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DIFFERENTIAL INCLUSIONS AND
ABSTRACT CONTROL PROBLEMS

MlECZYLAW ClCHON

We prove an existence theorem for differential inclusions

x' € A(t)x + F(t, x), x{0) = SBO

in Banach spaces. Here {A(t) : t 6 [0,T]} is a family of linear operators generating
a continuous evolution operator K(t,s). We concentrate on maps F with F(t, •)
weakly sequentially hemi-continuous.

Moreover, we show a compactness of the set of all integral solutions of the
above problem. These results are also applied to a semilinear optimal control
problem. Some corollaries, important in the theory of optimal control, are given
too. We extend in several ways theorems existing in the literature.

1. INTRODUCTION

This paper is concerned with the differential inclusion

(1) x'(t)(=A(t)x(t) + F(t,x(t)), x(0) = xQ,

where {A(t) : f 6 [0,T] C R+} is a family of densely denned, closed, linear operators
on a Banach space E. We shall deal with this problem in the case when dim E = oo.
Our motivation is to study control problems

(CP) ' x'{t) = A(t)x(t)+f(t,x(t)), u(t)eU(t).

As in a classical case (Waiewski, Filippov), by setting

) = f(t,x,U(t))

we replace (CP) by (1). One can find some results dealing with the equivalence of (CP)
and (1) (see [15, 19], for instance). In this paper we omit this question, referring to
[15] or [18] (see also Section 3). For simplicity we shall deal directly with (1).
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110 M. Cichon [2]

A brief discussion about control problems can be found in [15] or [14], for instance.
We shall touch on only a few aspects of the theory.

Our purpose is to weaken the continuity hypotheses on F and to generalise the
compactness assumptions. Moreover, we present some corollaries of the compactness
theorems, which have immediate consequences in control theory (in particular in certain
optimal control problems). A comparision with previous results of this type will be given
in Section 3.

2. CONTINUITY CONCEPTS

Throughout this paper E will denote an infinite dimensional Banach space. Denote
by (E,w) the space E with its weak topology a(E,E*). Let I = [0,T] C R+ and let
Br = {x£E:\\x\\^r}.

Recall that a multifunction G : E —> 2E with nonempty, closed values is upper
semicontinuous (use) if and only if G~(A) := {x € E : G{x)C\A ^ 0} is closed whenever
A C E is closed (see [1, 3, 18] for instance). Taking on E its weak topology we obtain
in a similar way a notion of w — w upper semicontinuity (w — w use) that is, upper
semicontinuity from (E,w) into (E,w) (see [17]). If the set G~{A) is weakly sequen-
tially closed whenever A is weakly closed, we shall say that G is w — w sequentially
use (see [18]). Following [2], we can introduce another continuity concept.

A multifunction G : E —> 2B with nonempty, closed values is called upper hemi-
continuous (uhc) [weakly upper hemi-continuous, w-uhc] if and only if for each x* € E*
and for each A 6 R the set {x G E : <r(x*,G(x)) < A} is open in E [ in (E,w)] that
is, a{x*, (?(•)) is an upper semicontinuous function, where tr(x*,A) := sup(:c*,x).

In the case of the weak topology on E we can introduce the following more general
concept.

DEFINITION 1: A multifunction G : E -» 2E is called weakly sequentially upper
hemi-continuous (10-seq uhc) if and only if for each x* £ E*, <r{x*, (?(•)) : E —> R is
sequentially upper semicontinuous from (E,w) into R.

This "sequential" concept is, on the one hand, more general than ly-uhc and on
the other hand more useful, because a continuity condition is more easily verified for
sequences than for nets (see [12, Remark 3 p.105], or [25, Remark 3.1.5 p.123]).

Some comparision results about different concepts of continuity can be found in
[1, 7, 23].

The following lemmas are necessary in the proof of our main theorem:

LEMMA 1 . (Convergence Theorem) Let Y be a Ba.na.ch space. Assume:

(LI) F : E - • 2Y - w-seq uhc,
(L2) F(x) are nonempty, closed and convex,
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[3] Differential inclusions 111

(L3) ||F(a:)|| s$ a(t) almost everywhere on I, x E C(I,E), a G Ll{I,R),
(L4) (xn) C C(I,E), xn(t) -̂ -» xo(<) almost everywhere on I,

(L5) yn
 w^h yo,yn,yoe Ll{I,E),

(L6) yn{t) G F{xn(t)), almost all * £ I .

