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ABSTPACT

The flux divergence technique of Athay and
Skumanich (1967) is generalized for application to
media whose properties vary in more than one spatial
dimension. In this method, the flux divergence is
viewed as an integro-differential functional of the
source function. The source function is then ex-
panded in terms of basis functions along character-
istic paths, and, with the help of various interpo-
lations, the flux divergence is converted to an
approximate linear algebraic operator on a discrete
spatial grid. A large but finite set of linear,
inhomogeneous, simultaneous algebraic equations
with known matrix coefficients is thus generated
and is solved by direct matrix inversion for the
source function at each point of the spatial grid.

Some aspects of the accuracy, stability, and
computational convenience of the technique are
discussed. Sample solutions for depth dependent,
axially symmetric variations of temperature are
shown.

Key words: radiative transfer in inhomogeneous
media, line formation in multi-dimensional media,
numerical methods in transfer, matrix methods for
integro-differential operators.

I. INTRODUCTION

A casual inspection of a spectroheliogram at
almost any wavelength reveals that the radiation
field of the solar atmosphere has considerable hori
zontal structure. The ordinary plane-parallel
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idealization is thus at best an average description
of the medium, and a more realistic treatment can be
provided by model atmospheres whose properties are
allowed to vary in two or three dimensions.

The formation of spectrum lines in such media
has, until recently, received little attention.
Rybicki (1965) has developed Fourier transform
techniques suitable for media in which the absorp-
tion coefficient is constant with position. Wilson
(1968) has published results obtained with a trial
and error scheme making use of a three-dimensional
equivalent of the Eddington approximation. Avery
and House (1968) have adapted the Monte Carlo
technique for use in line formation problems and
have paid particular attention to spicular geome-
tries.

In the present paper, we will present a new
numerical technique for dealing with line formation
in multi-dimensional media. The method is a gener-
alization of a one-dimensional technique developed
independently by Kuhn (1966) and by Athay and
Skumanich (1967) . In contrast with the Monte Carlo
scheme, it is "deterministic" or non-statistical.
The method may be used with variable absorption
coefficient and is, in principle, non-iterative for
linear problems.

II. BASIC EQUATIONS

We write the time independent transfer equation
as

— K ~ n-V t (x",n) = S (5) - I (5,n) . (1)
K..(x) v v v
v

We have used the following notation: x is the posi-
tion vector of a point in the region of interest; n
is a unit direction vector; Kv is the absorption co-
efficient at frequency v; Sv is the source function;
Iv is the specific intensity.

In the one-dimensional case it is customary to
use a geometric position variable which increases
outward (i.e., away from the region of interest)
and an optical depth scale increasing in the opposite
sense; this results in the multiplication of the
right hand side of (1) by -1. We have not adopted
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this convention here. As a result certain sign
differences will appear when the following analysis
is compared with the equations of Athay and
Skumanich (1967).

We define two angular moments of the specific
intensity by

Jv(x) = 47 Iv(x,n) dft (2)

and

n

where the integrations are over the full domain of
the solid angle ft. If one integrates Eq. (1) over
solid angle, one obtains

(x) = Sv(x) - Jv(x) (4)

We wish to consider the equation of transfer
at frequencies centered about a spectrum line with
maximum absorption coefficient at v = vo. We split
the absorption coefficient into the sum of the part
arising from bound-bound processes in the line
(K (v)) and the part arising from all other pro-
cesses occurring at^the same frequency (K (v) ) .
Thus, at any point x, we write

= KL(v) Kc(v) (5)

To a good approximation K (v) is independent of
frequency at frequencies °/here KL(v) is appreciable.
Defining Kc = Kc(vo) and r = Kc/KL(v) we have

= KL(v) rv) (6)

Letting ro = r , K = K
we have

and K
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Kv(x) = KQ(x)(*v(x) + rQ(x)). (7)

Separating the emission coefficient in similar
fashion and noting that the source function is the
ratio of emission to absorption one obtains

