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Dedicated to Bernhard Neumann on his 90th birthday.

A cover for a group is a collection of proper subgroups whose union is the whole group.
A cover is minimal if no other cover contains fewer members. We term minimised
a minimal cover with the property that substituting for a member of the cover by
a proper subgroup of that member produces a collection which is no longer a cover.
We here describe the minimised covers for the groups GL2 (q), SL2(g), PSL2 (<?) and
PGL2(9).

1. INTRODUCTION

Let G be a group. A cover of G is a collection A — {At : 1 < i ^ n} of proper
subgroups of G whose union is G. The cover A is irredundant if no proper sub-collection
is also a cover; and minimal if no cover of G has fewer than n members. In this minimal
case we write a(G) = n.

Covers of groups have been studied by many authors. For example Neumann [5]
shows that the intersection of the members of an irredundant cover with n members has
index bounded by a function of n. Tomkinson [8] improved this bound. Minimal covers
seem to have been introduced by Cohn [1]; and Tomkinson [9] showed that, for a finite
soluble group G, o(G) is pa + 1 where pa is the size of the smallest chief factor of G
with multiple complements. He confirmed a conjecture of Cohn [l] that a(G) — 7 for
no group G. His proof suggests that investigating minimal covers of insoluble groups
might be of interest. Here we make a small beginning by looking at the groups GL2 (q),
SL2(q), PSL2 (q) and PGL2 (q) (Theorem 3.5). We find a for these groups and. more to
the point, we give a description of all the minimal covers which are minimised in a sense
to be described below (Theorem 4.4).
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228 R.A. Bryce, V. Fedri and L. Serena [2]

2. QUOTATIONS AND NOTATION

In what follows G will always denote one of the groups GL2 (q), SL2(q), PSL2 {q)
and PGL2 (q) where q — p a is a prime power, always at least 4 except in Section 5. In
contexts where the symbol G is unquantified it may be interpreted as any one of the four
groups. Of course, when q is even, the four groups comprise just two isomorphism classes
represented by GL2 (q) and SL2(g). We associate a parameter e with G as follows: e = 1
except in the single case when q is odd and G is PSL2 (q) when e = 1/2. Let V be the
space on which GL2 (q) acts so that all four groups have a natural action on the projective
line V{\, q) thought of as the set of one-dimensional subspaces of V. It will be convenient
to assign a labelling { 1 , 2 , . . . ,q+ 1} to the points of V(l,q); this assignment is arbitrary,
but then fixed. The stabiliser in G of point i we denote by Pt and its unipotent radical
by N{\ note that TVj = Op{Pi), and that N{ is a Sylow p-subgroup of G. It is well-known
that Pi is maximal in G.

The structure of a point stabiliser Pi is well-known. We may write Pi = FiZ where
Z is the centre of G, and FiZ/Z is a Frobenius group of order eq(q — 1) with Frobenius
kernel NiZ/Z. Of course, except for GL2 (g), Z in the product FiZ is redundant; and, in
the case of GL2 {q), the product FiZ is direct. Fi is not unique when G = GL2 (q), but
each choice for it is a supplement for SL2(g) in G.

Let us write Ktj := Ft DPj (z ^ j). Then

(1) \Kij\=e(q-l),

and

(2) l ^ n z | = ( 2 ' C = SL2(g)(9odd)
y ' ' 3 ' I 1, otherwise .

Moreover

Kij is an example of an eccentric cycle in Pj PI Pj, namely a cyclic supplement for Z in
Pi n Pj. Every eccentric cycle arises as Fi D Pj for some choice of Fi. In GL2 (q) eccentric
cycles are complements for Z in Pt D Pj, and distinct eccentric cycles generate Pj n P, .
GL2(q) — SL2{q)Kij for every eccentric cycle K^.

