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1. Introduction. The equation Px = y in Banach spaces has aroused 
considerable interest, particularly in view of the various situations in applied 
analysis which it encompasses, and consequently it has been the topic of 
numerous investigations (2; 9; 10; 12). Detailed references may be found 
in (10). The equation is of special interest because of its interpretation as an 
integral equation; and in turn, many problems related to differential equations 
can be reformulated as integral equations (5; 7; 13). 

Various iterative procedures are available (10; 11 ; 12) by which the existence 
and uniqueness of a solution x of such an equation can be established, and by 
which numerical estimates for the solution can be calculated. In any of these 
procedures, a sequence of elements xn (n = 0,1, 2, . . .) in the Banach space 
is constructed recursively, and is proved to converge in the Banach norm to 
an element x satisfying Px = y. The recursive sequences used have been 
modelled after various familiar ones. In particular, an iterative process 
modelled after Newton's method of solving real equations has been employed 
very successfully by Kantorovich (10) and others (2; 16). Another recursive 
sequence, the analogue of that defined by an infinite continued fraction, has 
been studied recently by McFarland (12). The most widely known iterative 
procedure is that based on the Liouville-Neumann sequence of successive 
approximations (5; 11; 13). 

The last of these, for example, can be used to prove that a contraction 
mapping T on a closed, bounded domain in the Banach space has a fixed 
point x in the domain (1; 11). Therefore, under the assumption that the 
equation under consideration is equivalent to Tx = x with T a contraction 
mapping, the existence and uniqueness of the solution follow from the fixed 
point theorem ; and such results will be appropriate to the study of asymptotic 
properties of the solution. 

In an investigation of the asymptotic behaviour of equations, one is interested 
in the variation of the elements y and the transformations P involved in the 
equations as a real variable A (or more general variable) varies over an interval 
A. It is then pertinent to consider mappings (y) of A into the Banach space 
and mappings (P) of A into a suitable set of transformations on the space; 
and furthermore, in an asymptotic investigation, to study the behaviour of 
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these mappings as X approaches a limit point, in general not in A. No essential 
features are lost by the assumptions that A is a positive interval (0, Xo] and 
that 0 is the limit point. 

We shall first develop the notion of an asymptotically convergent sequence 
of mappings (§ 2), and from this, the notions of asymptotic equality and 
asymptotic summation of series. The main questions to be considered are 
the following: (1) If the quantities y and P involved in the equation Px = y 
can be represented by asymptotically convergent series, can the solution be 
represented by such a series? (2) For a prescribed asymptotically convergent 
sequence of mappings (Pw), w = 0 , l , 2 , . . . , and for prescribed (yn), does 
there exist a mapping (x) of A into the Banach space so that Y,(Pnx) is 
asymptotically equal to X(;yw)? These questions are answered in § 5, in which 
the appropriate existence, uniqueness, and representation theorems are given. 
The approach taken here is similar to that employed by van der Corput (14) 
in connection with asymptotic solution of certain numerical equations. 

We shall next mention a few examples, to which the subsequent theorems 
are applicable, obtained when the Banach space is specialized to one of the 
following: the space of real numbers; the finite dimensional Euclidean space 
Vn; the space of continuous functions on a closed, bounded interval; and the 
Lebesgue space LP (p > 1) (13; 15). 

In the space of real numbers x with norm defined by ||x|| = \x\, the equation 
oo 

y(\) = ax + J2 On(\9 x) (a 5* 0) 

is to be considered, and the corresponding relation when asymptotic equality 
replaces equality. A specific example is the problem of finding a real number 
x with \x\ < 1 so that for \y\ < 1, 

y~x+Y, (» + l)!(-X)V+1. 
7 1 = 1 

In this example, formal substitution will lead to an asymptotic expansion 
CO 

x~y+ £ A,(X)y 
71=1 

for the solution (14). A different discussion of a similar problem has been 
given by de Bruijn (6, p. 25). 

