P 52. Let n be an integer >2 and put $\omega=e^{2 \pi i / n}$. Show that if $f(z)$ is regular for $|z|<A$ and satisfies the equation
(1) $\prod_{r=0}^{n-1} f\left(x_{0}+\omega^{r} x_{1}+\ldots+\omega^{(n-1) r_{x-1}}\right)$

$$
=\prod_{r=0}^{n-1}\left\{f\left(x_{0}\right)+\omega^{r} f\left(x_{1}\right)+\ldots+\omega^{\left.(n-1) r_{f\left(x_{n-1}\right.}\right)}\right\}
$$

where $x_{0}, x_{1}, \ldots, x_{n-1}$ are arbitrary complex numbers, then $f(z)=a z$, where a is some complex constant.
L. Carlitz, Duke University

P 53. For real $\alpha, \beta, \gamma, \delta$ and $(\alpha x+\beta y)(\gamma x+\delta y)=$ $a x^{2}+b x y+c y^{2}$ prove that $\max (a, b, c) \geq 4 / 9(\alpha+\beta)(\gamma+\delta)$.
L. Moser and J.R. Pounder, University of Alberta

P 54. Let S be a developable surface,
(i) Prove: If S contains a straight line which is not a generator, S is plane.
(ii) Given a circular arc C, determine those S such that every generator meets C. Suppose S can be mapped into the plane isometrically such that C is mapped into a straight line. Show that S then is a cylinder.
P. Scherk, University of Toronto