Thus: yo{t) G F(xo(t)) almost everywhere on I.

PROOF: By theorem (AB) from [24], letting A = {yo,yi,y2,...} we have the
following implication:

yn
w-—> j/o => 3un conv [J Vk, vn(t) -̂ -> ya(t) aknost everywhere on / .

But yn(t) G F(xn(i)), so

vn(t) G conv y j/fc(f) C conv M F(xt(f)) almost everywhere on / .

Fix an arbitrary x* G E*

Then

(*>„(«)) ^^(x*, conv | J F(xk(i))) = <T(X\ (J F(xk(t)))
^ *>n ' ^ k>n '

= Snpa(x*,F(xk(t)))
k>n

(x*,vn(t)) —> (x*,2/o(<)) almost everywhere

(see [2] or [3]).
Since

(x*,j/0(<)) ^ inj: suP<r(z*,F(xfc(<))) = lim <r(x*,F(xn(t)))
n^N k^n n—oo

^ (T(X*,-F(XO(<))) almost everywhere on / .

Finally
(x*,yo(t)) ^ er(x*,F(xo(t))) almost everywhere on /

and by the Separation Theorem [3]:

yo{t) G convi^zoCi)) = F(xo{t)).

LEMMA 2 . Let F : E ~» 2B be w-seq. uhc with nonempty, convex and weakly
compact values, and let A C E be weakly compact.

https://doi.org/10.1017/S0004972700016774 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700016774
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Then F(A) is a weakly compact set in E.

PROOF: Put Ux = {x£ A: <r{x*,F{x)) s? A}, where x* £ E*, A £ R. It is clear,
that U\ is weakly sequentially closed, but since U\ C A, U\ is weakly compact and
finally by the Eberlein-Smulian Theorem, weakly closed.

Thus F\A is u;-uhc. By the theorem of Castaing [7, Theorem 11.20] F is use from
(E,w) into (E,w). Now, by Berge's Theorem [7, Theorem 11.25] F(A) is compact in
(E,w). U

LEMMA 3 . Let v e C(I,E), and let F : I x E -> 2B such that:
(i) F(-,x) has a measurable selection for each x £ E,
(ii) F(tr) is-w-seq uhc for each t £ / ,

(iii) F(t,x) is nonempty, closed and convex,
(iv) ||F(*,z)|| ^ a(t) almost everywhere, a £ ^ ( / . .R) .

Then there exists at least one measurable (and intergrable) selection ZQ of F(-,v(-)).

PROOF: Take a sequence of simple functions vn, such that vn —» v uniformly on
I. Thus by (i) there exists a measurable selection Zk such that zjfe(-) £ F(-,Vk()).

Put G(t) = conv{zfc(<) : k ^ 1}. Since IUA(-) is measurable, {zjb() : fc ^ 1} is
measurable and hence G(-) is measurable (see [7]).

Moreover G(t) C conv.F(*, V(*)), where V(t) = {vk(t) : k ^ 1}. But (vk) is a
convergent sequence, so V(t) is relatively compact. By Lemma 2 and using Mazur's
lemma we have that the values convF(t, V(t)) are weakly compact.

Note that zn(t) £ G(t), n ^ 1, almost everywhere t £ I.
Our multifunction G is measurable and integrably bounded with weakly compact

values, so SQ is weakly compact in L1 (I,E).
Here and subsequently, SQ denotes the set of all integrable selections of G. We

subtract a subsequence {znk) of (zn) such that

w-L1 _ ci
Znk —> zo t ^G-

By the Convergence Theorem (Lemma 1): zo(') £ F{t>v(t)) almost everywhere and
||zo(<)ll ^ a(t) almost everywhere, so z0 £ SF(-,V(-)) ' ^

3. MAIN RESULTS

We begin by recalling some indispensable definitions.
A function u> : I x R+ —* R+ is said to be a Kamke function if it satisfies the

Caratheodory conditions, w(t,0) = 0 and u(t) = 0 is the only absolutely continuous
function satisfying:

u(t) / w(s,u(s))ds, u ( 0 ) = 0 , < £ /
./o
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[5] Differential inclusions 113

(see [26], for instance).