A Singer cycle of GL2 (q) is a cyclic subgroup of order q2 — 1. Every Singer cycle acts
irreducibly on V. The Singer cycles therefore form a single conjugacy class of GL2 (<?),
and Singer cycles are self-centralising; in particular Z is in every Singer cycle. If 5 is
a Singer cycle of GL2 (g) we shall term S n SL2(g), (S n S L 2 ( g ) ) / ( z D SL2(g)) and
S/Z Singer cycles of SL2(g), PSL2 (q) and PGL2 (g) respectively. By Huppert [3, 7.3]
5 n SL2(g)| = g + 1 and GL2 (g) = SL2(g)5. Also, using this same result from Huppert,

whenever D is a Singer normaliser in GL2 (g), then £TlSL2(g), (DnSL2(q)) / fZnSL 2 (g))
and D/Z are Singer normalisers in SL2(g), PSL2 (g) and PGL2 (g) respectively. The same

https://doi.org/10.1017/S0004972700036364 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700036364


[3] Linear groups 229

result shows that the Singer cycles of SL2(g) are a single conjugacy class of SL2(g); that

the order of the normaliser of a Singer cycle 5 is 2 |5 | ; and tha t the number of Singer

cycles is s := q(q — l ) / 2 whichever of the four groups G might be.

Now it is easy to see that , whenever 5 is a Singer cycle and 1 ^ i ^ q + 1,

(3) G = NG(S)Pi

and
' 2(q - 1), G = GL2 (q)

1, G = PSL2 (q) (q odd) .

We denote the set of Singer subgroups of G by E and the set of their normalisers in
G by E. In the same spirit if Eo C E then Eo denotes the set of the normalisers of the
members of Eo-

We denote by n the set of all point stabilisers in G. It will be convenient to write
Ui for n \ {Pi} and Ily for n \ {Pit Pj} (i ? j).

It will be useful to make the following definition in the case that q is odd:

f SL2(g)iT, G = GL2(q)(qodd)
\ SL2{q)Z/Z, G = PGL2 [q) (q odd) .

Note that M is a maximal subgroup of G.

We rely throughout this article on Dickson's list of subgroups of PSL2 (q) as given in
Huppert (8.27 in [3]) and, to a lesser extent where convenient, on the Atlas [2]. Observe
that in Huppert's 8.27 (7) there is a misprint: the orders of the subgroups involved are
divisors of eq(q — 1).

3. PRELIMINARY RESULTS

Here we build up the results we need for the description of the minimised covers in
the next section. One of the results we obtain here is the value of a(G) for all but a few
small cases. These missing cases are treated in Section 5.

LEMMA 3 . 1 . Tie union E U FI is a cover for G. When q is even £ U Fit is a cover
ofG for each i € { 1 , 2 , . . .,q + 1}.

PROOF: An element of GL2 (q) acting without a fixed point in V(l, q) is contained
in a Singer cycle. Hence E UII is a cover for G.

The second statement comes from the fact that

Pi = Nizu\J(PinPj)

and that , by (4), for q even, each element of N{Z is contained in some Singer normaliser. D
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C O R O L L A R Y 3 . 2 .

{ ( + 1 ) q even

, 9 odd .
LEMMA 3 . 3 . For q ^ 4 t i e normaliser of a Singer cycle S is the unique maximal

subgroup ofG containing S except when G = (P)SL2(q) and q = 5,7,9.

P R O O F : When G = (P) GL2 (q) this follows from a special case of Kantor [4]. When

G = (P)SL2(q) the result follows by reference to Dickson's list. A maximal subgroup U

of SL2(g) containing a Singer cycle 5 satisfies (q + 1) \U\; and Z C U because SL2(q)

is perfect. Then e(q + 1) \U/Z\ and it is straight-forward to check that, unless q is odd

and q ^ 9, U/Z is the normaliser of Z. D

LEMMA 3 . 4 .

1. Let G = GL2 (q). Then

(a) (Nit N) = SLiiq) (1 / N C Nj, i^j,q>A)

(b) {Ktj,Nk)=G (i^k^j^i, O 4 )

(c) (Kijt Ku) = G ({i,j} fl {kj} = 0, q > 7);

2. When G = SL^iq) l(b) ioids for q ^ 4; and l(c) holds for q ^ 4 but
9 / 5 , 7 , 9 , 1 1 .

PROOF: Let G be either GL2 (g) or SL2(g). Now Ktj acts on V{l,q) with orbit
lengths 1, 1 and q— 1; and TV* acts with orbit lengths 1 and <?. Hence, under the conditions
imposed, (Ni,N), {Ki:j,Nk) and (Kij,Kkt) act transitively on V{l,q). Therefore q + 1
divides the order of each.

