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A QUANTITATIVE ESTIMATE ON FIXED-POINTS 
OF COMPOSITE MEROMORPHIC FUNCTIONS 

JIAN-HUA ZHENG 

ABSTRACT. Let/(z) be a transcendental meromorphic function of finite order, g(z) 
a transcendental entire function of finite lower order and let a{z) be a non-constant 
meromorphic function with T(r, a) = S(r,g). As an extension of the main result of [7], 
we prove that 

where J has a positive lower logarithmic density. 

1. Introduction and main results. Let/(z) be a transcendental meromorphic func­
tion and g(z) be a transcendental entire function. A point zo at which/(zo) = zo is called a 
fixed-point off(z). First, let us assume that the reader is familiar with Nevanlinna theory 
of meromorphic functions and its standard notations. Throughout, we denote by p(/), 
A(/), and <r(/), respectively, the order and the lower order of/(z), and the convergence 
exponent for its zeros, and by S(r,f) the quantity such that S(r,f) = o(T(r,f)) as r fi E, 
r —> oo, where E denotes a set of r with finite linear measure, not necessarily the same at 
each occurrence, and T(r,f) is the Nevanlinna characteristic of/(z). As usual, N(r, 1 / / ) 
denotes the counting function for the zeros of/(z) and N(r, 1 / / ) for the distinct zeros in 
the sense of Nevanlinna. 

The present author and Yang [11], [12] presented some quantitative measures on the 
number of zeros of/(g(z)) — P(z), in terms of the growth of f(z) and g(z), in the case 
where/(z) and g(z) are entire, transcendental and P(z) is a non-constant polynomial. In 
addition, assuming that p(f(g)) < oo and P(z) is allowed to be a non-constant rational 
function, an excellent estimate was established in Langley [8], i.e., 

For the case when f(z) is meromorphic and transcendental, the existence of infinitely 
many zeros of/(g(z)) — Q(z) was proved in [3], provided that/(g) is of finite order and 
Q is a non-constant rational function. Following this, an extension of the latter case was 
made in [7] and actually, it is shown there that the exponent of convergence a for the 
zeros of/(g(z)) — a(z) satisfies a > A(g), provided that/(z) is a meromorphic function 
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of finite order, g(z) is a transcendental entire function of finite lower order X(g) and a(z) 
a non-constant meromorphic function such that p(a) < X(g). For the general case, i.e., 
for any transcendental meromorphic function/(z), entire function g(z) and non-constant 
rational function Q(z), Bergweiler [1] recently verified that/(g(z)) — Q(z) has infinitely 
many zeros and the further result that if/(z) has at least two poles and Q(oo) = oo, then 
& > A(g). The main purpose of the paper is to prove the following: 

THEOREM 1. Letf{z) be transcendental meromorphic in the complex plane, g(z) 
transcendental entire, and let a(z) be a non-constant meromorphic function such that 
T(r, a) = S(r,g). Assume that p(f) < oo and X(g) < oo. Then there exists a set J of r 
with positive lower logarithmic density such that 

N(r,l/(f(g)-a)) 
(1) lim —i = T — -L = oo. 

If we put a stronger restriction to the growth of/(z), then we can remove the assump­
tion on the finite lower order of g(z) from Theorem 1. Actually, we have the following, 
as did in Bergweiler [2], for the transcendental entire/(z). 

THEOREM 2. Letf(z), g(z) and a(z) be given as in Theorem 1. Assume, instead, that 

(2) logT(r,f)< l°gr (rtE), 
</>(loglogr) 

where <j>{x) is a positive increasing function and such that 

r dx 

W)<QO-
Then (1) is valid, where J has logarithmic density one. 

2. Proofs of Theorems 1 and 2. 

PROOF OF THEOREM 1. Suppose that ( 1 ) does not hold, that is, there exists an A > 0 
and a set / with lower logarithmic density one such that for r G / 

û(r>7TT )<AT(r,g). 

We can write/ = f\/fi, where/i znàfi are two entire functions with finite order and 
without common zeros. Set 

m -=A(S) - ocf2{g) =f2(g)(f(g) - a). 