For completness, recall the following

DEFINITION 2: Given a bounded subset A C E, we define the Kuratowski [Haus-
dorff] measure of noncompactness (mnc) a(A) \P{A)] as follows:

a(A) = inf{e > 0 : A admits a finite covers by sets of diameter ^ e}

\fi(A) — inf {e > 0 : A can be covered by finitely many balls of radius ^ e}]

(see [4, 8, 12]). For the properties of a and (3, see [4], for instance.

Put A - {{t,s) : 0 ^ s ^ t < T}, and let L(E) denote the algebra of all
continuous, linear operators from E into E (see [16]). Let {A(<) : t G / } be a family
of densely defined, closed, linear operators on E.

In this paper we study (1) and its mild solutions, that is, integral solutions of the
Cauchy problem x'(t) = A(t)x(t) + f(i,x(t)), f(t,x(t)) G F(t,x(t)) almost everywhere,

We shall look for continuous solutions to the integral equation

f*
x(t) — K{t, S)XQ + / K(t,s)f(s,x(s))ds,

Jo

where K(-,-) : A —> L(E) is a fundamental solution, that is K(t,s)xo is a solution of

( x' = A{t)x

{ x(a) = xo

(see [22]).
It is clear that each solution in the sense of Caratheodory is an integral solution

and that the first concept is convenient for solving (1) (see [14, 22]).
A continuous function x : I —> E is called an integral solution if there exists a

function / G LX{I,E) such that f(t) G F(t,x(t)) almost everywhere on / , and for
each t G /

x{i) = K(t,s)xo+ f K{t,s)f(s)ds.
Jo

Now, we are in a position to state our main result.
We shall assume in the sequel:

(Al) {A(t) : t G /} is a generator of a fundamental solution

K(-,): A-> L{E) such that

(1°) K{a,a)=Id,a£lt
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(2°) K(t,s)K(s,r)=K(t,r), (t,s),(s,r) £ A ,

(3° ) K : A —» L(E) is strongly continuous,

(4°) \\K(t,s)\\<M <oo, (t,s)eA,

(5° ) K(-,s) : I —> £(#) is uniformly continuous (a 6 / ) ,

(Fl) ^(^(Z) is nonempty, closed and convex,
(F2) F(-,x) has a measurable selection, (for each x 6 2?),
(F3) F(t, •) is w-seq uhc, (for each t £ / ) ,
(F4) ||F(*,a;)|| < k{t) • (1 + ||s||), Jfc 6 Ll{I,R), x £ E, almost everywhere

on / ,
(F5) for each bounded B CE

lim n(F(It>T x B)) ̂  w(<,p(B)) ahnost everywhere on / ,
T — 0 +

where
(i°) ittT = [t-T,t]ni,

(2°) « is such that M • u> is a Kamke function,

(3°) fi is either the Kuratowski mnc or the Hausdorff mnc.

THEOREM 1 . Under the assumptions (Al), (F1)-(F5), for each x0 £ E there
exists at least one integral solution tor the problem (1). Moreover, for each xo £ E the
set S(xo) of all integral solutions for (1) is compact.

PROOF: We have the following "a priori" estimate: if x(-) is an integral solution

of (1), then

ft
x(t) = K(t,0)x0 + K(t,s)f(S)ds, t e l , f 6 4 ( , * ( 0 ) -

Jo

Then

<M-11*011+ / M • k(a) • (1 + \\x(s)\\)ds
Jo

^ M • \\XQ\\ + M • HAH, + f M • k(s)ds,
Jo

and by Gronwall's lemma

Denote the right-hand side of the above inequality by N and put m(t) = k(t) • (1 + N).
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[7] Differential inclusions 115

Create a new multifunction

TV • x)/ | |x | | ) , t £ / , x <£ Bjf.

As a superposition of F and a retraction r onto BN , F satisfies (F5).