l(a) Now H := (ty, /V) C SL2(g); and ?(g + 1) | \H\. If H ^ SL2(9) then ^ Z / Z
is a proper subgroup of PSL2 (q) and eq(q+ 1) I \HZ/Z\. From Dickson's list [3, 8.27]
the only proper subgroups of PSL2 (q) whose orders are divisible by q are contained in a
Frobenius group of order eq(q — 1), which is not divisible by eq(q + 1), or are in subgroups
isomorphic to A», S4 or A$\ an easy calculation shows that, for q ^ 4, none of these is
possible. This contradiction means that H(z D SL2(g)) = SL2(g) and so H = SL2(g)
since SL2(<7) is perfect.

l(b) Let H := (Kij,Nk) and Ho := H n SL2{q) so that H = /fy^0- Also let
ZQ :— Z fl SL2(g). Suppose # 0 / SL2(g) and let Uo be a maximal subgroup of SL2(g)
containing Ho; since SL2(g) is perfect Zo C f/0. Now g(g2 - 1) | \H\ or g(g2 - l)/2
according as q is even or odd, so either eq{q + 1) \Uo/Zo\ (q = 1 (mod 4)) or £2q{q + 1)
|t/o/^o| (9 = 3 (mod 4)J. Much as in the last paragraph we conclude that, for q ^ 4,
Ho/Zo — PSL2 (q) whence Ho = SL2(9), and so H = G, a contradiction.
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l(c) Let H = (Kij, Kkt). Define Ho := HZ n SL2(9) so that HZ = K^HQ. Write

ZQ := ZnSL2(q). K^ xZ C HZ so {q2 - l)(q - 1) | \HZ\ or (q2 - l)(q - l ) / 4 according

as q is even or odd, whence e3(q2 - 1) I \H0/Z0\.

Suppose that HZ ^ G so that Ho ^ SL2(q). We produce a contradiction to this

assumption using Dickson's list of subgroup of PSL2 (q).

We show, first of all, that HQ/Z0 is not isomorphic to one of At, S4, A5. Since q ^ 7,
H0/Zo does not in these cases have an automorphism of order 5 —1 (note that HQ/ZQ = A5
does not arise when q — 7). Hence K{j does not act faithfully on Ho/Zo, so there is a non-
identity (non-central) element y e K^ satisfying [Ho, y] C Zo. Now the function Ho -> Zo

defined by n -> [x,y] is a homomorphism, and so [O2(#0)i2/] = 1 since \Z0\ — 2. Since
O2{H0) is an irreducible subgroup of G its centraliser in G is cyclic. However (y)Z is not
cyclic, a contradiction in each of the three cases.

For g ^ 7, the other possibilities for Ho/Zo are: cyclic of order dividing e(g± 1),
dihedral of order dividing 2e(q ± 1), subgroups of Frobenius groups of order eq(q - 1),
PSL2 (p

m) (m I a) and PGL2 (p
m) (2m \ a). By checking these for divisibility of their

orders by £3(q2 - 1) we eliminate all but the cases q = 7 and H0/ZQ = 53, and g = 9
and Ho/Zo = Dw. The second case is eliminated exactly as in the last paragraph. In
the first case HQ is a non-Abelian semi-direct product of a cyclic group of order 3 by a
cyclic group of order 4. Now V is irreducible for Ho, in fact absolutely irreducible since
its dimension is prime. Therefore CQ{HO) = Z. Also the automorphism group of Hg has
unique Sylow subgroup of order 3. Let yx and y2 be elements of order 3 in K^ and Kke

respectively. It follows that y\y2
x G Cc(Ho) = Z. However this contradicts the fact that

2/1, 2/2 fix different points.

We have shown, therefore, that HZ = G. Hence SL2(<?) = G' C H so G =
SL2(g)/(ry C H whence # = G.

This concludes the proof of l(c).

(2) If H := (tfy, JVfc) ^ G we see that e2q{q2 - 1) | \H/Z\. This is dismissed, for
<7 ^ 4, much as in the proof of l(a) above.

If H := (Kij,Kkl) ± SL2(g) = G we deduce that e2{q2 - 1) | | i / /Z | . Checking

through Dickson's list yields that q is odd and q ^ 11. D

It is not difficult to see that the proscription q ^ 5,7,9,11 is necessary in the second
part of (2) of this lemma.

