yield stress dominates (also see
appendix C). The moment the internal stress generated by the vortex motion is below
the yield stress, the droplet approaches a final equilibrium shape. One can now follow
the same calculation as above in air to obtain Re = ρwaterUdDs/µwater ∼ O(100), and
CD ∼ O(1). Accordingly, IY ∼ O(1), i.e. at the initial moments of the submergence,
the shear stress on the surface of the droplet is comparable to the yield stress and
therefore enough to begin a plastic (and also elastic) deformation.

At stage IV (t � 1), assuming a spherical shape, balancing weight (∼Vρdropletg),
buoyancy (∼Vρwaterg) and drag (∼ 1

2ρwU2
f CDπR2

s ) forces results in a terminal velocity
of Uf = [

4
3(gDs/CD)(ρD/ρw − 1)]0.5. At this stage, considering the small density ratio

(ρD/ρw ≈ 0.002), and assuming the viscous drag coefficient CD = 24/Re, one finds
a final velocity of Uf ∼ O(10−3 m s−1). Accordingly, IY ∼ O(104). Additionally, the
surface tension vanishes at this stage, hence, J ∼ 0. Therefore, long after crossing the
air–water interface, the droplet retains its shape because of the yield stress and sinks
slowly like a solid body.

The force analysis explained above for the low-impact-velocity regimes suggests that
the majority of the deformation occurs from the moment of impact until shortly after
the droplet is fully submerged (roughly 0< t/τ < 10, where τ =Ds/U0). In contrast,
before impacting the surface (t/τ < 0) and sufficiently long enough after passing the
interface (t/τ � 1), the droplet maintains its shape.

Stage III in the analysis above drastically changes at high impact velocities. For the
regimes of bowl-shaped droplets and capsules, the air cavity plays a significant role
in defining the final shape of the droplets. This is closely related to the well-studied
phenomena of cavity formation and bubble entrainment (Bergmann et al. 2006, 2009;
Peters, van der Meer & Gordillo 2013; Gielen et al. 2017). For the impact of a
droplet on a bath of the same fluid, it is known that increasing the impact velocity
leads to the formation of a cavity in the bath and wave swells at the free surface.
For a narrow region of parameter space, the development of a moving capillary
wave down the cavity wall results in bubble entrainment (Pumphrey, Crum & Bjørnø
1989; Oguz & Prosperetti 1990). In our case, the viscoplastic droplet spreads over the
cavity while it grows. When the cavity stops, the different position of the free surface
begins to retract with different speeds that eventually leads to the pinch-off of the
tip and bubble entrainment. If the pinch-off occurs inside the droplet, capsules form.
Balancing the capillary-wave time scale tw≈ [8(σ/ρ)κ3

]
−1/2, where κ ≈ 1/Ds, and the
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time corresponding to the maximum crater depth, tm ≈ (DsU
1/3
0 ρ1/4)/(64gσ)1/4, yields

We∼ Fr1/5, where We=
ρU2

0Ds

σ
and Fr=

U2
0

gDs
. (3.1a,b)

If the droplet spreads on the entire surface of the cavity, the cavity will grow
perfectly radially and therefore no bubble will form in the retraction phase. Balancing
the spreading diameter Dsp ≈ DsWe (from the virtual mass force estimation) and the
crater diameter Dc ≈DsFr1/4 (from the energy balance), we see that

We∼ Fr1/4, (3.2)

as the upper-bound scaling limit of the bubble entrainment regime for inviscid impacts.
The scaling above agreed well with the experimental fits of We ∼ Fr0.179 and We ∼
Fr0.248, for lower and upper limits, respectively (Oguz & Prosperetti 1990). Note that
the prefactors in (3.1) and (3.2) are to be determined by experiments or numerical
simulations. For an inviscid system, one expects a vortex-ring region below the lower
limit, no bubble entrapment above the upper limit (Rein 1996) and bubble entrainment
between the two.