Note tha t the continuity of K imphes tha t for each g £ LX{I,E) the function y()

given by

y{t) = K{t,0)x0 + I K{t,s)g{s)ds
Jo

is continuous on / .
Now, we can define a multifunction R : BN —* 2C^I>B^ by the following formula:

R(x)(t) = K{t,0)xQ + f K{t,s)F(s,x(s))da
Jo

First of all we remark, that for almost all t £ / and T ^ O we have

hence
( £ ) <w(i,0) = 0.

We see that .F(f,x) is compact for almost all t £ / .
By Lemma 3, for each continuous function v £ C(I, E) there exists a measurable

selection u such that u(t) £ F(<,u(t)) almost everywhere, and by (F4) u £ S~

Thus .R(z) 7̂  0 (for each s £ BN). It is clear that the values of R are closed and
convex (because F has closed, convex values). Let

W = {/ £ Z/^/,^) : ||/(<)|| ^ m(t) almost everywhere on / } ,

G' = {x £ C(/ ,£) : x(t) = K{t,0)x0 + f K{i,s)f(s)ds,t £ / , / €
Jo

So W is uniformly integrable in L*(I, E) and since K(-,s) is uniformly continuous, G'
is a equicontinuous subset of C(I,E). Then G := convG' is nonempty, closed, convex,
bounded and equicontinuous in C(I,E). But S~ C W7 for each x £ G.

Indeed, for S £ SL( ||ff(<)|| ^ ||F(t,*(i))|| < k(t) • (1 + N) and from the

obvious equality ||A|| = ||convi4|| for arbitrary set A we have our estimate
m(t) almost everywhere on / .
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116 M. Cichon [8]

Now, we axe in a position to show that R has a closed graph.

Let (xn,yn) G GrR, {xn,yn) -> (x,y) in C(I,E).
T h u s yn(t) = K(t,0)xo + tiK(t,s)fn(s)ds, fn G S1- . „ , * € / .

B u t

^ o>(t,/i{xn(<) : n ^ 1}) almost everywhere.

Since xn is convergent, {zn(') : n ^ 1} is relatively compact in E, hence fi({xn(t) :
n ^ 1}) = 0 and finally /*({/»»(*) : n ^ 1}) = 0 almost everywhere on / .

By redefining (if necessary) a new multifunction H, on the set of measure zero:

H{t) = amv{fn(t) : n > 1}

we can say that H(t) is nonempty, closed, convex and compact.
Thus S]j is nonempty, convex and weakly compact in i 1 ( / , E) (see [16, 21]). By

the Eberlein-Smulian Theorem there exists a subsequence (/njt) of (/n) such that

Since xn —> x in C(I,E) and /njt ™—> / , by our Convergence Theorem we obtain
that f(t) G F(<,a;(t)) almost everywhere on / . Thus yn tends weakly to K(t,0)xo +
fiK(t,s)f(s)ds, hence y{t) = K(t,0)x0 + /„*K(t,s)f(s)ds, f G Sh(^ }) and (z,y) G
GrR. As in [12] we define a sequence of sets: KQ = G, Kn+i — convR(Kn), n ^ 0

oo

and put Koo = f) Kn .
n=l

Then:
(i) Kn is nonempty, closed and convex,

(ii) we can prove (by induction), that (Kn) is a nonincreasing sequence of
sets.

Set an(t) = fj.(R(Kn)(t)). The set {an : n G N} is equicontinuous (because

R(Kn) C G). So by the properties of \x an is absolutely continuous and moreover, it

is clear that on(0) = 0.

For 0 < t - T < t ^ T we have (n ^ 1)

On(<) - On(< - T) < ^{JK(t,s)u(s)ds : W G £]?(.

and by the mean value theorem

/
Jt

K(t,s)uj(s)ds G r • convW*,s)F{9,Kn(s)) : s € [t - r,t)}.
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[9] Differential inclusions 117

Hence

O,,(*) -On{t-T)^T- (M{K(t, S)F(S, Kn(s)) : S € Jt,r}-

Since on(-) is a real-valued absolutely continuous function, an is differentiable almost
everywhere. Thus by the properties of y.,

lim p{K(t,s)F(s,Kn(s)):s<E Jt,T)
T—0 +

M • lim JF{Jt,r x Kn{Jt,r)))
r—0+ V /

M • w(t,n(Kn(t))) almost everywhere

But fi(Kn(t)) =
Thus

and a'n(t) ^ M • u(t,On-i(t)) almost everywhere,

(2) an{t) < M • f w(*,a».i(«))i, t 6 / .
Jo

Since it is decreasing and bounded by 0, the sequence (on) is convergent, so by (2),
(an) converges to 0.