<J> (J)S (x) + r S (x)
Six) = — ^ | - ^ (8)
V <Dv(x) + rQ(x)

where S L v and S c v are the line and continuum source
functions. For this paper, we will take S c v (x")
= B v (Te(5)) = B(x); i.e., for frequencies'around
the line, the continuum source function is the
Planck function at frequency v o and local electron
temperature T e (x") . If one assumes "complete re-
distribution" in frequency of scattered radiation
in the rest frame of the atom, the line source
function is frequency independent. For a two-level
atom the statistical equilibrium equation may be
written in the form

_ J + cB ,q.
bL " 1 + e K*}

where

r
J = * J.. dv (10)

and

e = ^ (1 - exp { - hv A T O [ ) . ( I DAUL o el

Here, $ v is the profile coefficient normalized to

/ r°° \
unity ($^= $ / % d v ) i CUL i s t n e collisional rate

per atom from the upper to lower levels in the atom,
and A U L is the Einstein A coefficient.
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To obtain a single equation for the source func-
tion, one can use the transfer equation to eliminate
J from Eq. (9). Operating on (1) with

dv<f>
v

o

we have that

r - J. (12)

Substituting (8) and (9) into (12) one has that

r~ V-H
dv

(l+e)ST+
L

B
r $ dvo v

+r
o

(13)

We define

6 =
r 0 dvo v
<|) + rTv. o

and note that since

V , O
r (b + ro v o

dv

ro
(14)

Putting (14) into (13) and combining terms, one
finally has that

= B (15)
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We will use (15) as the basic equation in
developing our multi-dimensional technique. It is
incomplete, however, until we relate V#HV to S^
and B i.e., until we express Hv as a functional
of S L and B. To find the needed relation we must
turn to the formal solution of the equation of
transfer. ^

At any^point x we form characteristics or
paths, p(x,n), which are straight lines passing
through x in direction n. If s represents a geomet-
ric length along the path, measured from some arbi-
trary origin and increasing in direction n, the
vector xP(s) of any point on the path is given by

x + n (s-s ) (16)

where s o is the distance from x to the point at which
s = o. Figure 1 illustrates the path geometry.

s=o
Figure I. Geometry of a path p(x,n) passing through
x in direction n. Geometric length s is measured
from an arbitrary origin and increases in the same
sense as n. s o is the length from the origin to x,
and xP(s) is the position vector of an arbitrary
point on the path.
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We define an optical path length, tv, by

tv(s) = Kv(x
p(s')) dsf (17)

•* o

and adopt the following conventions: a quantity
evaluated along the path will be denoted by a script
letter. If it is regarded as a function of geometric
path length, a superscript s will be included, while
if no superscript appears, the quantity is understood
to be a function of optical path length at frequency
v.
Thus

(18)

(19)

Kv(5
P(s)) = k^(s) = kv(tv(s)). (20)

It must be remembered that our path notation implies
that a script quantity is an implicit function in x
and n and explicit in path length.

With these definitions and conventions, the
equation of transfer (1) may be rewritten as

Equation (21) has the well-known solution for 4 in
terms f ^

dt^ . (22)

We will assume that xP(s=O) is at a boundary and
either-3 v(0) = 0 or is specified by appropriate
boundary conditions. Since we shall be considering
half-spaces we shall assume that^)v(0) is suffi-
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ciently bounded so that e t^J(0)^0 for tv-*-°°.
In Eq. (15) we are interested in the quantity

oo m

V
-oo k

V

We note that

M8 1 ^ . (23)M8 =K v 4TT I dtv J v

Note that dJv/dtv depends implicitly on direction
and location. Our final functional relation is that

V

(e v |/v(t;)e - dt-j
V V

(24)

An alternate expression can be obtained by
transforming the integration in (24) to a volume
integration. For example, one can show (cf. among
others, Rybicki 1965) that

1 ! •* T (X,X) /J.J.x _
- A K (x')Sv(x.)e 7^773 d X' (25)

V x-x1

where V is the volume of interest. Here, TV(X,X') is
the optical path length along the characteristic
between the "field point" x and the "source point"
x"' . In this case, Eq. (24) becomes