Before stating the next theorem we introduce some convenient notation. A poset
may be defined on the set of collections of subgroups of a group H as follows. If A —
{A{ : 1 ^ i ^ m} and B = {B{ : 1 ^ i < n} are collections of subgroups of H we
say A •< B if for some one-to-one function / : {1,2, ...,m} -t {1,2, . . . , n } we have
A-i C Bjfj) (1 ^ i ^ m). The poset so defined we denote by A#.
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THEOREM 3 . 5 . Let q

( 1 . , ,
1), q even

1
-q(q+ 1) + 1, q odd

provided either G = (P) GL2 (q), or G = (P)SLi(q) and q / 5,7,9.

P R O O F : Let A be a minimal cover for G. If each member of A is replaced by a
maximal subgroup of G containing it the resulting set is still a (minimal) cover for G.

Hence we may suppose that A consists of maximal subgroups Ai (l ^ i $J cr(G) J of G.

Now each Singer cycle S is in some member of A. Since, by Lemma 3.3, the unique
maximal subgroup containing a Singer cycle is its normaliser, which has order 2|S|, it
follows that different Singer cycles are in different members of A, let us say in Ak (l ^
k ^ s = q(q — l ) /2 j .

Using Lemma 3.4 l(a) we see that distinct Fi generate G, so do not belong to the
same member of A. Hence, if q is odd and {Fi} ^ A (1 ^ i ^ q + 1), or if q is even and
{Fi} •< A for all but one i, we are done by Corollary 3.2. Suppose, for some i, that

{Fi} £ A.

None of the subgroups K^ (j ^ i) is in Ak (1 ^ k ^ s); for, under our conditions, a
Singer normaliser contains no eccentric cycle of order e(q — 1). Moreover no two are in
the same member of A since two together generate Fi. Hence

Kii Q As+j {j ± i),

say. If q is even then n ^ q(q — l ) /2 + q — q{q + l)/2 and we are done, by Corollary 3.2.
If q is odd then
(5) Ni n Ak = 1 (k ^ s + i).

This is because q is co-prime to the order of the Singer normalisers on the one hand and,
if Ni D As+k ^ 1 for some ft / i, then F{ = {Kik, N{ n Aa+k) C As+k, a contradiction, on
the other. Therefore Ni intersects another member of A non-trivially. Hence,

1

so, by Corollary 3.2 again, we are done. D

4. MINIMISED COVERS

The subposet of A^ consisting of minimal covers for H we denote YH. Our aim now
is to describe the minimal elements of TG: these are the minimised covers of the heading,
of this section. The relative conditions imposed on q and G in the lemma we now state
are designed to ensure that the hypotheses of Lemmas 3.3, 3.4 hold.
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LEMMA 4 . 1 . Let q ^ 7 in t i e case that G = (P) GL2 (q), and q ^ 4 but q ^

5,7,9,11 when G = (P)SL2(q). Aiso iet ^ b e a minimal cover ofG. Then, for some

integers i, j satisfying l ^ i < j ^ q + l ,

E U n 0 X A.

PROOF: AS before write A := {A{ : 1 ^ i ^ n} where n = a(G). It is clear that
Y, < A, say the subgroups A{ (1 ^ i ^ s) contain the Singer cycles.

Using Lemma 3.4 l(a) no two FjS are in the one member of A since, under our
hypotheses, they generate G. Suppose that two F4s do not belong to members of A; say,
for notational simplicity, that {Fi} -£ A and {F2} -£ A. Now the q cyclic subgroups
Kxk (1 < k < q + 1) do not belong to any At (1 ^ £ ^ s), and no two belong to the same
member of A since together they generate F\. Let us say that

Kik C At+k (Kk^q + 1).

When g is odd, moreover,

Ny C A.+1

because the argument following (5) shows that Â i intersects every other member of A

trivially.

The cyclic subgroups Kik do not belong to Ai (1 ^ i ^ s); and, from Lemma 3.4
l(c), 2, K2k 2 As+t (e^k). Hence A"a* Q As+k. Therefore,

Fk = (Klk, K2k) C >ls+fc (1 ? k / 2).

Indeed this remains true whatever eccentric cycle in K2kZ we use in place of K^, so
Z C ,4s+fc whence P/t = FkZ C AJ+/t. This confirms the claim of the Lemma in the case
that two FiS are not contained in members of A.