By the lemma of Kuratowski (see [4]), Koo is nonempty, convex and compact (more
precisely /ic(#oo) = 0).

It should be noted that R : Koo —* 1K°° by definition of Koo. Arguing as in
Lemma 2, we see that by the Kakutani Fixed Point Theorem ([1, 3], for instance) there
exists a n i j g K^ such that x\ G R(x\).

But

||Zl(<)|| ^ ||tf(*i(*))ll ^ M • \\xo\\ + f M • k(s)(l + \\x(s)\\)ds.
Jo

Hence by Gronwall's lemma

and

Thus X\ is an integral solution for (1).
Since S(x0) C R(S(x0)) C K^, we see that 5(z0) is relatively compact. By

Lemma 1, S(xo) is closed, so finally S(XQ) is compact. U
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REMARKS. (1°) The last assertion in the proof implies that in (F5) it is worthwhile to
replace the strong measure of noncompactness fi by a weak one [10] and our assertions
are still true. Moreover, it is possible to replace fi by arbitrary measure of weak
noncompactness with a suitable set of properties (see [9]).

In particular, it is necessary to assume:

(K G L(E), W C E bounded => fi{KW) ^ \\K\\ • fi{W)).

Thus a class of so-called (P, B, p)-measures of weak noncompactness is good enough
(see [9]).

(2°) As in the above remark, /x in (F5) may be replaced by another measure of
strong noncompactness (see [8]). As claimed in [13], the difference even between the
cases n = a and y. — /3 may be essential [13, Remark (iii)].

(3°) Criteria for the existence of measurable selections of F(-,x) are available
and moreover this kind of assumption is more useful than "F(-,x) is measurable" (see

[11])-
(4°) Important examples of mappings satisfying Pianigianni's condition (F5)

and comparisions between (F5) and others noncompactness conditions can be found in
[4, 12], for instance.

We shall prove some Corollaries.

PROPOSITION 1 . The multifunction S(-) : E -> 2C{-I'E^> is use from (E,\\-\\)

into(C(J,E),\\-\\c)-
PROOF: Fix an arbitrary closed set A C C(I,E).

We shall show that L = {x G E : S[x) f~l A ^ 0} is closed.

Let (xn) C L, xn —> xo . Then sup ||xn|| < oo and
n

x n € L = > S{xn) fl A ^ 0 = • 3yn <E 5(xn) D A

yn(t) = K(t,0)xn + J*K(i,s)fn{a)ds, fn G 5L ^ }).

Since (xn) is a convergent sequence, fi{xn : n ~£ 1} = 0 and hence

*) = » > ! } ) < \\K(t, 0)|| • M K : n £ 1})

(3)

M • /*({F(-,y«(«)) : n
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Arguing as in the proof of Theorem 1 (with a,, = t*({yn{t) : n ^ 1})) we obtain

p({y»(0 : n > ! » = o for t e / .
The set {yn : n ^ 1} is strongly equicontinuous, so by the Arzela - Ascoli theorem

there exists a subsequence j / n j t —»j/o in C(I, E).

Now

**({/»»(*) •• n ^ 1}) < M ( { ^ ( « . » - I ( ' ) )
 : »* > 1})

^ M-w(<,0) = 0

and by Lemma 1 fo{t) G .F(<,yo(O) ahuost everywhere

Thus yo(t) = K(t,0)x0 + Jo K(t,s)fo(s)ds and yQ £ S ^ n A , so 5 ( i o ) n i ^ 8 .

We see that L is sequentially closed and S(-) is use. D

And now, we can formulate some corollaries.

COROLLARY 1. The mapping Pt : E -> 2E given by

Pt(x) = {u(t):ueS(x)}

is use and has compact values.