^ V-H dvK v
- 0 0 \J

47T j Kv
 V Jv

 S V ( X ) K V ( X

(26)
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In either case, we see that the weighted frequency
integral of the flux divergence is an integro-
differential operator on the total monochromatic
source function. We call this operator ay if (26)
is to be used and Op if (24) is used; more precisely,
we write

- %

—oo v

Note particularly that a is a linear operator, i.e.,

a(a S1 + b S2) = aalS1) + ba(S2) (27)
V V V V

where a and b are arbitrary constants, a is av or ap
and S^ and S^ are arbitrary functions of appropriate
arguments. The linearity of a holds only so long as
kv is independent of Sv, a condition that is approxi-
mately satisfied in some, but by no means all, sit-
uations of astrophysical interest. If the operator
is non-linear, then iterative techniques must be
employed.

In general form, then (15) may be written

SL + "p^V = SL + V v = B- (28)

*
Using (8) and (27) we have that

(29)

Letting c£ (SJ =

we have

^ = B< (30)

Note that (29) holds even if a is non-linear
since it remains linear in the factor Sv.

146

https://doi.org/10.1017/S0252921100151231 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100151231


where 1_ is the unit operator. We regard, e, 6, and
B1 as known functions and wish to solve for ST.
Formally,

ST (x) = (1 + a j ' V (x) . (31)

We now seek an algebraic representation of a.
The basic step is to assume that we may represent
Sv in terms of its values on a finite grid of space
points {x ; n = 1,2, ...N}, i.e., we assume

N
S (x) = T P , (x)S (x ,) (32)
v y_, v,n' v n1

where the functions {Pv (x); n = 1,2, ..., N} are
presumed known but are left unspecified for the
moment. We let

(J) \ / (f)
v 1 I v . ~*"p,

d)"Hr v, n / p I d> 4* r v,n v
v o / \ v o

and
/ rr, \ ( rr, \

a 1 (x) = a T 7 [ T - r 5 — P ) = a t-r—r^— P ( x P ( t ) ) | .
n VI 4> + r v , n / p\^) + r v , n v /

Then (29) becomes

N

with

S L ( x ) + I c £ , ( x ) S L ( x n l ) = B ' ( x ) ' ( 3 3 )
n ' =1

N
B'(x) = B(x) - I a' (x)B(xn,) . (34)

n'=l n n

** _>.
If the Pv nCx) are known in terms of the spectral
functions of the operator a, then the truncation
error in (32) is, in principle, known.
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Setting B'(xn) = B'n, SL(xn) = S n / and
evaluating (33) at each of the grid points one
obtains the N-fold set of equations

V ? .V(5n)Sn- = BA ' n = X N- (35)
n'=l

Letting a , = a , (x ), we have

T (6 ,+ a° ,)S . = B1 (36)
L, nn' nn' nf n

where <5nn« is the Kronecker delta. Clearly, (36)
is the algebraic analog of (30). Defining Qnn» =
6nn» + % ' o n e f i n a l l Y h a s

E,Q , S , = B1 (37)
n'ynn' n1 n

We have thus expressed aS at any point of our
grid as a linear combination of S's at every other
point on the grid; i.e., we have formed a set of
N inhomogeneous, simultaneous, linear, algebraic
equations with known coefficients (provided we can
evaluate agi(xn)) which may be cast in matrix-vector
form and solved by some suitable standard matrix
inversion technique. The method is non-iterative
if a direct inversion scheme such as Gauss elimina-
tion is used.

The method is limited in practice by the size
of the matrices that can be calculated, stored, and
inverted. Even a modest grid may produce quite a
large matrix; for example, for ar30 x 30 two-
dimensional grid, the matrix Q has order of approxi-
mately 1,000. If the matrix is full, roughly 106

numbers must be calculated and stored and a 1,000
x 1,000 matrix must be inverted. A high speed,
large-scale computer is thus a necessity.

In view of the scale of the computations, a
desirable characteristic of the method is that it be
spatially stable, that is, the solutions should be
relatively insensitive to the "fineness" of the
discrete grid. One reason for choosing (15) as the
basic operator equation is that previous experience
in one-dimension (cf. Athay and Skumanich 1967)
indicates just this kind of stability.
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III. EVALUATION OF THE FLUX DIVERGENCE OPERATOR

The method outlined in the preceding section
illustrates the form of the procedure we have used
but masks considerable detail. In particular, we
have not said how to evaluate a(P^,n(x))? nor have
we specified what functions Pv,n(x) are suitable
for our purposes. We proceed to examine both of
these points in more detail.

