SIMPLE PROOF OF A THEOREM ON PERMANENTS

by D. Ž. DJOKOVIĆ \dagger

(Received 27 December, 1967)
Let $A=\left(a_{i j}\right)$ be an $n \times n$ complex matrix. The permanent of this matrix is

$$
\operatorname{per} A=\sum_{\rho} \prod_{i=1}^{n} a_{i, \rho(i)}
$$

where the sum is taken over all permutations ρ of the set $\{1, \ldots, n\}$.
In a recent paper [1] E. H. Lieb proved an interesting theorem (see below) which he applied to verify some conjectures of M. Marcus and M. Newman. The purpose of this note is to give a simple proof of Lieb's theorem. \ddagger

Theorem. Let $A=\left(a_{i j}\right)$ be an $n \times n$ hermitian positive semidefinite (h.p.s.d.) matrix partitioned as follows

$$
A=\left(\begin{array}{ll}
B & C \\
C^{*} & D
\end{array}\right)
$$

where B is a $p \times p$ matrix. In addition suppose that A does not have a zero row. Let $A(\lambda)$ be the $n \times n$ matrix obtained from A by replacing B by the matrix λB, λ being a complex number. Then all the coefficients of the pth degree polynomial $P(\lambda)=\operatorname{per} A(\lambda)$ are real and non-negative. Furthermore, if B and D are positive definite (p.d.) then the coefficient c_{t} of λ^{t} in $P(\lambda)$ is zero if and only if all subpermanents of C of order $p-t$ vanish.

Proof. Let

$$
\begin{array}{lll}
\alpha=\left(\alpha_{1}, \ldots, \alpha_{p}\right), & \alpha^{\prime}=\left(\alpha_{1}, \ldots, \alpha_{t}\right), & \alpha^{\prime \prime}=\left(\alpha_{t+1}, \ldots, \alpha_{p}\right), \\
\sigma=\left(\sigma_{1}, \ldots, \sigma_{n-p}\right), & \sigma^{\prime}=\left(\sigma_{1}, \ldots, \sigma_{p-t}\right), & \sigma^{\prime \prime}=\left(\sigma_{p-t+1}, \ldots, \sigma_{n-p}\right),
\end{array}
$$

where α and σ are permutations of the sets $\{1, \ldots, p\}$ and $\{p+1, \ldots, n\}$, respectively. When we need more such sequences we shall use the letters β and τ instead of α and σ, respectively.

The coefficient c_{t} is the sum of all permutation products

$$
\prod_{i=1}^{n} a_{i, \rho(i)}
$$

which contain t elements of $B, p-t$ elements of $C, p-t$ elements of C^{*} and $n-2 p+t$ elements of D. We clearly have

$$
M c_{t}=\sum_{\alpha, \beta, \sigma, \tau} a_{\alpha^{\prime} \beta^{\prime}} a_{\alpha^{\prime \prime} \tau^{\prime}} a_{\sigma^{\prime} \beta^{\prime \prime}} a_{\sigma^{\prime \prime} \tau^{\prime \prime}}
$$

[^0]where $M=t!(p-t)!^{2}(n-2 p+t)!$ and, for instance,
$$
a_{a^{\prime} \beta^{\prime}}=\prod_{i=1}^{t} a_{\alpha_{t}, \beta_{l}}
$$

Since A is h.p.s.d. there exist n vectors $f^{i}(i=1, \ldots, n)$ such that

$$
a_{i j}=\left(f^{i}, f^{j}\right)=\sum_{k=1}^{n} \overline{f_{k}^{i}} f_{k}^{j},
$$

where $f_{k}^{i}(k=1, \ldots, n)$ are coordinates of f^{i}. The bar denotes the complex conjugate. Using this representation of $a_{i j}$ we get

$$
M c_{t}=\sum_{\alpha, \beta, \sigma, \tau} \sum_{I, J, K, R} \bar{F}_{I}^{\alpha^{\prime}} F_{I}^{\beta^{\prime}} \bar{F}_{J}^{\alpha^{\prime \prime}} F_{J}^{\mathrm{r}^{\prime}} \bar{F}_{K}^{\sigma^{\prime}} F_{R}^{\beta^{\prime \prime}} \bar{F}_{R}^{\sigma^{\prime \prime}} F_{R}^{\tau^{\prime \prime}}
$$

where, for instance,

$$
F_{I}^{\alpha^{\prime}}=\prod_{s=1}^{t} f_{l_{s}}^{\alpha_{s}}
$$

The letters I, J, K, R denote the sequences of indices $I=\left(i_{1}, \ldots, i_{t}\right), J=\left(j_{1}, \ldots, j_{p-t}\right)$, $K=\left(k_{1}, \ldots, k_{p-i}\right), R=\left(r_{1}, \ldots, r_{n-2 p+i}\right)$. The sum over I, for instance, means the sum over all indices i_{1}, \ldots, i_{r}. Each index runs through the values $1, \ldots, n$.

