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Reference 
1. F. G.-M., Exercices de Geometrie, Editions Jacques Gabay, Paris, 

(1991). This is a reprint of the 6th edition published by Mame and De 
Gigord (1920). 

(F. G.-M. is Frere Gabriel-Marie, whose given name was Edmond Jean-
Antoine Brunhes (1834-1916). He was a member of the Order of Christian 
Brothers of La Salle, a teaching Order, and was the Superior from 1897 to 
1913. He wrote several mathematical works which, under the rules of the 
Order, had to appear over the initials of the religious name of the current 
Superior.) 

Correspondence 
DEAR EDITOR, 

Proofs of the irrationality ofe 
The celebration of the tercentenary of Euler's birth prompts me to raise 

a question that has nagged me for several years. It is generally accepted that 
Euler in his 1737 paper on continued fractions (Enestrom number, E71) 
provided all the ingredients for the first proof of the irrationality of e by 
establishing that it has the non-terminating simple continued fraction 
[2;1,2,1,1,4,1,1,6,1,1,...]; he reprised the details in his later book Introductio 
in analysin infinitorum (E101, E102) and in a later paper (E595). 

My query is this. Who was the first person to give the now standard 
short proof of the irrationality of e, by showing that 

^ n! 
0 < n\e - \ — < 1 a nd deducing that n\e is never an integer? 

Certainly this proof was common currency by the time of the late 19th 
century classic algebra texts such as Hall and Knight's Higher algebra and 
Chrystal's Algebra, but I would be very interested to learn of any 18th or 
early 19th century sightings! 

Yours sincerely, 
NICK LORD 

Tonbridge School, Kent TN9 UP 
DEAR EDITOR, 

Correction & Further Generalisation: Note 91.65 A question of balance: an 
application of centroids (November 2007) 

I am grateful to John Silvester, King's College London, for kindly 
pointing out an error in my attempted affine proof of the Lemma used in the 
above note, as well as for other corrections and improvements. This in turn 
stimulated a further generalisation of the main result as given below. 

Though an affine transformation sends a parallelogram to a 
parallelogram, it cannot transform two parallelograms into two 
parallelograms with corresponding sides parallel unless the original 
parallelograms already had their corresponding sides parallel. What I 
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actually had in mind was to use different affine transformations on different 
parts of the figure, and whilst it is possible to construct a proof by this 
approach, it is unnecessarily complicated. (One could use the fact that, if/ is 
an affine transformation, then the map g given by g(u) = \{u + /(«)) is 
also affine). 

Fortunately the proof of the Lemma is easy by using vectors, complex 
numbers or coordinates. 
Lemma: Given two parallelograms ABCD and IJKL, the midpoints E, F, G, 
H of the segments AI, BJ, CK, DL form another parallelogram (see Figure 
1). (The diagram shows a case with the parallelograms both labelled 
anticlockwise, but both lemma and proof work equally well in all cases.) 

FIGURE 1 

Proof: Writing a = {a.\, a2) for the vector representing A, etc, the condition 
for ABCD to be a parallelogram i s a - b = d - c (opposite sides, equal length 
and parallel) or equivalently a + c = b + d. Similarly, for IJKL, we have 
i + k = j + 1, from which follows (a + i) + (c + k) = (b + j) + (d +1). 
Dividing by 2, we have the condition for the four midpoints to form a 
parallelogram (provided they are not collinear, or coincident, which they 
might be; but we will regard this as a degenerate parallelogram). In addition: 
the centre X of ABCD is \ (a + c)), the centre Z of IJKL is -̂(i + k) and the 
centre Y of EFGH is £[(a + i) + (c + k)], which shows that Y is the 
midpoint of XZ. 

The main theorem in the note can also be formulated more precisely and 
further generalised with the identical proof as before. 
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FIGURE 2 

Generalised Theorem 
Given four points A, B, C, D, and four directly similar quadrilaterals 

APXP2B, CQiQ2B, CR&D, AS^D with respective centroids P, Q, R, S, let K, 
L, M and N be the midpoints of the segments P1Q2, Q1R2, R1S2 and S\P2 

respectively (or of P&, S&, RXQ2 and Q,P2), and let V, W, X be the 
centroids of the quadrilaterals ABCD, PQRS, KLMN respectively (see Figure 
2). Then: 
(i) PQRS is a parallelogram; 
(ii) KLMN is a parallelogram; and 
(iii) W is the midpoint of the segment VX. 

Note that the centroid of a quadrilateral is the same as the Varignon 
centre, the centre (or centroid) of the parallelogram formed by the midpoints 
of the sides of the quadrilateral. Lastly, for the centroid part of the proof of 
the original and generalised theorem to work correctly we need to place a 
mass of 2 at each of A, B, C, D, and a unit mass at the other eight places: 16 
altogether, not 12. Then for the quadrilateral APtP2B we take the unit masses 
at Pi and P2, and one each of the 2 at A and B; the other mass at A gets used 
up in ASiS2D and the other one at B in CQ\Q2B. When we now collect up, 
we have 2 + 2 + 2 + 2 = 8 at V and the other 8 at X, so altogether W is 
the midpoint as required. 

Yours sincerely, 
MICHAEL DE VILLIERS 

Mathematics Education, University of KwaZulu-Natal, South Africa 
(On sabbatical: Dept. of Mathematics, Kennesaw State University, USA) 

e-mail: profmd@mweb.co.za 
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