Figure 5 compares our results with the results of Oguz & Prosperetti (1990) and
a collection of other experimental data, some previously collected in Murphy et al.
(2015). The inviscid bubble entrainment limits slightly underestimate the boundaries
of bowls and capsules in our system, where bubbles form. This is consistent with the
findings of Deng et al. (2007), who found that increasing the viscosity of the liquid
weakens the capillary waves and shifts the limits: therefore, the higher the viscosity,
the higher the impact velocity required to entrain a bubble. We anticipate that the
presence of the viscoplastic layer at the free surface, during the retraction of the cavity,
results in the same trend.

3.3. Phase diagram and final shapes
To classify the final morphologies of the viscoplastic droplets, we introduce a
Reynolds number of the form

Re=
ρU2

0

K(U0/Ds)n + τ0
. (3.3)

The number above compares the inertial stress and the total internal stress, which
contains two parts due to the power law and the plastic viscosities. By using this non-
dimensional group, we assume that the yield stress only contributes to the final shape
via the plastic viscosity. A Reynolds number of this type has previously been used in
the context of viscoplastic droplets (Blackwell et al. 2015) and other configurations
(Thompson & Soares 2016; Liu & de Bruyn 2018) (also see Madlener, Frey & Ciezki
2009; Chen & Bertola 2017). In our experiments, except at very low impact velocities,
the stress due to the inertia (ρU2

0 ∼ O(102–104)) is at least an order of magnitude
larger than the viscous stresses (20 . K(U0/Ds)

n . 70, and 7 . τ0 . 20). Beside the
Reynolds number, we can choose either the Weber or the Froude number (see (3.1)),
because our equivalent diameter, Ds, is fixed and therefore Fr=We/Bo, where Bo=
ρgD2

s/σ ≈ 1.4 in all cases. We categorize the final shape of the droplets in a phase
diagram. Figure 6 shows the map of the final shapes in the Fr–Re space. At small Re
and Fr, when inertial forces are not much stronger than the viscous stresses, and the
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101 102

Fr

We

103

101

102

103

No bubble – current study (pears and sombreros)
Bubble entrapment – current study (bowls)
Bubble entrapment – current study (capsules)

Bubble entrapment (reference set II)
Thick jet (reference set III)

Vortex rings (reference set I)

Upper boundary of the bubble entrapment
(Oguz & Prosperetti 1990)

Lower boundary of the bubble entrapment
(Oguz & Prosperetti 1990)

FIGURE 5. (Colour online) A We–Fr plot showing the different behaviour upon impact
of a droplet onto a bath. Reference set I: Chapman & Critchlow (1967), Esmailizadeh
& Mesler (1986), Cai (1989), Pumphrey & Elmore (1990), Sigler & Mesler (1990), Rein
(1996), Elmore, Chahine & Oguz (2001), Leng (2001), Deng, Anilkumar & Wang (2007)
and Liow & Cole (2009). Reference set II: Pumphrey & Elmore (1990), Rein (1996),
Morton, Rudman & Jong-Leng (2000), Elmore et al. (2001), Leng (2001), Deng et al.
(2007) and Liow & Cole (2009). Reference set III: Worthington (1883, 1908), Franz
(1959), Van de Sande, Smith & Van Oord (1974), Macklin & Metaxas (1976), Hallett &
Christensen (1984), Hsiao, Lichter & Quintero (1988), Khaleeq-ur Rahman & Saunders
(1988), Cai (1989), Pumphrey & Elmore (1990), Rein (1996), Morton et al. (2000),
Fedorchenko & Wang (2004), Tomita, Saito & Ganbara (2007) and Bisighini et al. (2010).

cavities are small, the droplet deforms only at the bottom, and the final morphologies
are pear-shaped. By increasing Re and Fr (i.e. inertial effects), the shapes transit to
sombreros and bowls. Eventually, at sufficiently large Re and Fr, the capsules are
formed. Figure 6 also highlights the boundaries in which the Worthington jet is formed
(dashed line) and damped (dashed-dotted line). In between these two boundaries, a jet
always forms and breaks up into one or multiple droplets due to the Rayleigh–Plateau
instability.