COROLLARY 2 . The mapping Rx : I -* 2B given by

Rx(t) = {«(<) : it G S(x)}

is use and has compact values.

We obtain these corollaries by using the Arzela-Ascoh theorem and from the con-
tinuity of the function et(x) — x(t). Similarly, we have

COROLLARY 3 . The reachable set

16/

is compact in E.

The last two corollaries are well-known in the theory of optimal control (the proofs
are analogous to those in [19]).

COROLLARY 4 . For eacA fixed x0 G E and each y0 G Rxo there exists a solution
u G S(xo) for which j/o is attainable at a minimum time t.

COROLLARY 5 . For each fixed x0 G E a mapping T : i^0 -» /given by T(z) =

inf{t G / : z G #*„(*)} « lsc-

An important consequence of our Theorem 1 is the following.
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THEOREM 2. Let K C E be compact and let tp : E -> R be lsc.

Then the problem

(x'(t)eA(t)x(t)+F(t,z(t))
( ' 1 x(0) e K

minimise ip(x(T))

has an optimal solution, that is, there exist y0 £ K and x £ S(yo) such that

<p(x(T)) = inf{<p(x(T)) : x() is a solution of (OP)

with x(0) =y0, y0 e K}.

PROOF: Since x(T) £ PT(K) and PT(-) is use with compact values PT(K) is

compact. Thus <p attains its infinimum ao on PT(K).

Consequently, there exists ai £ PT{K) such that ao = y(ffli).

Then we have:

oi £ PT{K) =*3yo£K (Ol 6 Pr(yo)).

Therefore ax 6 Ryo(T) and hence 3x G S(y0) (ai = x(T)). Finally a0 = <p{x(T)), that
is, there exists yo £ K, x 6 5(j/o) such that

<p(x(T)) = inf {<fi(x(T)) : x(-) is a solution of (OP)

with x(0) — y0, yo € K},

x(-) is an optimal solution for (OP) . D

Our results generalise many previous theorems. In the important case A(t) = 0,
we have that K(t,s) — Id and a mild solution is, in fact, a Caratheodory one. Then,
as special cases, we obtain (among others) the existence theorems of Deimling [11] (in
addition we have more general continuity assumptions and a larger class of measures
of noncompactness), [12, Theorem 9.2] (as above with u>(t,p) = k(t) • p, k £ LX(I,R))
or Papageorgiou [20, Theorem 3.5'] (F(t,-)-continuous, F satisfies Tonelli's condition
with 13). See also Tolstonogov [26, Theorem 2.5.4.] and Deimling ([12, Remarks p.124]
and references given there. In some cases we have compactness results as well [12], for
instance).

If A(t) ^ 0, then many results of this kind are generalised too. For example, we
extend [20, 22] and at least partially the results of Frankowska [14, Theorem 2.7.]
(in this case F(t, •) - Jfe(<)-Lipschitz, A(t) = A, K(t,s) = S(t-s), S(-) compact
or uniformly continuous, or .F-compact) and Cannarsa-Frankowska [6, 5, Lemma 5.4,
Remark 5.5, Corollary 5.6].
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It is worthwhile to note that if conditions (A1)(1°)-(A1)(4°) are satisfied, then the
well-known case: " K(t, s)-compa.ct for t > s" implies (Al)(5°) (see [20, Proposition
2.1]). Hence, previous results with the above assumption are generalised as well (see

[17])-
Again, recall that the equivalence for (1) and {CP) is considered, for instance, in

[15, 14, 19, 6] or [25]. The (CP) problem is also considered in a direct form [15], for
instance). Our Theorem 2 and Corollaries are the only examples of applications of an
abstract consideration.

To sumarise the discussion, recall our consideration for suitable measures of weak
noncompactness (see Remarks) instead of a or /3:

PROPOSITION 2 . Under the assumptions (Al), (F1)-(F4) and (F5) with a mea-

sure of weak noncompactness we have that:

(i) t i e set S(xo) of all integral solutions for (1) is nonempty and weakly
compact in C(I, E),

(ii) 5 ( ) : E -> 2 C ( / ' E ) is w - w sequentially use.
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