Changing the order of summation, we get

$$
\begin{aligned}
M c_{t} & =\sum_{I, R}\left[\sum_{J}\left(\sum_{\alpha} \bar{F}_{I}^{\alpha^{\prime}} \bar{F}_{J}^{\alpha^{\prime \prime}}\right)\left(\sum_{\mathbf{v}} F_{J}^{\mathbf{r}^{\prime}} F_{R}^{\tau^{\prime \prime}}\right)\right]\left[\sum_{K}\left(\sum_{\beta} F_{I}^{\beta^{\prime}} F_{R}^{\beta^{\prime \prime}}\right)\left(\sum_{\sigma} \bar{F}_{K}^{\sigma^{\prime}} \bar{F}_{R}^{\sigma^{\prime \prime}}\right)\right] \\
& =\sum_{I, R}\left|\sum_{J}\left(\sum_{\alpha} \bar{F}_{I}^{\alpha^{\prime}} \bar{F}_{J}^{\alpha^{\prime \prime}}\right)\left(\sum_{\tau} F_{J}^{\mathbf{r}^{\prime}} F_{R}^{r^{\prime \prime}}\right)\right|^{2} .
\end{aligned}
$$

Hence $c_{t} \geqq 0$. We have $c_{t}=0$ if and only if

$$
\sum_{J}\left(\sum_{\alpha} \bar{F}_{I}^{\alpha^{\prime}} \bar{F}_{J}^{\alpha^{\prime \prime}}\right)\left(\sum_{\tau} F_{J}^{\mathrm{r}^{\prime}} F_{R}^{\mathrm{z}^{\prime \prime}}\right)=0
$$

i.e.,

$$
\sum_{\alpha, \tau} \bar{F}_{I}^{\alpha^{\prime}} F_{R}^{\tau^{\prime \prime}} a_{\alpha^{\prime \prime} \tau^{\prime}}=0
$$

for all I and R. After summation over $\alpha^{\prime \prime}$ and τ^{\prime} this condition becomes

$$
\begin{equation*}
\sum_{\alpha^{\prime}, \tau^{\prime \prime}} \bar{F}_{I}^{\alpha^{\prime}} F_{R}^{\mathfrak{z}^{\prime \prime}} \operatorname{per} C\left(\alpha^{\prime}, \tau^{\prime \prime}\right)=0 \tag{1}
\end{equation*}
$$

Here $C\left(\alpha^{\prime}, \tau^{\prime \prime}\right)$ denotes the submatrix of C which remains after deleting the rows α^{\prime} and the columns $\tau^{\prime \prime}$ of A.

It is obvious that (1) is satisfied if all subpermanents of C of order $p-t$ vanish. Conversely, if B and D are p.d. we shall prove that (1) implies that all these subpermanents vanish. Let β and σ be arbitrary. Since B is p.d. the vectors $f^{k}(k=1, \ldots, p)$ are linearly independent. Let $g^{k}(k=1, \ldots, p)$ be their reciprocal system of vectors. Similarly, let the system of vectors $g^{k}(k=p+1, \ldots, n)$ be reciprocal to the system $f^{k}(k=p+1, \ldots, n)$. Then we have

$$
\begin{aligned}
\sum_{I} G_{I}^{\beta^{\prime}} \bar{F}_{I}^{\alpha^{\prime}} & = \begin{cases}1 & \text { if } \beta^{\prime}=\alpha^{\prime}, \\
0 & \text { otherwise, },\end{cases} \\
\sum_{R} \bar{G}_{R}^{\sigma^{\prime \prime}} F_{R}^{\tau^{\prime \prime}} & = \begin{cases}1 & \text { if } \sigma^{\prime \prime}=\tau^{\prime \prime}, \\
0 & \text { otherwise. }\end{cases}
\end{aligned}
$$

Multiplying (1) by $G_{I}^{\beta^{\prime}} \bar{G}_{R}^{\sigma^{\prime \prime}}$ and summing over I and R, we get $\operatorname{per} C\left(\beta^{\prime}, \sigma^{\prime \prime}\right)=0$. This proves the theorem.

I am grateful to Professor E. H. Lieb for the remark that it is sufficient to suppose that B and D are p.d. (A may be merely h.p.s.d.).

REFERENCE

1. E. H. Lieb, Proofs of some conjectures on permanents, J. Mech. Math. 16 (1966), 127-134.

Faculty of Mathematics
University of Waterloo,
Waterloo, Ontario, Canada

[^0]: \dagger This work was supported in part by the NRC Grant No. A-5285.
 \ddagger We mention that the theorem in [1] contains an inaccuracy concerning the conditions under which $c_{t}=0$. We present a corrected formulation. The proof given in [1] concerning the conditions under which $c_{p-1}>0$ is still valid and so is the addendum on $p .129$.