Suppose just one F{, say F\, is not in a member of A. Then we may suppose that

Fj C A 3 + j {l<j^q + 1 ) .

If q is odd then, as above, Nx C As+1. In any case, as above, every eccentric cycle in KltZ
is in A3+t (1 < £ ^ q + 1). It follows that Pt C ylJ+/ (1 < I ^ g + 1). This concludes the
proof in this case.

Suppose finally that every Fi is contained in some member of A (so that q is odd),
say

Fi C A3+i (1 ^ i < q + 1).

Now

JViZ n A, C Z ( j j£ s + i)
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on account of Lemma 3.4 l(a) and the fact that Singer normalisers have order co-prime
to q (recall that q is odd here). Hence N{Z C A3+i and so Pj = FtZ C A3+i. This again
confirms the conclusion of the Lemma. D

We now begin a description of the minimised covers, always under the hypotheses
of Lemma 4.1 so that Lemmas 3.3, 3.4 are in force. To this end we first of all derive
necessary conditions on a cover A of G in order that it be minimal.

At most two point stabilisers are not in A, by Lemma 4.1. Suppose that Pt and Pj
are not in A. First consider the case when q is odd. Now, by Lemma 3.4 l(a), and the
fact that p does not divide the order of a Singer normaliser, Ni and Nj each intersect
trivially the members of A containing the subgroups in E U Fly. By Theorem 3.5 there
are two other members of A, say X, Y, and

• n A = NjZ nA = z(AeA,x^.

It follows that
NZ = zu (NZ n X) u (NZ n Y).

This union is redundant. If not, as is well-known (it is an old result of Scorza [6]),

4 = \N{Z : zn(NiZnx)n(NiZnY)\ = \N{Z-. znxnY\
= \NiZ:Z\\Z:ZnXnY\,

a contradiction since \NtZ : Z\ = \Nt\ is odd. Hence NtZ is contained in X or Y.
Similarly NjZ is in X or Y. Therefore, changing names if necessary, either

(a) M = {Ni, Nj)Z = X, and in this case G = (P) GL2 (q); or

(b) NiZ C X and NjZ C Y.

Now Kjj must be in X or Y. using Lemma 3.4 and the fact that, under our hypotheses,
no Singer normaliser contains an eccentric cycle. Case (b) therefore does not arise since
Pi, Pj are not in A. In case (a) it must be that every eccentric cycle from P{ nPj is in Y.

It follows that, when q is odd, and A lacks two point stabilisers P{ and Pj, G =
(P) GL2 (q), X = M and K{jZ C Y.

When q is even, and A lacks two point stabilisers, Pi and Pj say, then there is a unique
member X of A other than those containing the members of E U Fly, by Lemma 3.5. By
Lemma 3.4, KijZ C X. Now ATI Nt = Xf\N3•, = 1, and Â  and JV7- intersect trivially the
point stabilisers Pk (i ^ k ^ j ) . Hence A^ D W ^ 1 for some W 6 .4 containing a Singer
cycle. Therefore W € E. However no two involutions in a Singer normaliser commute,
so \W (~1 Ni\ = 2- It follows that, for each non-trivial v € Nt, there is a Singer normaliser
75V €. A such that SvnNi — (v). Similarly for each non-trivial v € Nj there exits T , e £
such that % e A and T^DNJ = (v).

Let us write, for 1 ̂  k ^ q + 1 and for 1 ̂  u 6 Nk,
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Observe that, by (4), NG{S) (1 N{ ^ 1 (5 € E, 1 < i < q + 1). Then, for each Jfc e
{ 1 , 2 , . . . , g+1}, £ = U Et „; conjugation by iVt permutes £* „ transitively with kernel

(D); and conjugation action by Pk permutes the set {£*,„ : 1 ^ v € N*} transitively. Let
us call a subset E t of E a k-transversal if |Efc n £*,„! = l ( l ^ « e Nk).

What we showed in the penultimate paragraph was that, when q is even, and when A

does not contain P{ and Pj, then .A contains Ei and Ej where Ej and E7- are respectively
an i- and a j-transversal of E. Notice that Ej and E7- may overlap.