As a second illustration, suppose the Banach space is specialized to the 
finite dimensional Euclidean space Vn. Each element x in Vn is a vector (o-2) 
(i = 1, 2, . . . , w) with norm given by 

I Ml = \J2 <r\) • 

In this context, one considers a system of n non-linear algebraic equations 
y = AQX + Ex, where y is a prescribed element of Vn, A0 is a square matrix 
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of order n, and E is a transformation on Vn defined by Ex = (Ek(<rh o-2, . . . , <rn)) 
(k = 1, 2, . . . , n). Under the assumption de t^4 0 ^ 0, the linear system 
y = AQXO has a unique solution xo. Under suitable additional hypotheses, 
Theorem 3 below guarantees t h a t the non-linear system under consideration 
possesses a unique solution x such t h a t 11 X Xo II —•> 0 as X —» 0 ; and Theorem 
5 gives an i terat ive procedure by which an asymptot ic expansion can be 
generated. 

We envisage tha t the most fruitful application will be to non-linear integral 
equations. T h e Banach space will be either the space C of all continuous 
functions over the closed, bounded interval under consideration, or the 
Lebesgue space LP (p > 1). T h e transformations A0 and E will be regarded 
as linear and non-linear integral operators respectively. Consider the integral 
equat ion 

(1.1) x(s) = y(s) + K(s,t)x(t)dt + I Ex(s,t;x(t))dt 
J o J o 

with K(s, t) continuous on the closed unit square, and y £ C(0, 1). This 
integral equation is of the form x = y + Kx + Ex, where K is the linear 
transformation from C into C and E is the non-linear transformation defined 
by (1.1). The first assumption to be made, of course, is t ha t ( / — K)~x exists, 
where / is the identi ty transformation, so t h a t the linear integral equat ion 
approximating (1.1) for small X will have a solution. T h e existence of this 
inverse transformation is implied by the condition ||2£|| < 1 according to 
Banach 's well-known theorem (11; 13, p . 151). T h e analogue of the principal 
hypothesis (4.4) below is the hypothesis t h a t E\(s, t; u) satisfies a Lipschitz 
condition in its third a rgument on a suitable interval, uniformly for (s, t) 
on the uni t square. Theorem 3 guarantees the existence of a unique solution 
x = x(s, X) of (1.1) with the property t ha t \\x — (I — i ^ ) - 1 ^ | | —> 0 as X —> 0; 
and Theorem 5 shows how an asymptot ic expansion of the solution can be 
generated by a recursive process. Similar s ta tements can be made when the 
space C is replaced by the Hilbert space L2(0, 1). 

2. A s y m p t o t i c convergence . A Banach space 33 will be considered, and 
the Banach norm of an element x G S3 will be denoted as usual by | |# | | . T h e 
following notat ion will be used throughout : (i) X denotes a positive real 
variable on an interval A0: 0 < X < Xo; (ii) 4> denotes a function from A0 

into positive numbers ; (iii) (x) denotes a mapping X •—>x(X) of A0 into S3; 
(iv) J, k, m, n denote non-negative integers; (v) a0, ah . . . , Xo, Xi, . . . , denote 

fixed positive numbers , t h a t is positive numbers independent of X. 
Let <j)n (n = 0, 1, 2, . . . ) be a single-valued function from A0 into positive 

real numbers. T h e sequence {</>„} is said to be an asymptotic sequence as X —> 0 
if 0o (X) = 1 for all X Ç A0, and <£n+i = o((f>n) as X —» 0 for each integer n (8). 

Let {\n} be a non-increasing sequence of positive numbers, and for each 
integer n let An denote the interval 0 < X < \n. 
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Let {xn(\)\ (n = 0, 1, 2, . . .) be a sequence of elements in 33, with xn(\) 
uniquely defined for each X G Ao, and let (x j designate the mapping X —> xn(\) 
from Ao into 33. The sequence {(xn)} is said to converge asymptotically if there 
exists a single-valued mapping (x) of Ao into S3, an asymptotic sequence 
{<j)n}, and a sequence of positive numbers an so that 

(2.1) ||x(X) - x„(X)|| < aAnW, X G An 

for each integer n. In this event, (x) is referred to as an asymptotic limit of 
the sequence {(xn)}. In particular, the sequence is said to converge asymptotic
ally to zero when 

(2.2) | |^(X)| |<«n«n(X), X G AB, U = 0, 1, . . . . 

