MATHEMATICAL NOTES

Manuscripts for this Department should be sent to R. D. Bercov and A. Meir, Editors-inChief, Canadian Mathematical Bulletin, Department of Mathematics, University of Alberta, Edmonton 7, Alberta.

PERMUTATION FUNCTIONS ON A FINITE FIELD

BY
 AIDEN BRUEN

1. Summary. Using a well-known theorem of Burnside on permutation groups of prime degree we offer new and simplified proofs of Theorems A, B, B' below for the case $q=p$ a prime.
2. Background. In [1] Carlitz proved the following interesting result, which has been of considerable importance in the theory of finite planes (see [3, p. 23]).

Theorem A (Carlitz). Let F_{q} denote the finite field of order q, where $q=p^{n}$ is odd. Let f be a function from F_{q} to F_{q} satisfying the following conditions.
(i) $f(0)=0, f(1)=1$
(ii) $a \neq b \Rightarrow(f(b)-f(a))(b-a)^{-1}=s$, where s is some nonzero square in F_{q} and a, b are in F_{q}.
Then it follows that $f(x)=x^{p^{j}}$ for some j in the range $0 \leq j<n$.
This result has been generalized in [2] as follows.

Theorem B (McConnel). Let F_{q} be the finite field of order $q=p^{n}$. Let $d \neq 1$ be any proper divisor of $q-1$ and set $q-1=m d$. For x in F_{q} put $\psi_{d}(x)=x^{m}$. Suppose f is any function from F_{q} to F_{q} satisfying the following conditions.
(i) $f(0)=0, f(1)=1$
(ii) $\psi_{a}(f(b)-f(a))=\psi_{a}(b-a)$ for all a, b in F_{q}.

Then it follows that $f(x)=x^{p^{j}}$ for some j in the range $0 \leq j<n$.
We note that by putting $d=2$ Theorem A follows from Theorem B. Also, condition (ii) implies that f is actually a permutation function on F_{q}.

Using the notation there, one can show that Theorem B is equivalent to the more pleasant-sounding.

Theorem B'. Let f be a function from F_{q} to F_{q} such that $f(0)=0, f(1)=1$. Assume also that $a \neq b \Rightarrow(f(b)-f(a))(b-a)^{-1} \in G$ where G is some given proper subgroup of the multiplicative group F_{q}^{*} of F_{q}. Then $f(x)=x^{p^{3}}$ with $0 \leq j<n$.

Proof. The multiplicative group F_{q}^{*} of F_{q} is cyclic, with generator w say. Let f satisfy the hypotheses of Theorem B. Now let $G=\left\{x \in F_{q}^{*} \mid x^{m}=1\right\}$. Then G is a proper (cyclic) subgroup of F_{q}^{*} of order m, with generator w^{d}, where $q-1=m d$. Thus the hypotheses in B^{\prime} are satisfied. The converse follows from the fact that if G is a finite group of order m, then x in G implies $x^{m}=1$.

We proceed to show Theorem B^{\prime} for the case $q=p$ a prime. The heart of the matter lies in the following simple observation.

Theorem 1. Let S denote the class of all functions from F_{q} to F_{q} satisfying the following condition. $a \neq b \Rightarrow(f(b)-f(a))(b-a)^{-1} \in X$ for all $a \neq b$ in F_{q}, with X being some given proper subgroup of $F_{q}^{*}=F_{q}-\{0\}$. Then, under composition of functions, the set S forms a group.

Proof. S is finite. Thus it suffices to show that f, g in S implies $f g$ is in S, where $f g$ denotes the composition of f, g. Let a, b be in F_{q} with $a \neq b$. Then it follows that $g(b) \neq g(a)$. Put $u=g(b), v=g(a)$. Now

$$
\begin{aligned}
\frac{f g(b)-f g(a)}{b-a} & =\frac{f(g(b))-f(g(a))}{g(b)-g(a)} \cdot \frac{g(b)-g(a)}{b-a} \\
& =\frac{f(u)-f(v)}{u-v} \cdot \frac{g(b)-g(a)}{b-a}
\end{aligned}
$$

The product of 2 elements of X is in X and the result is immediate.
We can now regard S as a permutation group on F_{q}. With the notation of theorem 1 we obtain

Lemma 2. S is transitive, but not doubly transitive, on the elements of F_{q}.

Proof. S contains the translations $x \rightarrow x+d$ with d in F_{q}, since $1 \in X$. Thus S is transitive on F_{q}. Let $t \neq 0$ be any element of F_{q} not in the proper subgroup X. Then there is no function f in S such that $f(0)=0$ and $f(1)=t$ say. Thus S is not doubly transitive on F_{q}.

Let us now specialize to the case $q=p$ a prime. In [4, p. 53] the author discusses the proof of a result of Burnside [4, Theorem 7.3] concerning finite permutation groups of prime degree. An examination of the proof of that result will easily reveal.

Theorem 3. Let S be a transitive group of permutation functions on F_{p}, the field of order p, with p a prime. Assume that S contains the mapping $x \rightarrow x-1$ and assume also that S is not doubly transitive on the elements of F_{p}. Then every function f in S is given by $f(x)=c x+d$, for suitable c, d in F_{p}.

Now we can easily prove Theorem B, that is, Theorem \mathbf{B}^{\prime}, for the case $q=p$. We use the notation of Theorem B^{\prime}. Suppose f is a function on F_{q} to F_{q} such that $a \neq b \Rightarrow(f(b)-f(a))(b-a)^{-1} \in G$. Then f must be contained in the group S of Theorem 1. Now S contains all translations $x \rightarrow x+d$. Using Lemma 2 and Theorem 3 we get then that $f(x)=c x+d$. Since also $f(0)=0, f(1)=1$ the result follows.

It is not inconceivable that Theorem B^{\prime} in full can be proved by using information on permutation groups of degree p^{n}. The author is investigating this possibility.

References

1. L. Carlitz, A theorem on permutations in a finite field, Proc. Amer. Math. Soc. 11 (1960), 456-459.
2. R. McConnel, Pseudo ordered polynomials over a finite field, Acta Arith. 8 (1963), 127-151.
3. T. G. Ostrom, Vector spaces and construction of finite projective planes, Arch. Math. 19 (1968), 1-25.
4. D. S. Passman, Permutation groups. Benjamin, New York, 1968.

Colorado State University, Fort Collins, Colorado

University of Western Ontario, London, Ontario