To evaluate ot(PVfn) for any known function
pv,n(x) w e m aY u s e either (24) or (26). Equation
(26) has the more concise analytic form and may
appear to be more suitable at first sight. However,
useful closed-form expressions for an(x") are
difficult to obtain even for simple functions Pv n

and standard two-dimensional geometries. They
are nearly impossible to obtain if one considers
a wide class of problems with variable absorption
coefficient (possibly given in tabular form, for
example). We have tried approximating volume in-
tegrals of the form in (25) by certain types of
quadrature formulae and have met with some success.
However, we have not yet been able to satisfactorily
carry out the full set of operations in (26).
Further, the methods so far devised have proven
extremely inefficient with regard to computing time.
Some of the difficulty may be seen in the behavior
of the kernel

-T (x,x* ) ,+ ->. xv ' (x-x1)e
x-x

which has a singularity (although integrable) at
x = x1 and whose variation differs considerably in
different parts of the range of x - x1 .

We have found equation (24) to be more suitable
for numerical purposes. The operations involved here
are fairly simple and are in a form where variable
absorption coefficient can be handled more conve-
niently.

The disadvantage in the use of (24) is that the
dependence of the operators on the basic spatial
coordinates x is now implicit. One must thus be
careful to preserve the order of the operations and
must be prepared to relate functions evaluated along
a path to those evaluated in the basic coordinate
system.
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Though much of what follows is applicable to
general geometries, we now confine our attention to
a two-dimensional, axisymmetric medium. The atmo-
sphere is bounded by a plane at z = 0 and is semi-
infinite in the z-coordinate. We take z to increase
into the atmosphere. The axis of symmetry is per-
pendicular to the boundary, distance from the axis
is denoted by r, and 0 <. r £, °°. Directions fi at
points (r,z) in the medium are specified by two
angles, 0 and <j>, such that n*f = sin 0 cos <J> and
n#z = cos 0, where r and z are local unit vectors
in the direction of increasing coordinate.

We assume, as we have indicated before, that
we can write along a path

N

v —
(38)

£=1

where the f_% are the quadratic basic functions of
Avrett and Loeser (1963),

fx(t) = 1

_ t )
—- —- a

= 0

fN(t) = t.

t > t

£=2,3,...,N-1

(39)

We choose the constants c« such that

I (40)

Thus

m=l
(41)

or

(42)
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For a given set of tm, the F& m are easy to
compute (cf. Athay and Skumanich 1967). We shall
use'the same set of t m for each frequency. The
geometric point along the path corresponding to a
given t m is therefore a function of frequency and we
relate *£• (tm) to r>/s(s^) for a fixed set of sk by an

V

interpolatory transformation due to Kalkofen (196 7),
i.e. ,

I V^(v ,x ,n^(s v ) (43)
k

where the transformation depends on the frequency v
and the path p(x,n). We note here that any spatial
variations in kv are introduced via Vmk. ^

Similarly, we transform*/ §(s^) to Sv(xn) by an
interpolatory routine such that

\ X , II ) O VA I / • 1 1 1 /
. 3s.il v nn'

Thus we have that

I , W * m m k k n
&,m,k,nl v

P v n • &Pi v , n

(45)

The elements of V and T will be discussed in a later
section. We now proceed to evaluate ap(Pv,n•(tv)).