Our terminology follows that used by van der Corput in the asymptotic theory 
of numerical functions (14). 

An asymptotically convergent sequence need not converge in the ordinary 
sense (in the Banach norm) for any value of X, as shown by the example 
xn(X) = nl\n in the Banach space of real numbers. 

Two mappings (x), (y) defined on A0 are said to be asymptotically equal 
if for each integer n there exists a positive number an so that 

(2.3) ||x(X) -y{\)\\ <ccn<f>n{\) 

whenever X G An. In this event, we write (x) «-» (y). The relation <-> is 
evidently reflexive, symmetric, and transitive, and hence it is an equivalence 
relation among mappings. Each real asymptotic sequence {4>n} induces such 
an equivalence relation, the sets of asymptotically equal mappings with 
respect to {</>„,} forming the equivalence classes. 

If {(xn)} is an asymptotically convergent sequence of mappings, then the set 
of all asymptotic limits of the sequence is characterized by an equivalence class 
of asymptotically equal mappings. For let (x) be any asymptotic limit. Then 
if (y) is an asymptotic limit, it follows from (2.1) that 

||x(X) - y (X) 11 < ||x(X) - x „ ( X ) | | + \\y{\) - x „ ( X ) | | < an<i>n{\) + a'n<t>n(\) 

whenever X G An. Hence (2.3) holds and (y) <r-+ (x). Conversely, it is easy to 
see that if (y) <-» (x), then (y) is an asymptotic limit of the sequence. 

Since (x) <-> (y) for any two asymptotic limits (x), (y) we shall say that 
the asymptotic limit of the sequence is asymptotically unique. 

A formal series ^ (#») is s a id to have an asymptotic sum (x) if (x) is an asymp
totic limit of the sequence {(x0 + Xi + . . . + xn-i)} (n = 1 ,2 , . . . ) . This 
means that for each n there exists a positive number an and an interval An 

so that 

(2.4) x(X) - £ x,(X)| 
I I j = o I 

When the asymptotic sum exists it is not unique, but it follows from the 
foregoing remarks that it is asymptotically unique. When (x) is an asymptotic 

< aw<£n(X), X G An 
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sum for S(# n ) , we say that the series is an asymptotic expansion for (x), and 
write (x) ~ J^ ( x j . 

The following theorem may be regarded as the basic theorem concerning 
asymptotic convergence. It states that an asymptotic sum of J^(xn) always 
exists when {(xn)} converges asymptotically to zero. Results like this for 
numerical functions have been obtained by various authors (3; 4; 8). The 
present proof is modelled after that of van der Corput (14). 

THEOREM 1. A necessary and sufficient condition for a series of mappings 
J2 (xn) to have an asymptotic sum is that the sequence {(xn)} converge asymptotic
ally to zero. 

Proof. If (x) is an asymptotic sum for £ (x n ) , then (2.4) is valid for each 
integer n, and it is easily established from the Minkowski inequality and the 
order relation <j>n+i — o(<j)n) (X —> 0) that (2.2) holds. Hence {(xn)} converges 
asymptotically to zero. 

Conversely, if the sequence converges asymptotically to zero, then (2.2) 
holds for each integer n. Since #n+i = o(<l>n) as X —» 0, it follows that for 
each n there exist positive numbers <xn, Xn with {\n} non-increasing, so that 

IK+i(X)|| < an+i(t>n+i(\) < èa„0n(X) 

for 0 < X < Xw+i, that is X £ An+i. Hence 

(2.5) | | W X ) | | < (è)Wfe(X) (j = 1, 2, . . .) 

for all X Ç An+j. 
If \n tends to a positive limit X* as n —» oo, it follows from (2.5) that 

{ÊX,(X)} 

is a Cauchy sequence for each X satisfying 0 < X < X*. Hence this sequence 
converges in the Banach norm to an element x(X) because of the completeness 
of iB. It can then be verified that x(X) satisfies (2.4), and consequently (x) : 
X —> x(\) is an asymptotic sum. 

