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TENSOR PRODUCTS OF DIVISIBLE EFFECT ALGEBRAS

SYLVIA PULMANNOVA

Tensor products of divisible effect algebras and tensor products of the corresponding
universal groups are studied. It is shown that the universal group of the tensor product
of divisible effect algebras is (isomorphic to) the tensor product of the corresponding
universal groups. Moreover, it is shown that the tensor product of two unit intervals
[0,1] of real numbers is not a lattice.

1. INTRODUCTION

Effect algebras as partial algebraic structures with a partially denned operation ©
and constants 0 and 1 have been introduced as an abstraction of the Hilbert-space effects,
that is, self-adjoint operators between 0 and / on a Hilbert space ([7]). Hilbert-space
effects play an important role in the foundations of quantum mechanics and measurement
theory ([11, 4]). An equivalent algebraic structure, so-called difference posets (or D-
posets) with the partial operation 0 have been introduced in [10].

Prom the structural point of view, effect algebras are a generalisation of boolean
algebras, MV-algebras, orthomodular lattices, orthomodular posets, orthoalgebras. For
relations among these structures and some other related structures see, for example, [5].

The following definition was introduced in [7].

DEFINITION 1.1: An effect algebra is a structure £ — {E\®,0,1) consisting of a
nonempty set E endowed with a partial binary operation © and with two distinguished
elements 0 and 1 which satisfies the following conditions for every a,b,c& E:

(El) a © 6 = 6 © a i n the sense that if one side is defined so is the other, and

equality holds,

(E2) (a © b) © c = a © (b © c) in the sense that if one side is defined, so is the

other, and equality holds,

(E2) to every a € E, there is a unique a' e E such that a © a' = 1,

(E4) if a © 1 is defined then a = 0.
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Let £ = (E; ©, 0,1) be an effect algebra. We shall write a ± b and say that a, b are
orthogonal if a © b is defined. A partial order ^ can be defined on E by defining a ^ b if
there is c G E such that a © c = 6. The element c is then uniquely defined, and may be
denoted by c = 60 a. This enables us to introduce a binary relation 0 , called a difference,
such that b Q a is defined if and only if a ^ b, and b © a = c if and only if a © c = 6. In
particular, we may write a' = 1 © a, the element a' is called the orthosupplement of a.
In the partial order ^ , 0 is the smallest and 1 is the greatest element. It turns out that
a © b is defined if and only if a ^ b', and we have a < b if and only if b' ^ a'.

Owing to (E2), we may omit parentheses in expressions like ai © o2 © a3, or more
generally, a.\ © a2 © • • • © an, where the latter expression is defined by induction. We

n
shall say that a finite sequence {a\,a2,... ,an) of elements of E is orthogonal if 0 at

t=i

is defined. More generally, an indexed family (aa : a € A) is called orthogonal, if
every finite subfamily of it is orthogonal, and we define 0 aa := V>( 0 aa), where

the supremum goes over all finite subsets of the index set A, if the supremum exists. An
effect algebra £ is called orthocomplete (a-orthocomplete) if the ©-sum is defined for every
(every countable) orthogonal family of elements. It is well-known that an effect algebra
£ is a-orthocomplete if and only if for any non-decreasing sequence (bn) of elements of
E we have that V bn exists in E. If a € E, define O.a = 0, l.a = a, and Vn ^ 2,
n.a = (n — l).a © a if all the involved elements exist. The greatest n € N such that n.a
exists in E is called the isotropic index of a and is denoted by c(a). We agree to write na
instead of n.a, a € £ , n € N .

If E, F are effect algebras, the mapping 4>: E —¥ F is a morphism if

(0 *(1) = 1,
(ii) alb implies (j>{a) J_ </>(b) and <f>(a © b) = 0(a) © 0(6).

A morphism 0 is a monomorphism if 0(o) 1 </>(6) implies a ± 6. It is easy to check that
a monomorphism is injective. An isomorphism is a bijective morphism such that the
inverse mapping <j>~x is also a morphism. Notice that a surjective monomorphism is the
same thing as an isomorphism.