According to (24) the first step is to find

-t tv t
(t ) = e jd (t')e dt' . (46)

To accomodate the semi-infinite geometry more con-
veniently, we will now restrict our paths to have
directions n with 0 <_ 9 <. TT/2 and will evaluate
JJv^v) i-n both the +A and -A directions. We there
fore define
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V V v
(t

, e f

0 < (47)

where the subscripts give the arguments defining the
path. The origin of geometric and optical path
length is taken to be at the intersection of the
path and the boundary plane. The notation t+ implies
optical path length measured in the above way and
increasing into the medium, while tv on the right
hand side of (47) implies optical path length in-
creasing in the same sense as fi. implied in the sub-
scripts. Thus

dJ! (t )
V V
dt

v
/ (x,7r-

d t

We will henceforth drop the + from tv, always under-
stand that our paths are now restricted, and remember
that we must use

dJ>
V

dt
v

in evaluating our operator.
Now Eq. (46) yields

V V V V V V
(48)

and

"v

(49)

Letting (& 0 (t ) = X (f0) r we have that
X/ V V A/
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) V

where

* (t )F0 V , T, ,S (x , )
Iv v Im mlc kn1 v n'

(50)

-t
- e v

Mt

"' \) 9 - t

•il

2_ + _iV0<tv<t
\

and

X, = 2,3, .. .N-l (51)

-2e

0 • t- < -f- <

2
•£ J

\

= 2,3, N-l (52)

We note that G is the "path" analog of the G-
function introduced by Athay and Skumanich (1967)
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We can now take the derivative of (50) by
differentiating (51) and (52). Note that the f£ in
(38) are well suited for this procedure since both
the f-i and their first derivatives are continuous
over the entire range of the argument. Thus, we
have that, letting

dt
v

-1

&,m,k,n'

-T

V mkmx nn

= e v

"~ t
v

2 2\ 2 / K
=— + —1-7=-fl- T̂ - U;0<t <t

(53)

(54)

\

and that

«. = 2,3,. . .N-l

- 2

*!

0; t£ < t < »

I = 2,3,...,N-1 (55)
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As indicated previously (cf. pg. 151) we have
transformed %& defined on an "internal" space of

path grid points t = (t0, I = 1,...,N} to an

"external" space s = is,, = 1,...N} via *> = V*> .

If we were to proceed in strict analogy to the one-

dimensional case, we would evaluate 0 o(t ) at each

of the internal points {t , n = 1,...,N}. Then,

letting (6~F ) = £G7(t )F0 , we would transform
n , m n X/ n X/iri

' — — 1 /S

the vector (6 F )Vw£ , which is defined on the in-
ternal grid to a vector on the external grid by some
other (inverse) interpolatory scheme represented by
a matrix W. In other words,

(cf. Kalkofen 196 8). Because of the simple nature
+

of the dependence of 0 (t ) on t , we have not found

this necessary. Instead, we calculate t (x,n) for

every v, x, and n and proceed analytically. This is
done conveniently by precalculating the following
quantities:

h =
m

+ _ 2 ? £m e
n m ~ a n

£=2

N-i F /
 (t£- = 2 y £m e

nm o , . 2£=n+i t«

N-i
v
+ = 2 T
nmnm
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N-i F l

W = 2
nm

= W + - 2V+

nm nm nm

- - + + ± ±
UN-i,m= UN,m= VN-i,m= VN,m = WN-i,m= WN,m=

Using the above quantities, one can show that

v,m £=

nm v nm

nm Nm
and

v,m

-W + F./

* ± — I
where t < t < t ,.. Thus (6 F ). ,

n v — n+i v t can be

v ,m

evaluated for any t by calculatirig three exponen-

tials, finding n (i.e., the interval in which t

lies), and performing a small number of multipli-

cations and additions.
The remaining operations are integrations over

solid angle and frequency. We first consider

"
1 V H = 1 d(f) sine d6 I - ^ I ̂  . (56)Kv v ^ K Jo \dV(x,e,d>)
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Noting that a characteristic passes through the same
r and z points for both +(j) and -<j>, we have

1 1jr=- V-H = JLK v 2TTv

7T r-n
d<|) sin0 d0

o ' o
(57)

v

We approximate both integrals by quadrature formulae.
Although many schemes are possible, we have used
Gauss-Legendre quadrature for the 0 - integration
and Gauss-Chebyshev quadrature for the <f> -integration
(cf. Handbook o£ Mathematical Function*, AMS 55,
1964). Thus