The situation of real interest, however, is that in which ^xn(X) does not 
have an ordinary sum for any positive value of X. Suppose then that \n —» 0 
as n —» oo. For each value of X, let H = H(\) be the largest integer such 
that \H > X. Then if X 6 An, it follows that H(\) > n. We assert that (x) 
given by 

(x) = (xo + xi + . . . + xH) 

is an asymptotic sum for ^2(xn). In fact, for all X Ç Aw, H(\) has been chosen 
so that X Ç A#, which implies that X Ç An+j (j = 0, 1, . . . , H — n). Then 
by (2.5) 

w - l 

(2.6) 

and hence (x) is an asymptotic sum 

H 

< Z ll^(X)|| <2an$n(\)f 
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3. Transformations on the Banach space. A transformation E defined 
on a closed domain 3) in 33 is a single-valued mapping from 35 into 33. Trans
formations are not necessarily additive, nor are they necessarily even defined 
on the whole space 33. For each X Ç A0, let E(\) be a uniquely defined trans
formation on 3D, and let (E) be the mapping X —•» JE(X). We shall say that (E) 
is in the class Lip (3), </>) whenever there exists a fixed, positive number a 
and a bounded positive function <j> on Ao so that 

(3.1) \\E(\)x - E(\)y\\ < a<f>(\)\\x - y\\ 

for all pairs of elements x, y in 3), and for all X Ç A0. When a4>(\) < 1, a 
transformation £(X) from © into itself satisfying (3.1) is a contraction mapping, 
and therefore has a fixed point in 3) (11). 

Sums and products of transformations are defined as in the linear case 
(13; 15). Thus, if E, Fa re transformations on 3), then (E + F)x — Ex + Fx, 
x e 3); and (EF)x = E(Fx), x Ç 35 H 9t, where 9Î is the range of F. 

It is convenient to introduce the symbol ||JE|| to denote the supremum of 
\\Ex — Ey\\/\\x — y\\ over all x, y with x ^ y. Then (3.1) may be rewritten 
in the form 

(3.2) P ( X ) | | <a*(X) , X € Ao. 

For each integer n, let (An) denote a mapping X—* An(\) of a positive 
interval An into the set of transformations on 3). The sequence {(An)} is said 
to converge asymptotically to (A) on 3) whenever there exists an asymptotic 
sequence {<t>n} so that (A) £ Lip(3), <£o) and {A — An) Ç Lip(35, <£n) for each 
integer n. In this event, 

(3.3) p ( X ) - 4„ (X) | |< a»0„(X), X Ç An. 

(.4) will be called an asymptotic limit of the sequence {(An)}. 
A series ^ 04 w) is s a id to have an asymptotic sum (A) if (̂ 4) is an asymptotic 

limit of the sequence {(Ao + Ax + . . . + An-i)}. This means that there 
exists a positive number an so that 

(3.4) ^ ( X ) - Z A,{\) < an<£„(X), X G An. 

The following analogue of Theorem 1 is valid for transformations. 

THEOREM 2. A necessary and sufficient condition for the series Y^=m(An) to 
have an asymptotic sum in the class Lip(3), <£m) is that (An) Ç Lip(3), <j>n) for 
each integer n > m. 

The proof parallels that of Theorem 1. To establish the sufficiency, we 
choose the integer H(\) as in Theorem 1 and define (A) by 

A (X) = Am(\) + Am+1(\) + ...+ AH(\). 
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Then the mapping (̂ 4 ) : X —> .4 (X) will be an asymptotic sum; in fact, from 
(An) £ Lip(î), (j>n) it follows that p n + 1 (X) | | < W>W(X), and hence that 

A(\)~ Z A,Çk) < 2aw<£„(X), X Ç Aw 

for each integer » > m + 1. In particular, (A) Ç Lip(3), <f>m). 

4. Equations in Banach space. For a prescribed element y(\) in S3 
it will be our purpose to obtain information concerning the solution x of the 
equation 

(4.1) P(\)x = y(\). 

