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1. Summary. Using a well-known theorem of Burnside on permutation groups 
of prime degree we offer new and simplified proofs of Theorems A, B, B' below for 
the case q=p a prime. 

2. Background. In [1] Carlitz proved the following interesting result, which has 
been of considerable importance in the theory of finite planes (see [3, p. 23]). 

THEOREM A (Carlitz). Let Fq denote the finite field of order q, where q=pn is odd. 
Let f be a function from Fq to Fq satisfying the following conditions. 

( i ) / (0)=0, / ( l )=l 
(ii) a9£b=>(f(b)—f(a))(b—a)~1=s, where s is some nonzero square in FQ and 

a, b are in Fq. 
Then it follows thatf(x)=xp for some j in the range 0 < y < « . 

This result has been generalized in [2] as follows. 

THEOREM B (McConnel). Let Fq be the finite field of order q=pn. Let d^l be 
any proper divisor ofq—l and set q—\=md. For x in Fqput ipd(x)=xm. Suppose 
fis any function from Fq to Fq satisfying the following conditions. 

ffl/(0)=0,/(l)=l 
(ii) y>d(f (b)-f(a))=y)d(b-a) for all a, b in Fq. 

Then it follows thatf(x)=xp for some] in the range 0 < / < « . 
We note that by putting d=2 Theorem A follows from Theorem B. Also, 

condition (ii) implies that fis actually a permutation function on Fq. 
Using the notation there, one can show that Theorem B is equivalent to the more 

pleasant-sounding. 

THEOREM B'. Let f be a function from Fq to Fq such thatf(0)=0,f(l)=l. Assume 
also that a^bz>(f(b)—f(d))(b--d)~1 e G where G is some given proper subgroup of 
the multiplicative group Fq of Fq. Thenf(x)=xv with 0<j<n. 
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Proof. The multiplicative group Fq of Fq is cyclic, with generator w say. Let / 
satisfy the hypotheses of Theorem B. Now let G={x e Fq | xm=l}. Then G is a 
proper (cyclic) subgroup of F* of order m, with generator wd, where q—l=md. 
Thus the hypotheses in B' are satisfied. The converse follows from the fact that 
if G is a finite group of order m, then x in G implies xm=l. 

We proceed to show Theorem B' for the case q=p a prime. The heart of the 
matter lies in the following simple observation. 

THEOREM 1. Let S denote the class of all functions f from Fq to Fq satisfying the 
following condition. a^b^>{f{b)—f(a)){b—dy1eXfor all a^b in Fq, with X 
being some given proper subgroup of F*=Fa—{0}. Then, under composition of 
functions, the set S forms a group. 

Proof. S is finite. Thus it suffices to show that / , g in S implies fg is in S, 
where fg denotes the composition off g. Let a, b be in Fq with a^b. Then it follows 
that g(b)?£g(a). Put u=g(b), v=g(a). Now 

fg(b)-fg(a) _/(gflQ)--/(g(a)) g(b)-g(a) 
b-a g(b)-g(a) b-a 

J(u)-f(v) g(b)-g(a) 
u—v b—a 

The product of 2 elements of X is in X and the result is immediate. 
We can now regard S as a permutation group on Fq. With the notation of theorem 

1 we obtain 

LEMMA 2. S is transitive, but not doubly transitive, on the elements of Fq. 

Proof. S contains the translations x-+x+d with d in Fq, since l e i . Thus S is 
transitive on Fq. Let t^O be any element of Fq not in the proper subgroup X. Then 
there is no function fin S such that / (0)=0 and/ ( l )=7 say. Thus S is not doubly 
transitive on Fq. 

Let us now specialize to the case q=p a prime. In [4, p. 53] the author discusses 
the proof of a result of Burnside [4, Theorem 7.3] concerning finite permutation 
groups of prime degree. An examination of the proof of that result will easily 
reveal. 

THEOREM 3. Let S be a transitive group of permutation functions on Fp, the field 
of order p, withp a prime. Assume that S contains the mapping x—>x— 1 and assume 
also that S is not doubly transitive on the elements of Fv. Then every function f in S 
is given byf(x) = cx+d,for suitable c, d in Fv. 
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Now we can easily prove Theorem B, that is, Theorem B', for the case q=p. We 
use the notation of Theorem B'. Suppose / is a function on Fq to Fq such that 
a^b^>{f(b)—f(a))(b—aY1eG. Then / must be contained in the group S of 
Theorem 1. Now S contains all translations x-+x+d. Using Lemma 2 and Theorem 
3 we get then thatf(x)=cx+d. Since a lso / (0)=0, / ( l ) = l the result follows. 

It is not inconceivable that Theorem B' in full can be proved by using information 
on permutation groups of degree pn. The author is investigating this possibility. 
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