In what follows, we often write a © 6 tacitly assuming that the element is defined.

Let (G, G+) be a partially ordered Abelian group (additively written) with positive
cone, and choose an element a G G+. Consider the interval G+[0,a] — {g G G : 0 ^ g
^ a}. Define a partial operation © on G+[0, a] as follows: x-Lyifx + y^a, and then
x©y = x + y. It is easy to check that with this operation © and with a as a unit element,
G+[0,a] is an effect algebra. A very important class of effect algebras, so called interval
effect algebras, arise this way.

An element u G G+ is called an order unit if for every g G G there is n G N such
that g ^ nu. An element u G G+ is called a generative unit if every element g G G+ is a
finite sum of elements in G+[0,u]. Observe that a generative unit is an order unit, and if
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G has an order unit, it is upward directed, equivalently, G = G+ — G+.

An eflFect algebra E is an interval effect algebra if there is a partially ordered Abelian
group (G,G+), an element a € G+, and an isomorphism h : E —> G+[0, a]. A group
(G, G+) is called an ambient group for E if E is isomorphic with the interval G+[0, a] and
a is a generative unit for G.

An ambient group G for E is called universal if for every Abelian group K and, every
K-valued additive mapping f : E -* K (that is, a if-valued measure on E), there is a
unique group homomorphism ft:G-*K such that / » • 7G(O) = / ( a ) for every a € E,
where j G is the isomorphism between E and G+[0, u].

By [1], every interval effect algebra has a universal (ambient) group. Clearly, the
universal group is unique up to isomorphism.

EXAMPLE 1. The interval [0,1] of the real line R is an interval effect algebra. More
generally, let [0, l]x be the set of all functions from a set X to the unit interval [0,1].
As an interval of R*, it is an interval effect algebra. Notice that the above examples are
also examples of MV-algebras.

EXAMPLE 2. Let H be a Hilbert space. Consider the group of all bounded self-adjoint
operators BS(H) on H. The interval S(H) := [0,1], where 0 is the zero and / is the
identity operator, is an interval effect algebra. Elements of £ (H) are called Hilbert space
effects.

2. DIVISIBLE EFFECT ALGEBRAS

An effect algebra E is called divisible if for each a £ E and each n € N there is a
unique x € E such that a = nx. We shall write x — (l/n)a. In a divisible effect algebra,
the following properties hold ([12]).

LEMMA 2 . 1 . Let (E; ©, 0,1) be a divisible effect algebra.

(i) Ifm,n > 1 and a € E, then

1/1 \ 1
- I—a) = a.
n \m / mn

(ii) Ifm,n ^ 2 and a e E, then (l/m)a _L (l/n)a and

1 1 , . / 1 \ m + n
—a ® — a = (m + n) I a = a.
m n V mn ) mn

(iii) Ifa,beE and alb then for any n € N, (l/n)a ± (l/n)b and

—a© — b = - (a ©6).
n n n

(iv) Ifa^b, then for any n € N,

n
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(v) Ifm^n, then for any a € E,

1
—a i
n

1
: —a.

m

(vi) Una is defined forn €N, a e E, and m^ n, then

1 , . / 1 \ n
—(no.) = n —a = —a.
m \m / m

(vii) Ifna is defined for some n 6 N, then for any m € N, n((l/m)a) is defined,
and

n(—a) = —(no).
\m I m

(viii) If for some n € N and a,b € E, (l/n)a = (l/n)6, tien a = 6.

(ix) Jf for some m, n € N and 0 ^ a € E, (l/m)a = (l/n)a, then m = n.

(x) If m,n > 2, tien for any a,b£E, (l/n)o _L (l/m)b.

Let J& and F be divisible effect algebras. A mapping 0 : E —t F is a d-morphism if
</> is a morphism of effect algebras and <#((l/n)a) = (l/n)</>(a).

LEMMA 2.. 2 . Every morphism of divisible effect algebras is a d-morphism.