The element y = y(\) is supposed to be uniquely defined for each X in a 
positive interval A0. The mapping (j) : X —> ;y (X) is supposed to possess an 
asymptotic expansion 

(4.2) ( y ) ~ É (y.) (x ->0) 

in which y0 is a fixed element of 33. According to (2.4), this means in parti
cular that \\y(\) — yo\\ —> 0 as X —> 0. 

It will be assumed that the transformation P(X) in (4.1) is uniquely defined 
on some fixed domain 3)' C S3 for each X £ A0, and that P(X) has the decom
position 

(4.3) P(X) = 4 0 + E(X), X Ç Ao 

valid on the entire domain of definition of P(X). In (4.3) A0 is a fixed linear 
transformation with bounded inverse ^4o-1, and P(X) is a suitable contraction 
mapping, to be made precise presently. 

For a fixed positive number rj, let 35 denote the closed sphere (x G S : 
||x — ^4o_13;o|| < *?}• The following assumptions will be made. 

(i) Ao^yo Ç 3)' and t\ is chosen small enough so that 3) is a subset of 35'. 
(ii) The mapping (E) : X —» P(X) /^as /^e property that 

(4.4) (E) € Lip(3)f 0i) (0i = o(l) as X->0). 

(iii) Par a?z3> element 2 f S 

(4.5) P 0 0 * l l = *(1) <« X->0. 

The assumptions (4.3) and (4.4) together constitute a statement of the 
approximate linearity of P(X) in the neighbourhood of X = 0; there exists a 
linear transformation A0 and a positive interval Ax so that ||P(X) — A0\\ < 
ai#i(X) whenever X £ Ai, and <£i(X) —> 0 as X —» 0. 

Now we shall establish an existence and uniqueness theorem appropriate 
to the study of asymptotic properties of the solution, by appealing to the 
theorem that every contraction mapping on 35 has a fixed point in 3). 
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THEOREM 3. Under the assumptions (4.3), (4.4), (4.5) there exists a positive 
interval A so that the equation P(X)x = y(\) has a unique solution x(X) G 3) for 
each X G A. Furthermore ||x(X) — ^4o-1^(X)|| —» 0 as X —> 0. 

Proof. On account of (4.3), equation (4.1) is equivalent to 

(4.6) x = v(\) + F(\)x, 

where v(\) = ^40
_13;(X) and F(X) = — AQ~1E(\). This equation has the form 

x = T(\)x. We shall demonstrate that there exists a positive interval A so 
that T(\) maps 35 into 3) whenever X G A. In fact, if x G 3), that is ||x — z;0|| Kv 
where v0 = ^4o_1yo, then 

\\T(\)x - vol| < ||»(X) - wo|| + ||^(X)x||. 

However, 

\\v(\) -Vo\\ < IMo-MI llyGO — yoll —>0 as X - > 0 b y ( 4 . 2 ) , 
and 

||F(X)x|| < po" 1 ! ! p ( X ) x | | - > 0 as X-+0 by (4.5). 

Therefore there exists a positive interval A so that || T(\)x — vo\\ < rj whenever 
X G A, and hence T(\)x G 3) whenever X G A. 

Clearly (F) G Lip(3), <£i) since (£) G Lip(35, </>i). Then 

\\T(\)x - T(\)y\\ = \\F(\)x - F(\)y\\ < afaWWx - y\\ 

for all x, y G 35 and all X in some positive interval. Since cj>i = o(l) as X —> 0, 
there exists a positive interval A' so that ||T(X)x — 7\X);y|| < | | | x — 3>|| 
whenever X G A'; x, y G 3). We may assume that A' = A. Then !T(X) is a 
contraction mapping on 3), a closed sphere in the complete space 33, for all 
X G A. Hence 7\X) has a fixed point x = x(X) G 3D (11), that is x(X) satisfies 
(4.6) and hence (4.1). 