Then it is obvious that each zero off (g) — ctfi(g) is either a zero of/(g) — a or a pole 
of a. This implies that 

(3) N(r^<(A + o(\))T{r,g\ (r e I). 
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Since g(z) is of finite lower order, by a result of Hayman [6, Lemma 4], there exists a 
subset J of I with positive lower logarithmic density such that for r G J, T(3r,g) < 
BT{r,g), where B is a sufficiently large and positive number. A result of Ninno-Suita [9] 
implies the following estimate 

T(r,R) < T(rJi(g)) + T(r,f2(gj) +S(r,g) 

< 2T{M{r,g)J\)+2T(M{r,g\f2)+S{r,g) 

<M(r,g)d, (r£E), 

so that 

(4) log T(r, R)<d log M(r, g) < IdTQr, g) 

(5) <2dBT(r,g), (reJ\E), 

where d > p{f), since/(z) is of finite order. By the lemma of logarithmic derivative, we 
can find a positive number K and an unbounded sequence {ry} C J such that 

T(rj,g') + T(rj, a) + T(rjt a') + T{TJ, | ) < KT(rj,g). 

Now differentiating the equality R =f\(g) — ocfiig) gives 

g'fiig) - <xg%(g) - jA(g) + ( « ^ - a'y2(g) = 0. 

An application of a theorem of Steinmetz [10] (also see [5]) to the above equation gives 
the existence of four polynomials P\,Pi, P3 and P4, not all zeros, such that 

A/i' + ̂ ' + 'Vi +A/2 = o. 

Using the same methods as in [7] implies that/ solves the following differential equation 

(6) f'(az + b) = c]+c2f + c3f\ 

where a(^ 0), b and c/ (1 < / < 3) are all constants. 
Below we treat two cases. 

CASE 1 : C3 = 0. Then C2 ^ 0. It is obvious from (6) that c\ + erf has just one zero 
or pole. And hence we can write c\ + erf — Qe@, Q is a non-zero rational function and (3 
is a non-constant entire function. By differentiation, we have immediately 

erf' = (Q' + QdV = ( ^ +/3 ,)(c^+c1) , 

and further 

c2=(^+(3')(az + b\ 

so that (5' = 0, which is a contradiction. 
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CASE 2: c3 ^ 0. We can write 

f'(az + b) = c3(f-r)(f-K). 

When r = K, it is easy to see that ( 1 /(/* — T)) is rational, so i s / , and a contradiction 
follows. 

When T / K , both r and K are the Picard exceptional values of/(z). And therefore, 
we have for a non-zero rational function P and a non-constant entire function 7 

(7) f-f^=Pe\ 

By differentiation of (7) we have 

fP' 
(r-^=(T+l'){f-r)(f-K), 

so that 7' = 0, which is a contradiction. 
Now Theorem 1 follows. 
In order to make the proof of Theorem 2 clear, let us first prove the following. 

LEMMA 1. Let h{z) be an entire function with zero order. Then for all sufficiently 
large r 

(8) logM(r,/z)<7V(r2) + «(0)logr+l, 

where N(r) = N(r, l/h) and n(r) = n(r, 1 jh\ 

Actually, we can write 

OO , - x 

f(z) = TT n (1 - - ), z = rê\ m = «(0), 

so that 
log|/-(z)|<jriog(l + ^)«/»(0 + mlogr 

Since/(z) is of zero order, for sufficiently large r we have n(t) <tx^,r < /, and hence 

r r - ^ - * < r / ° V / 3 * < l . 
Jr2 t(t + r) Jr2 

Obviously, we can obtain the following inequality 

log \f(z)\ < N(r) + - (Nir2) - N(rj) + m log r + 1, 

which leads to (8). 
We need a result of [4]. 

https://doi.org/10.4153/CMB-1995-071-x Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1995-071-x


494 JIAN-HUA ZHENG 

LEMMA 2. Letg(z) be an entire function and <j)(x) a positive increasing/unction with 

r dx 

m<0°-
Then there exists a set J with logarithmic density one such that 

log M(r,g) 
hm 7 r- = 0. 

r7a T(r,g)<f>(\ogT(r,g)) 

Now we go back to the proof of Theorem 2. Actually, it suffices for the proof of Theo­
rem 2 that we can prove an inequality similar to (5) under the assumption of Theorem 2. 
First, we can write/ = f\/fi where f\(z) and^C^) are two entire functions with zero 
order, since p(f) = 0. An application of Lemma 1 immediately shows that for y = 1,2, 

log T{rjj) < logA^r2, ^ ) + O(loglogr) 

< log r ( r 2 , / ) + 0(loglogr) 

2 log r 

Now we can make the following estimation: 

logT(r,R) < logT(M(r,gU)+\ogT(M(r,g),f2) +S(r,g) 

< , 4 k > g M ( r ' g ) ^ + 0 ( l o g l o g M ( , , g ) ) + ^ , g ) 
0(log(21ogA/(r,g))) 

o(T(r,g)), {re J). 

The latter equality follows from Lemma 2, where J has logarithmic density one. 
Theorem 2 follows. 
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