SIMPLE PROOF OF A THEOREM ON PERMANENTS by D. Ž. DJOKOVIƆ

(Received 27 December, 1967)

Let $A = (a_{ij})$ be an $n \times n$ complex matrix. The permanent of this matrix is

per
$$A = \sum_{\rho} \prod_{i=1}^{n} a_{i,\rho(i)}$$
,

where the sum is taken over all permutations ρ of the set $\{1, \ldots, n\}$.

In a recent paper [1] E. H. Lieb proved an interesting theorem (see below) which he applied to verify some conjectures of M. Marcus and M. Newman. The purpose of this note is to give a simple proof of Lieb's theorem.[‡]

THEOREM. Let $A = (a_{ij})$ be an $n \times n$ hermitian positive semidefinite (h.p.s.d.) matrix partitioned as follows

$$A = \begin{pmatrix} B & C \\ C^* & D \end{pmatrix},$$

where B is a $p \times p$ matrix. In addition suppose that A does not have a zero row. Let $A(\lambda)$ be the $n \times n$ matrix obtained from A by replacing B by the matrix λB , λ being a complex number. Then all the coefficients of the pth degree polynomial $P(\lambda) = per A(\lambda)$ are real and non-negative. Furthermore, if B and D are positive definite (p.d.) then the coefficient c, of λ^t in $P(\lambda)$ is zero if and only if all subpermanents of C of order p-t vanish.

Proof. Let

$$\alpha = (\alpha_1, \dots, \alpha_p), \qquad \alpha' = (\alpha_1, \dots, \alpha_t), \qquad \alpha'' = (\alpha_{t+1}, \dots, \alpha_p),$$

 $\sigma = (\sigma_1, \dots, \sigma_{n-p}), \qquad \sigma' = (\sigma_1, \dots, \sigma_{p-t}), \qquad \sigma'' = (\sigma_{p-t+1}, \dots, \sigma_{n-p}),$

where α and σ are permutations of the sets $\{1, \ldots, p\}$ and $\{p+1, \ldots, n\}$, respectively. When we need more such sequences we shall use the letters β and τ instead of α and σ , respectively.

The coefficient c_i is the sum of all permutation products

$$\prod_{i=1}^n a_{i,\rho(i)}$$

which contain t elements of B, p-t elements of C, p-t elements of C^{*} and n-2p+t elements of D. We clearly have

$$Mc_t = \sum_{\alpha,\beta,\sigma,\tau} a_{\alpha'\beta'} a_{\alpha''\tau'} a_{\sigma'\beta''} a_{\sigma''\tau''},$$

[†] This work was supported in part by the NRC Grant No. A-5285. ‡ We mention that the theorem in [1] contains an inaccuracy concerning the conditions under which $c_t = 0$. We present a corrected formulation. The proof given in [1] concerning the conditions under which $c_{p-1} > 0$ is still valid and so is the addendum on p. 129.

where $M = t!(p-t)!^2(n-2p+t)!$ and, for instance,

$$a_{\alpha'\beta'}=\prod_{i=1}^t a_{\alpha_i,\beta_i}.$$

Since A is h.p.s.d. there exist n vectors f^i (i = 1, ..., n) such that

$$a_{ij} = (f^i, f^j) = \sum_{k=1}^n \overline{f^i_k} f^j_k,$$

where $f_k^i (k = 1, ..., n)$ are coordinates of f^i . The bar denotes the complex conjugate. Using this representation of a_{ii} we get

$$Mc_{t} = \sum_{\alpha,\beta,\sigma,\tau} \sum_{I,J,K,R} \overline{F}_{I}^{\alpha'} F_{I}^{\beta'} \overline{F}_{J}^{\alpha''} F_{J}^{\tau'} \overline{F}_{K}^{\sigma'} F_{R}^{\beta''} \overline{F}_{R}^{\sigma''} F_{R}^{\tau''},$$

where, for instance,

$$F_I^{\alpha'} = \prod_{s=1}^t f_{l_s}^{\alpha_s}.$$

The letters I, J, K, R denote the sequences of indices $I = (i_1, \ldots, i_t), J = (j_1, \ldots, j_{p-t}),$ $K = (k_1, \ldots, k_{p-1}), R = (r_1, \ldots, r_{n-2p+1})$. The sum over I, for instance, means the sum over all indices i_1, \ldots, i_i . Each index runs through the values $1, \ldots, n$.