M

K
V-H = W

V

v
dtv (x,cos (58)

dt
(x, cos (~YV)t

In (58) 2M is the order of the Legendre
quadrature, L is the order of the Chebyshev quadra-
ture, Yy are the appropriate roots of Legendre
polynomials, and cos^x are roots of Chebyshev
polynomials., Noting that cos"1(-y )= IT - cos~1(y )*
we have

K
v

M L

I I wy
w

(x,cos (Y
y

(x,cos (Y ) , fr

. (59)

Recalling that • v is even in <J> and noting that

(2A- 1)
<K= IT—^=1 ' we see that TT-<J>,= +0X

The W, are
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TTequal (W,= =-) and since we sum over all X, (57) be-
A J_i

comes

1 * £ _ 1— v*H - ~—K 2TT
W W
y A

V V
dt dt

v v -1
y ,x

where

dtv y, A

, m, k, n'

(60)

The frequency integral is reduced to the following
quadrature formula

x
* f(y)dy = I c f (y )+ c f,
1 C l s ^

(61)

where foo is the asymptotic value of f (y) as y •> °°.
The weights c^ are computed following a quadrature
procedure developed by one of us (Skumanich 1966)
in which f(y) is approximated by piecewise linear
segments with the subsequent integrals performed
analytically. We have simply chosen y to be
sufficiently large so that

x+i
f (y)dy = I c f (62)

Here

Y = ( V - V Q ) / A V D (63)

Thus

AVy
n

(64)
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where
-00

n = 0 dy . (65)
J — 0 0 •*

Then

f°° ^ 9 x + l c
r +

Lv V n - ' M y Y n C = 1 C C

Recalling the definitions of a£,(x) and a^,(x) we
have

irn(e(x)+ 6 (x)

[G;(tv(x,ftuA))- G-(tv(x,ftyX))] (67)

• *

ro ( xn'

Note that a1,(x) is given by the same formula with

replaced by r (x .)/((!>„ (x ,) + r (x , ) . We then^ -1 o n1 ' Yc n1 o n1

evaluate a0, and a1, at all points (x ) and proceedn1 n1 v n v

to form and solve the linear algebraic equations as

outlined in §11.
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IV. INTERPOLATORY TRANSFORMATIONS

For the transformation of functions of a single
variable we have used a subroutine, MAPPAR, written
by Kalkofen (1967). The basic step is to suppose
that a function in a given domain is well represented
by an interpolation function. A "backward" parabola
is fitted such that for a function f(x') on the
interval x. < x1 < x.,

D ~ D + 1

f , ( i - i ) ( i + O f

(x'-x.) ( 6 8 )

f

For x1 in the same interval a "forward" parabola is
given by

(x'-x (x'-x. ) (x'-x )(x'-x )

(69)

' f j 2

In MAPPAR, except for the end intervals, a weighted
sum of the two is taken; the backward weight is P,
the forward Q = 1-P. Then, for x. <_ x! <_ x.

j + 2

f(x!) - I V,.,f.. (70)
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where
(x!-x.)

v = P i r i J+1 ( 7 1 )
ii-i Tx I x ) ( x = ^ c T '13 i x j i X j; i x j 1 x ;

:. ) (x. .-x . , x
j-i i' 3+1)

(x_! -x, JCxj.-x^,,, (xj -x, , , ) (x.-x^ J
V. . =ij (x.-x.~j (x.-x.,.) v(x.-x..,)(x.-x.,,) 'J D D"1 3 D+1 D j+i/v j 3+2 ( 7 2(72)

(73)

3+1 3-1) (x j + i-Xj) 3 + 1 y 3+1 3 + 2)

and

(x! -x.)(x! -x. )1 2 2!-2.)(x. 2x!+
3 + 2 j j + 2 j+1

( 7 4 )

Note particularly that the V's can be expressed in
matrix form and depend only on the relation of x.1 to

x. and not on the ffs. Also, the x! and x. must
D ID

refer to the same variable so that in our problem,
j? s

where we wish to find Zy (s), we must first find
either s(t ) or t (s), where

dt1

s(t ) = I ^ . (75)

s
tv(s) = I K v(x

P(s I))ds l . (76)