To sum up so far:

LEMMA 4 . 2 . Under the hypotheses of Lemma 4.1, if A is a minimal cover ofG,
and if two point stabilisers, say Pt and Pj, are not in A, then:

(a) ifq is odd, G = (P) GL2 (q) and

E U n 0 U {M} U {Pi n Pj} * A;

(b) and ifq is even,

E y U (E \ Ey) U n 0 U {Pi n Pj} < A

where Ey is the union of an i-transversal and a j-transversal of E.

Analogously, when just one point stabiliser is absent from a minimal cover, we have
the following lemma.

LEMMA 4 . 3 . Under the hypotheses of Lemma 4.1, if A is a minimal cover ofG
lacking just one point stabiliser P{ then:

(a) ifq is odd, E U ri; U {N,Z} X A;

(b) and ifq is even, Ei U (E \ Ej) U Ilj ^ A where Ei is an i-transversl of E.

PROOF: We have E U IL. ^ A. When q is odd NtZ intersects trivially every Singer
normaliser and every Pj (j ^ i), using a familiar argument. This proves the first state-
ment. The second statement uses the argument given in the preamble to Lemma 4.2. D

We are now in a position to describe the minimised covers of G.

THEOREM 4 . 4 . Let q ^ 7 and G = (P) GL2 (q), or q ^ 4 but q ^ 5,7,9,11 and

G = (P)SL2(q). The minimal members ofTc are precisely:

1. q odd

(a) E U n 0 U {M} U {Pi r\Pj}(l^i<j < g + 1) (G = (P)GLj(g) only);

(b) £ U Ili U {NiZ} (1 < i s$ q + 1).

2. g even

(a) Ey U (E \ Ey) U Ily U {Pi n Pj} (1 ^ i < j 4 g + 1) where Ey is the
union of an i-transversal and a j-transversal of E.
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(b) E, U (E \ Ej) U IIj where E,- is an i-transversal of E which, for no j ^ i,
is a j-transversal.

PROOF: Observe first of all that the unions displayed in the theorem are covers of
G. By Lemma 3.1 each of l(a) and 2(a) is a cover if the elements of {P{ \ Pj) U {Pj \ Pi)
are accounted for. These are either in {N,Z} U {NjZ}, or have order dividing q — 1 and
do not fix both i and j . The first type are in M (q odd) or in Ey (q even); and, by
Maschke's Theorem, the elements of the second type fix a point other than i,j and so
are picked up by the members of Ily. A similar argument shows that the unions l(b)
and 2(b) are covers for G.

Let A be an arbitrary minimised cover of G. Note that A lacks at least one point
stabiliser. When q is even this follows from Theorem 3.5. When q is odd A would be
E U l l if it contained every point stabiliser; but then E u n j U{NiZ}, for example, would
be a cover properly below A in FQ, contradicting the assumption that A is minimised.

By Lemma 4.1 at most two point stabilisers do not appear in A. If there are two,
say Pi and Pj then, by Lemma 4.2, the unions displayed in l(a) and 2(a) are below A in
Tc when q is odd or even respectively. If just one point stabiliser P,- is not in A then, by
Lemma 4.3, the unions in l(b) and 2(b) are below A in TQ, according as q is odd or even.
Since these unions are all covers for G each is A. Notice that in the case 2(b) Ej is not
a j-transversal for j ^ i since otherwise we could replace Pj in A by Vi D Pj obtaining a
cover of G strictly below A.

Finally the unions B displayed in the theorem are minimised covers. In the cases
l(a) and 2(a) this follows at once from Lemma 4.2 since a minimised cover dominated by
B in To lacks two point stabilisers. In the cases l(b) and 2(b) if B is not minimised then
it dominates a minimal member C of FQ- By Lemma 4.3, C lacks a point stabiliser other
than Pi, say Pj. By Lemma 4.2 this means that M € C < B in case l(b), a contradiction,
and in case 2(b) that Ej C C •< B, whence E;- = E,-, also a contradiction. D

COROLLARY 4 . 5 . If A is a minimal cover ofG then Z is in every member of A.

5. T H E MISSING VALUES OF <J(G)

Here we calculate a for the groups GL2 {q), SL2(q), PSL2 (q) and PGL2 (q) missing
from Theorem 3.5.

C A S E q — 2. In this case Z = 1, all four groups are isomorphic to 53, and plainly

(6) a(G) = 4.