Finally, 

||x(X) - A0-iy{\)\\ = ||x(X) - v(X)\\ = \\Fx(\)\\ - 0 

a s X - > 0 by (4.5). 
For the validity of this theorem, the assumption (4.4) is needed to ensure 

that the mapping T be a contraction mapping. It is well known that a stronger 
condition than continuity of the transformation E is required to imply unique
ness of the solution: such a condition is the Lipschitz condition (4.4). Counter
examples can be easily supplied when (4.1) is interpreted as an integral equation 
(for example, of the type arising from an initial value problem for a differential 
equation (5, chapter i)). 

Assumption (4.5) is needed so that T maps 3) into itself. A simple counter
example in the Banach space of real numbers to show that Theorem 3 is false 
without such an assumption is provided by the real equation x = 2 + (Xx* —3) 
with Ex = Xx* — 3, which does not have a solution in the space. 
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5. Asymptotic solution of equations. Consider now a mapping (An): 
X —> An(\) in the class Lip(S), <j>n) for each integer n = 0, 1, 2, . . . , where 
3) is the closed sphere defined in the previous section. It will be assumed that 
A0 is a fixed linear transformation on 33 with a bounded inverse. We seek a 
mapping (x): X —^x(X) 6 35 for which a prescribed (y) is an asymptotic sum 
for the series ^(Anx). Such an x will be called an asymptotic solution of the 
relation ^{Anx) ~ (y). Next, a theorem will be derived concerning asymptotic 
solutions, under the following assumptions: (i) (An) £ Lip(35, 4>n) (n = 1, 2, 
. . .) ; (ii) For any element z Ç 3) 

(5.1) p n s | | < o„0„(X) (X G A„, <*n > 0). 

THEOREM 4. Under these assumptions, there exists an asymptotically unique 
solution (x) : X —» x (X) Ç 2) 0/ //ze relation 

00 

£ G4„x) - Cy). 

Proof. Since (̂ 4W) Ç Lip(®, <t>n) for each integer w, it follows from Theorem 
2 that there exists an asymptotic sum (P) of 

=0 
(An) 

defined on 3); and in fact (P) is given by 

P(X) = £ A(X), 
re=0 

where i?(X) is a suitable integer depending on X. It follows in particular that 
the mapping (E) = (P — A0) is in the class Lip (35, $1), which is Assumption 
(4.4) of Theorem 3. Since the sequence {(Anx)} converges asymptotically to 
zero for any x 6 3) by (5.1) it follows from Theorem 1 that (Px) is an asymp
totic sum for Yl(Anx), x £ 3). In particular, ||E(X)x|| = ||[P(X) — ^o]#|| < 
«i0i(X) (X Ç Ai), which is the content of Assumption (4.5) of Theorem 3. 
Therefore the assumptions of the present theorem imply those of Theorem 3, 
and there exists an element x(X) £ S satisfying P(X)x(X) = y(\) (X £ A). 
Then for X Ç Aw, we obtain from (5.1) 

(5.2) < E IM,(x)*(x)| 
j=n 

< 2ancj>n{\) 

by the same reasoning which led to (2.5) and (2.6), and hence (y) is an 
asymptotic sum for ^(Anx). 

To show that (x) is asymptotically unique, let (u) be any other asymptotic 
solution. Then for each integer n, 
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||-4o(# — u)\ { j \ ^ jX Jx jU J 
3=1 

< 

< / J A jX 
3=0 

3=0 

AjU 

+ X AjU 
3=0 

and according to (5.2) there is a positive number (3n (n = 1 , 2 , . . . ) so t h a t 

(5.3) \Ao(x — u)\\ ^2 (AjX — AjU) < MnW, X G An-

By hypothesis, there exists a positive number a so t h a t ||^4o_1|i < <x, and 
hence 

(5.4) - u\\ < p o " 1 ! ! \\A0(x - u)\\ < a\\A0(x - u)\\. 