A similar but somewhat simpler formula is used

for finding T, the transformation between <*£ S(s) and
S(r,z). We assume that it is approximately valid to
write
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D D (rP(s)-r )(zp(s)-z, )
S(rP(s),zP(s))= _r ft _z 1 + 1 S

1 1+1 j j+1

(rp(s)-r. ) (zp(s)-z
4. -L~r 1

(r.-r. . ,) (z., ,-z .) i1 1+1 j+1 j.-r. . ,) (z., ,-z .1 1+1 j+1 j

(rp(s)-r.)(zp(s)-z.,
± J"1"

(r., -r.)(z.-z., )
1+1 1 j j + i

-r.) (zF(s)-z.)
J

whenever r. < rp(s)< r., < rT and z.<zp(s)<z..<z-,..
1 — 1+1— 1 j— — D~*" — ^

Letting n = i + I(j-l) we have

S(xP(sk)) = I T k nS n (78)
n

where the non-zero elements of T are given from (77).

In the cylindrical geometry which we have chosen

rP(s) =

r

[ r + ( z t a n 0 - s s i n 0 ) 2 - 2 r ( z t a n 6 - s s i n G ) coscf)] l/ 2 (79)

a n d

z P ( s ) = s c o s 6 (80)

where r and z are coordinates through which the path
p(r,z,e,(J)) passes. To change geometries, one must
carefully choose the s = 0 point with respect to the
boundary configuration and appropriately alter the

xp(s) functions.
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Boundary conditions on the present geometry are

that ST (r,z)+B (z) as z + °°, where B (z) = Lim B(r,z)
li °° °° Z->-oo

and is independent of r. Also S (r,z)-*ST (°°/Z) as
JL J-l

r •> °°, i.e., for large r the source function reverts

to the one-dimensional case. These conditions are

used in the mappings by assuming that S is linear

(as is B) in T for z > zT and ST (r_,z) for r > rT.
c — J L I — 1

Thus we must be sure to make rT amd zT sufficiently
i u

large. V. RESULTS AND CONCLUSIONS

Some sample solutions obtained with the above
procedure are shown in Figures 2-7. In each case,
all parameters except temperature are constant with

Model I
B= 1+4.5 TC+IO exp(-lO3 exp(-iOyOc)]

GO

O

P
To

Figure 2, Planck function surface for Model I.
Log B(po,xo) is plotted vs. log po and log xo. T O
is the total optical depth at line center and po is
the total line center radial optical distance from
the axis.
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Model I

Source Function

en
o

Figure 3
Model I.

Source function surface, S (pQ/To) for

position.
a = 10"3,
has form

" 2We have arbitrarily chosen e = 10
and ro = 10"

4 while the Planck functions
o

-CT

B(P C,T C) = 1 + Ae Be

where xc is the continuous vertical optical depth
and pc is the continuous radial optical depth
measured from the axis. The absorption coefficient
at line center is assumed to be 1.

We have in mind a temperature structure designed
to mimic a hot "chromospheric" column (pc<l/d). im-
bedded in a cooler ambient "chromosphere"" (pc >l/d)
and overlying a homogeneous, plane-parallel "photo-
sphere" T C >>l/c with linear vertical gradient in B.
The model is merely for numerical testing, however,
and we will not attempt to draw from our results
any direct conclusions about lines actually observed
in the solar atmosphere. The models are nevertheless
not unlike possible choices one might make in
attempting to treat certain solar lines.
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Model II
.5 T +10 exp(-IO

Figure 4, Planck function for Model II

Model H

Source Function

Figure 5. Soi^rce function for Model I I ,
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The figures show B and S L surfaces with the
vertical axis being log B (or log SL) and the
horizontal axis being the logarithm of the respective
total optical coordinate at line center. In all
cases A = B = 10, and c = 103 (corresponding to a
"chromospheric" optical thickness of about 10 at line
center). The parameter d controls the radial thick-
ness of the hot inhomogeneity while m and d control
the "edge scale of the radial variation of B.

In the model I solution, the radial thickness
is 103 at line center and m = 1 so that the edge
scale is also of order 103. All horizontal scales
are thus larger than a thermalization length (^102).
It is not surprising that the two-dimensional solu-
tion for any value of p is very nearly that which
would be obtained from a strictly plane-parallel
atmosphere with the vertical behavior of the Planck
function the same as at the given radius in the
two-dimensional case.