We elaborate on the geometrical characteristics of the final shapes, measuring
the final aspect ratio of the droplets: Af = Df /Hf , where Df and Hf are the final
diameter and height, respectively. Figure 7(a,b) shows the variation of Af versus
the Reynolds and Froude numbers, respectively. For a few data points, where Re
and Fr are small, the aspect ratio is smaller than 1, i.e. only a small portion of the
initially prolate droplet undergoes plastic deformation. For the pears and sombreros,
increasing the inertial effects leads to a larger aspect ratio. For Re . 35, the data of
all samples collapses with an almost linear dependence on Re. When plotted versus
the Froude number, the values of the final aspect ratio depend on the rheology, for
the same regime of low inertia: the softer the gel, the higher the aspect ratio. After
reaching a maximum, the values of Af drop. This is when the regime transition
to the bowl-shaped droplets occurs. The aspect ratio approaches unity (spherical
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FIGURE 6. (Colour online) Different regimes of the final shapes. Symbols correspond to
different shapes; see the legend.

capsules) with increasing inertial effects. Contrary to the previous two regimes, now
the Froude number scales the data. We point out that the values of A0 depend on the
initial shape of the droplets (see figure 2c). Therefore we cannot make any scaling
argument based on figure 7(a,b). We also look at the ratio of the final aspect ratio to
the initial one, Af /A0. Similar to the trends of Af , the ratio initially increases with
inertia (for pears and sombreros). The values drop when transitioning to the regime
of bowl-shaped droplets. Interestingly, the final relative aspect ratio of the capsules
(crosses in figure 7) seems to be only slightly dependent on the Froude number,
reaching a universal value of Af /A0 ≈ 3.2. The origin of this number, nonetheless,
is not clear to us at this point. The values of the relative aspect ratio represent, to
a degree, an efficiency factor of a water-entry system in deforming a viscoplastic
droplet, where, for the regime of sombreros, it reaches values of as large as 10.

4. Conclusion
In this paper, we have experimentally studied the water entry of a viscoplastic

object. The system offers a method to sculpt the shape of droplets by merely making
them pass through an air–water interface at different velocities. The problem shares
characteristics with a classical water-entry problem of solid objects and the impact
of immiscible droplets on a liquid surface. We show that the droplets reach the free
surface with a static shape (balancing the capillary pressure and the yield stress),
deform plastically upon entry (due to the shear stress and the motion of the cavity),
and sink with a static shape at large time (balancing drag and gravity forces). The
final shapes can be categorized using Reynolds and Froude numbers. By increasing
these numbers, the shape of a viscoplastic droplet shifts from pears to sombreros to
bowls, and eventually capsules. We categorize the final morphologies in a regime
map and provide information on their final aspect ratio.
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Sample 1
Sample 2
Sample 3
Sample 4
Sample 5

t < 0 t ≫ 1

D0

H0 Hf

Df

FIGURE 7. (Colour online) Final aspect ratio (A0 = D0/H0) versus (a) Reynolds and
(b) Froude numbers. Also, relative final aspect ratio (Af /A0) versus (c) Reynolds number
and (d) Froude number. Symbols represent different final shapes: pears (circles), sombreros
(squares), bowls (pluses) and capsules (crosses). The inset in (c) shows the schematics of
the initial and final shapes.

Our study has direct applications in non-spherical bead production. Additionally,
among the final shapes, the production of capsules (especially if implemented on
small scales) might be of particular interest for applications involving polymeric
capsules such as controlled release of drugs, food additives and cell encapsulations
(Zhang et al. 2006). In a broader perspective, the system provides information on
the impact of elasto-plastic objects on water which has a wide range of applications
in structure engineering (Peseux et al. 2005; Seddon & Moatamedi 2006). Finally,
we would like to remark that more theoretical studies are required to explore many
details of such a complicated system. An ideal model should involve a mathematical
way to solve the moving boundaries of two deformable phases and incorporate
the rheological properties. The development of such a model is currently work in
progress.

Acknowledgements
The authors thank C. Seyfert, D. van der Meer and A. Prosperetti for useful

discussions.

Supplementary movies
Supplementary movies are available at https://doi.org/10.1017/jfm.2019.32.