Changing the order of summation, we get

$$Mc_{t} = \sum_{I,R} \left[\sum_{J} \left(\sum_{\alpha} \overline{F}_{I}^{\alpha'} \overline{F}_{J}^{\alpha''} \right) \left(\sum_{\tau} F_{J}^{\tau'} F_{R}^{\tau''} \right) \right] \left[\sum_{K} \left(\sum_{\beta} F_{I}^{\beta'} F_{K}^{\beta''} \right) \left(\sum_{\sigma} \overline{F}_{K}^{\sigma'} \overline{F}_{R}^{\sigma''} \right) \right]$$
$$= \sum_{I,R} \left| \sum_{J} \left(\sum_{\alpha} \overline{F}_{I}^{\alpha'} \overline{F}_{J}^{\alpha''} \right) \left(\sum_{\tau} F_{J}^{\tau'} F_{R}^{\tau''} \right) \right|^{2}.$$

Hence $c_t \ge 0$. We have $c_t = 0$ if and only if

$$\sum_{J} \sum_{\alpha} \left(\sum_{\alpha} \bar{F}_{I}^{\alpha'} \bar{F}_{J}^{\alpha'} \right) \left(\sum_{\tau} F_{J}^{\tau} F_{R}^{\tau''} \right) = 0,$$
$$\sum_{\alpha} \bar{F}_{I}^{\alpha'} F_{R}^{\tau''} a_{\alpha''\tau'} = 0$$

i.e.,

$$\sum_{\alpha,\tau} \bar{F}_I^{\alpha'} F_R^{\tau''} a_{\alpha''\tau'} = 0$$

for all I and R. After summation over α'' and τ' this condition becomes

$$\sum_{\alpha',\tau''} \vec{F}_I^{\alpha'} F_R^{\tau''} \text{ per } C(\alpha',\tau'') = 0.$$
(1)

Here $C(\alpha', \tau'')$ denotes the submatrix of C which remains after deleting the rows α' and the columns τ'' of A.

It is obvious that (1) is satisfied if all subpermanents of C of order p-t vanish. Conversely, if B and D are p.d. we shall prove that (1) implies that all these subpermanents vanish. Let β and σ be arbitrary. Since B is p.d. the vectors f^k (k = 1, ..., p) are linearly independent. Let q^k (k = 1, ..., p) be their reciprocal system of vectors. Similarly, let the system of vectors g^k (k = p+1,...,n) be reciprocal to the system f^k (k = p+1,...,n). Then we have

D. Ž. DJOKOVIC

$$\sum_{I} G_{I}^{\beta'} \overline{F}_{I}^{\alpha'} = \begin{cases} 1 & \text{if } \beta' = \alpha', \\ 0 & \text{otherwise,} \end{cases}$$
$$\sum_{R} \overline{G}_{R}^{\sigma''} F_{R}^{\tau''} = \begin{cases} 1 & \text{if } \sigma'' = \tau'', \\ 0 & \text{otherwise.} \end{cases}$$

Multiplying (1) by $G_I^{\beta'} \overline{G}_R^{\sigma''}$ and summing over *I* and *R*, we get per $C(\beta', \sigma'') = 0$. This proves the theorem.

I am grateful to Professor E. H. Lieb for the remark that it is sufficient to suppose that B and D are p.d. (A may be merely h.p.s.d.).

REFERENCE

1. E. H. Lieb, Proofs of some conjectures on permanents, J. Mech. Math. 16 (1966), 127-134.

FACULTY OF MATHEMATICS UNIVERSITY OF WATERLOO, WATERLOO, ONTARIO, CANADA