Model II differs from Model I in that m = 50,
or the edge scale is ^20. Detailed examination of
the solution shows that the source function reaches
its asymptotic radial behavior at a distance of
roughly a thermalization length on either side of
the region of rapid radial variation of the Planck
function. (This is not evident in Figure 5 due to
the large scale of the p-axis compared to a thermal-
ization length). Even though the edge scale for B
is less than a thermalization length, the radial
dependence of S L is suprisingly similar to that of
B. It is possible that the solution is incorrect.
However, both the radial thickness and the edge scale
are larger than the vertical thickness of the
"chromosphere." Since both scales are coupled in
the term V* H , a possible explanation of the result

is that the vertical scale still dominates. In terms
of photon diffusion, a photon originating at a given
radius can escape from the surface of the atmosphere
or diffuse to the homogeneous photosphere more
readily than it can diffuse to a different radius
with noticeably different temperature.

In Model III, m = 1 and the radial thickness is
1. The radial scale should dominate, then, at least
at intermediate depths. The solution, however, is
unstable in the sense that oscillations appear which
have no apparent physical cause. One would also
expect the source function near the axis to be less
for a radially thin region than for a radially thick
one. However, the sharp peak in SL in Model III at
To ^10 near the axis is about twice the value of
for Model I in the corresponding region.
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Model III
exp(-IO^j|B= 1 + 4.5 Tc+10 exp (-

Figure 6. Planck function for Model III

The source function behavior can be made
smoother with some adjustment of grids, but the
peak remains. Apparently, then, no physically
realistic solution has been obtained for the third
model.

Some simple tests of the method have been made.
First, we must obtain the correct solution in the
plane-parallel case. We have compared our technique
with independent plane-parallel calculations for

-CT
B = 1 + Ae C + $ T C with c = 10

3, 3 = 4.5, the
same e, a, and ro as before, and A = 10, 100, and
1000. The two-dimensional code with a 10 x 10 p x x
grid agrees to better than 10 percent in all cases
with a typical error of less than 4 percent.

For a thick inhomogeneity, the solutions near
the axis and at very large radii must also reduce to
the corresponding plane-parallel limit. Again, our
solutions satisfy this requirement to about the
accuracy indicated above.

With the exception that points must be nested
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Model IH

Source Function

CO

o

Figure 7. Source function for Model III

so that a reasonable number lie in regions of
Planck function variation, the nesting of the spatial
grid has not proven critical. Different types and
orders of angular quadratures have been tried and
again, do not have much effect on̂  the solution to
within the sort of accuracy indicated above.

The selections of the t& (the path grid) does
seem to be important in determining the solution.
In every case that has been so far attempted,
oscillatory solutions appear at intermediate depths
(T O > 2) whenever the radial behavior of the Planck
function is sharp enough to dominate; these are just
the solutions which are sensitive to choice of path
grid. Numerical experiments to determine more
exactly how different choices of path origin and path
grid affect the numerical stability of the technique
are in progress.

The technique is quite convenient for media with
an absorption coefficient which is constant or varies
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only with depth. Central processing time for such
a problem with a 10 x 10 grid is about 45 seconds
on the CDC 6600 and increases linearly with the total
number of space points (i.e., to about 90 seconds
for a 14 x 14 grid). Fully variable opacity will of
course cause an increase in computing time.

In spite of the stability problems encountered
to date, we feel the method holds great promise. In
principle, it is able to deal with quite arbitrary
spatial behavior and boundary configurations and is
particularly well-suited for media with very large
optical extent.

The authors wish to thank Professor R. D.
Richtmyer for valuable discussion in the early
stages of this work.
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DISCUSSION

Did you use depth-dependent func-
tions in your calculations?

SkuLman<Lck: We considered only horizontal
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changes in the examples shown. But we have also
calculated other models, as indicated in the text.

Can you include the granulation?
We have thought it best to calculate

simple nonstatistical structures initially. The
granulation problem, if modeled by periodic struc-
tures, can and will be included ultimately.
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