Appendix A. First few moments
At the moment of impact, the bottom of the droplet experiences a sudden change of

surrounding media, with a different density. This results in a shock-type pressure wave
(water-hammer effect). Following the work of Miloh (1991), we can find an analytical
expression for the small-time slamming coefficient:

CS(t∗)= 1
2 FS/(ρwπD2

s U2
0)≈ 7.77t∗0.5 − 8.38t∗ − 12.05t∗1.5 +O(t∗2), (A 1)
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FIGURE 8. (Colour online) (a) Droplet diameter for sample 3 at different impact velocity.
The inset is the same curve in a linear–linear scale. (b) Cavity maximum height for sample
2 at different impact velocity. The inset is the same curve in a linear–linear scale. The
red dashed line in (b) shows Hc/Ds = 0.44t/τ .

where FS is the slamming force and t∗ = t/τ . Such analysis is common in slamming
and water-entry processes to find the maximum shock pressure. Normalizing the
slamming force with the effective area, A(t∗)=πD2

s (t
∗
− t∗2), and the yield stress, τ0,

leads to I0+ =FS/τ0A. This I0+ is singular at t= 0, as the magnitude of the slamming
force decays much faster than the area, i.e. the slamming pressure is much larger
than the yield stress at t = 0+. The time scale of such phenomena is nonetheless
small (Ds/c∼O(10−6 s)), where c is the speed of sound in water. In our experiments,
we did not see any effect of such pressure shock on the droplet.

Appendix B. Dynamics
Figure 8 shows some qualitative analysis of what is explained in § 3.1. Figure 8(a)

shows a series of examples of the temporal variation of the diameter of droplets
of sample 3 at different impact velocities (only pears and sombreros are shown).
In all cases, the droplet’s diameter increases, almost linearly, reaching a maximum
diameter at t/τ ≈ 3. The droplet then reaches an equilibrium diameter while it
is elastically deforming. If the impact velocity is high enough, the brims of the
sombreros elastically oscillate, as shown in § 3.1.

Figure 8(b) shows the evolution of the maximum height of the cavities for droplets
of sample 2 at different impact velocities. Similar to figure 8(a), we exclude the
bowls and capsules. The cavity height, at short time, grows linearly. The red dashed
line denotes Hc/Ds= 0.44t/τ , corresponding to the early-stage prediction of Bisighini
et al. (2010), using an inviscid theory and ignoring the effects of gravity and droplet
deceleration. After reaching a maximum value, the cavity retracts. The smaller the
impact velocity, the smaller the cavity and the sooner it retracts.

Appendix C. Very small and very large yield stress
The mechanics of viscoplastic water entry reported in the text change when the gel

becomes very soft or very hard. By reducing the concentration of the polymer, we
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t = 3.5 mst = 0 ms t = 8 ms t = 23 ms

t = 13 mst = 0 ms t = 29 ms t = 205 ms

5 mm(a)

(b)

FIGURE 9. (Colour online) Impact of (a) a soft gel droplet (τ0=2 Pa) at U0=0.32 m s−1

and (b) a hard gel (τ0 = 35 Pa) at U0 = 0.65 m s−1.

approach a Newtonian droplet. Figure 9(a) shows an example of water-entry process
for a gel with τ0≈ 2 Pa at U0= 0.32 m s−1. The droplet highly deforms at the early
stage of the impact. Additionally, the motion of the free surface and the resultant
fluid motion inside the bath significantly affect the shape of the droplet: the droplet
first retracts with the cavity and later is pushed down (t = 29 ms). Eventually, the
vortex rings form and largely develop (t= 205 ms). The yield stress only appears to
be important at the late time when the sedimentation velocity and the flow around the
droplet are small. Such a regime is close to impact of immiscible viscous droplets,
previously studied by many (e.g. see San Lee et al. 2015; Thoraval et al. 2016).

Figure 9(b) shows an example of impact of a viscoplastic droplet of τ0 = 35 Pa
at U0 = 0.65 m s−1. The large yield stress results in a very small initial aspect ratio,
which makes the experiments difficult. In several cases, the droplet already buckles
during the formation (see Balmforth & Hewitt 2013). Also, a normal impact was
hard to achieve, since the droplet tends to rotate before the impact. In a successful
experiment, the tall droplets undergo buckling upon impact: the bottom of the droplet
yields and deforms, and when the droplet is crossing the free surface, it bends. The
process typically associates with bubble formation as well (t= 8 ms).
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