Since (An) G Lip(35, <pn) and {4>n} is an asympto t ic sequence it follows t h a t 
there exists a sequence of positive intervals An

f so t h a t 

rc-l 

^ AjX — AjU 
n-1 

< Z ) <Xj<l)j(\)\\x 
3=1 

u\\ < 2ai4>1(\)\\x 

whenever X G Aw\ Since $i(X) —* 0 as X —» 0, there is a positive interval A 
so t h a t 2ai0i(X) < \crl whenever X G A. We may assume t h a t A„' Ç A, and 
hence 

(5.5) ^ AjX — AjU 
3=1 

^ 9I< hcTX\ x — u\ X G A»'. 

Then (5.3), (5.4), and (5.5) together establish t h a t 

hcr'\\x 

whenever X is in the smaller of the positive intervals A / , An. Hence (x) is 
asymptot ical ly unique. 

In our final theorem, we shall derive an asympto t ic expansion for the 
asymptot ical ly unique solution (x) of Yl(AjX) ~ (y) given in Theorem 4. 
Suppose t h a t (y) has the asymptot ic expansion (4.2). Suppose also t h a t (P) 
is an asymptot ic sum for the series J^(An), as in Theorem 4. T h e n the map
pings (v) and (F) denned in (4.6) will be asympto t ic sums for corresponding 
series Z)(zO> Z ) ( ^ ) , t h a t is 

(5.6) 
(v) ~ 2 (vn) where vn = A0

 lyn 

(F) ~ E (Fn) where Fn = - A 0 ' X 

For the solution (x) : X —•» x(X), it follows from Theorem 4 t h a t x(X) satisfies 
equation (4.1), and hence satisfies (4.6). An asymptot ic expansion for (x) 
will be obtained in a na tura l way from a sequence of successive approximat ions 
to the solution of (4.6), defined in te rms of the quant i t ies vn, Fn. 

T h e addit ional hypothesis will be made t h a t the sequence {#„} has the 
multiplicative proper ty 
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(5.7) (X 6 A0;rc = 1 , 2 , . . . ) 

where yn is a fixed positive number for each integer n. 

T H E O R E M 5. Under the hypotheses of Theorem 4, the asymptotically unique 
solution (x) of the relation X) {Anx) ~ {y) is an asymptotic limit of the sequence 
{(xn)} defined by 

(5.8) xo = ^o; %n 7 ' Vj i 7 J * j%n—j ( » = 1,2,. . .) . 
3=0 j=l 

An equivalent conclusion is that (x) has the asymptotic expansion 

YL{xn — x„.-i) (with x-i = 0). 

Proof. I t is enough to show t h a t there exists a sequence of positive numbers 
Pn and a sequence of intervals An so t h a t 

(5.9) \\x(\) - xn^(\)\\< MM ( A € A „ ; n = 1, 2, . . . )• 

This will be proved by mathemat ical induction on n. First , i t is easily 
seen from (5.2) and (5.6) t h a t the proposition is t rue for n — 1. Under the 
hypothesis t h a t i t is t rue for all integers j < n — 1, we shall show t h a t it is 
t rue for n. Since x = v + Fx, it follows t h a t 

(5.10) | | * - * n | | < 
3=0 + Fx Z FjX 

+ X FjX 
3=1 

r jXn—j 

On account of the hypotheses (5.6) there exists a positive number an+1 so 
t h a t each of the first two terms on the right side of (5.10) is bounded above 
by an+ i<t>n+i(X) for all X in a positive interval An+1. The inductive proof of 
(5.9) will then be finished if i t can be shown t h a t the third term also is of 
order <j)n+i. T o see this, observe t ha t 

Z ) FjX 
3=1 

r jXn—j < Y \\F-\ ^ L~i W1 3\ Xn—j 
3=1 

< IMo1!! X) \\Aj\\ \\x - xn-j\ 
3=1 

< « L <Xj<l>j(\)Pn-j+l<l>n-j+lO^), 
3=1 

where use has been made of the inductive hypothesis (5.9) and the hypothesis 
(Aj) e Lip (3), 4>j) a t the last s tep. Let 

bn = max ajPn-j+i (1 <j <n). 
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Then, since {<t>n} has the multiplicative property (5.7), 

Hence (5.9) is valid for each integer n, and the theorem is proved. 

3=1 
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