Irish Section Meeting, 16–18 June 2010, Nutrition – Getting the Balance Right in 2010

Investigation of biomarker responses to depletion/repletion with vitamin B₁₂

C. F. Hughes¹, M. Ward¹, L. Hoey¹, A. Molloy², K. Pentieva¹, J. M. Scott², F. Tracey³ and H. McNulty¹

¹Northern Ireland Centre for Food and Health, University of Ulster, Coleraine BT52 1SA, UK, ²Trinity College, School of Biochemistry and Immunology, Dublin, Ireland, and ³Causeway Hospital, Coleraine BT52 IHS, UK

Despite dietary intakes well above current recommendations, low biomarker status of vitamin B_{12} is a common problem in older adults, largely as a result of malabsorption of food-bound vitamin B_{12} . This arises mainly from atrophic gastritis which leads to reduced gastric acid production (hypochlorhydria). Hydrochloric acid is essential for the absorption of food-bound vitamin B_{12} , and thus vitamin B_{12} absorption is reduced in states of hypochlorhydria, although in theory free vitamin B_{12} (from supplements or fortified) should still be absorbed. Gastric acid suppressant medications, such as proton pump inhibitors (PPI) drugs induce hypochlorhydria and therefore a state similar to atrophic gastritis. The aim of the present study is to investigate the effect of hypochlorhydria on absorption. Forty-one healthy males, aged 18–45, participated in a vitamin B_{12} depletion/repletion trial. During the depletion phase (week 0–6) all subjects were administered with a PPI (omeprazole, 20 mg/d); after which they were randomised (by vitamin B_{12} status as measured by serum holotranscobalamin; holoTC; the metabolically active fraction of total circulating vitamin B_{12} into one of the two treatment groups to receive; omeprazole (20 mg/d) plus supplemental vitamin B_{12} (10 µg/d) or omeprazole (20 mg/d) plus placebo for the repletion phase of the study (week 7–12).

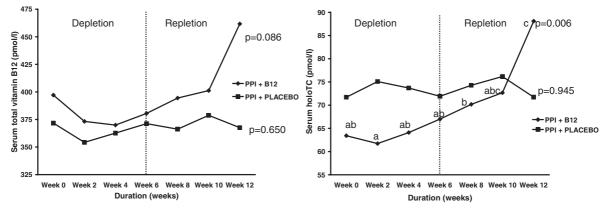


Fig. 1. Serum total B12 and holoTC responses to vitamin B12 depletion/repletion were compared by repeated measures ANOVA on log transformed data.

Contrary to expectations, no significant change in vitamin B_{12} status (as assessed by either total vitamin B_{12} or holoTC) was observed during the depletion phase of the study. During the repletion phase of the study, an increase in vitamin B_{12} status was observed in the treatment group, but this was significant (P = 0.006) only using the biomarker holoTC, with the response for total vitamin B_{12} failing to reach significance. In conclusion, these results supports the emerging view that holoTC (compared with the traditional biomarker of status, serum total vitamin B_{12}) is a more sensitive biomarker in detecting small changes in vitamin B_{12} intake. Although the acute administration of PPI drugs did not significantly suppress vitamin B_{12} , repletion with 10 µg/d of supplemental vitamin B_{12} status is still to be determined.