C A S E q — 3. Observe that PGL2 (3) = 54 and that A» and the three Sylow 2-subgroups
constitute a minimal cover of 54. On the other hand PSL2 (3) = A4. It is easily seen
that a minimal cover for A4 consists of its five Sylow subgroups, so

(7) ff((P)GLa(3))=4; a((P)SL2(3)) = 5.
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CASE q = 5. Only (P)SL2(g) escape Theorem 3.5. Since PSL2 (5) S* PSL2 (4),

(8) a((P)SL2(5)) = 10.

CASE q = 7. Again only (P)SL2(g) are missing from Theorem 3.5. Since G = PSL2 (7) =
GL3 (2) we can regard G as acting on the projective space V(2.2). In this action every
element of G either fixes a point, or lies in a Singer cycle. There are eight Singer cycles,
and seven point stabilisers, so a{G) < 15.

By Kantor [4] the normalisers of these eight Singer subgroups, Frobenius groups of
order 21, are the unique maximal subgroups of G containing a Singer cycle. Hence the
eight Singer normalisers all occur in a minimal cover A of maximal subgroups of G.

The only other maximal subgroups of G are the point and line stabilisers, all iso-
morphic to 54: see the Atlas [2]. Hence no proper subgroup of G contains more than
three cyclic subgroups of order 4. There are 21 such subgroups, so there are at least 7
subgroups in A different from the Singer normalisers. Thus a{G) ^ 15 whence

(9) a((P)SL2(7)) - 15.

CASE q = 9. Let G = PSL2 (q), of order 360. The maximal subgroups of G are either
isomorphic to A$, are point stabilisers which are Frobenius of order 36, or isomorphic to
S4: see [2]. The Singer cycles here have order 5, their normalisers have order 10, and so
there are 36 in all. No more than six 5-cycles lie in a proper subgroup of G.

Note that G = A6, so every Singer cycle is in one of the six copies of A5 in a conjugacy
class. As before G is the union of Singer cycles and point stabilisers, and therefore the
union of six copies of As and the ten point stabilisers. Hence cr(G) ^ 16.

On the other hand if B :— lB{ : 1 ^ i ^ cK*-')} is a minimal cover of G of maximal
subgroups then at least 36/6 = 6 members of B contain a 5-cycle, and these members are
all isomorphic to A$. None of these contains a 4-cycle. Let us suppose that a(G) < 16.
Then there are at most nine point stabilisers in S, say P is a point stabiliser not in B.
The nine 4-cycles in P are then in different members of B none of which are isomorphic
to A5. Hence at most six members of B are copies of A5, and therefore exactly six. It
follows that a(G) = 15. Let us say that B{ = Ah (1 ^ i ^ 6) and that, for 7 ^ i ^ 15,
each Bi contains a 4-cycle from P (but, of course, contains no 5-cycle).

From now on we shall regard G as A6, and expressions such as 'point stabiliser' and
'fixed point' will refer to the natural action of A6 on {1,2,3,4,5,6}. We denote by Qt

the stabiliser of i in this action (1 ^ i ^ 6). Each Qi is isomorphic to A5 and the set
{Qi : 1 ^ i < 6} is a conjugacy class. It is well-known that there is just one other
conjugacy class {Ri : 1 ^ i ^ 6} of copies of A5 in G (whose actions are transitive).
These two classes are distinguished by the action of their 3-cycles: those in the Qi fix a
point, those in the FU fix no point.
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In P there are four 3-cycles of which just two fix a point. Let us say Ci fixes a point
but c2 fixes no point. Moreover Cj ^ Bj (1 ^ i ^ 2, 7 ^ ji < 15) since P is generated
by every pair consisting of a 3-cycle and a 4-cycle. Hence each of Ci,c2 is in some
Bi (1 ^ i ^ 6). It follows that at least one point stabiliser, say Q\, is not in B. Now each
of the six 5-cycIes in Qi is in some B, (1 < i ^ 6), and no two are in the same one since
two together generate Q\. Since 1 is the unique point fixed by these 5-cycles from Q\ it
follows that no Qi is in B. This contradicts that cx lies in some Bi (1 < i ^ 6).

Hence the assumption a(G) < 16 is false. Therefore

(10) a((P)SL2(9)) = 16.

The values of a for the groups PSL2 (7) and ^46 were obtained by Shieh in [7].
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