PROOF: Let E, F be effect algebras and let <j>: E -> F be a morphism. Assume that
(l/n)a exists in E. That is, a = n((l/n)a) = (l/n)a © (l/n)a © • • • © (l/n)a (n-times),
which implies <£(a) = <£((l/n)a) © • • • © <£((l/n)a) (n-times), hence (̂ (a) = n^>((l/n)o),
that is, ^((l/n)o) = (l/n)0(o). D

The following theorem shows that divisible effect algebras are interval effect algebras
([12, 13]).

THEOREM 2 . 3 . Let (E;@,0,l) be a divisible effect algebra. Then there is a
partially ordered Abelian group (G,G+) such that G = G+ - G+, with an element
u € G+ such that the following properties are satisSed:

(i) The effect algebra E is isomorphic with the divisible effect algebra [0, u].

(ii) The interval [0, u] generates G+ in the sense that every element in G+ is a

finite sum of elements in [0, u].

(iii) Every K-valued measure f : E —> K, where K is an Abelian group, can be
uniquely extended to a group homomorphism / , : G —>• K.

Moreover, the group G can be endowed with a structure of an ordered vector space over
the field Q of rational numbers.

In other words, every divisible effect algebra is an interval effect algebra, and the
group G from Theorem 2.3 is its universal group. Moreover, G is divisible and unperfo-
rated ([12]) in the following sense: A partially ordered Abelian group G is unperforated
if na 6 G+ for some n € N, a € G, implies a G G+. An Abelian group is divisible if for
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every x € G and every n 6 N there is a unique element y € G such that ny — x. Observe

that divisibility of G implies that G is torsion free, indeed, for every a € G, n 6 N,

uniqueness of the solution of ny = a implies that for all y £ G, ny — 0 implies y = 0.

Recall tha t a partially ordered Abelian group G is perfect if it has at least one order

unit, every nonzero order unit is generative and, if u is a nonzero order unit in G, then

G is the universal group for the interval effect algebra G + [0 ,u] .

It is easy to check that in an unperforated divisible Abelian group, every order

unit u generates G + . Indeed, 0 ^ x ^ nu implies x — nu — y for some y ^ 0, hence

x — n(u — (l/n)y), and (l/n)y ^ 0, 0 ^ u — (l/n)y < u. So every positive x can be
written as a finite sum of positive elements under u. It follows from the next proposition,
that every torsion free ambient group for a divisible effect algebra is perfect.

PROPOSITION 2 . 4 . Let E be a divisible effect algebra and let G be a partially
ordered torsion free Abelian group such that E is isomorpbic with be interval G+[0, u],
where u is a generative unit in G. Then G is a universal group for E.

PROOF: We first prove that G is divisible. If g € G+[0, u], then owing to the
isomorphism between E and G+[0,u], the element {l/n)g exists and is uniquely defined
in G+[0, u]. If g € G+, then since u is a generative unit, g can be written in the form

k k m

g = J2ai w i t n °>i € G+[0,u]. Then we may put (l/n)g = £ ( l / n ) a j . If g = YLh i s

k m
another expression of g as a sum of elements in G+[0, u],nJ2(1/^)^1 = g = n j

k m t=l j=\
implies that J2 ( l / n ) a > = 13 ( l / n ) fy owing to the supposition that G is torsion free. Hence

(l/n)<7 is well defined. Moreover, every g £ G is of the form g — g\- 52, <7i> <?2 € G+, so

we may put (l/n)g = (\/n)g\ — (l/n)g2. If g = hx — h2, hi, h2 € G+ is another expression
for g, then from gi+h2 — h\+g2 we obtain (l/n)(gi + h2) — {l/n)(hi+g2), which implies
that {l/n)g is well defined.

If ng ^ 0, g € G, n 6 N, then ng = ax-\ \- ak with a* e G+[0, u], i = 1 , . . . , k.
Owing to the divisibility of E, ng = n(( l /n)ai + h (l/n)a/t), and since G is torsion
free, g = (l/n)oi + 1- (l/n)a* ^ 0. This shows that G is unperforated.

It remains to check the universal property of G. Let / : E —> K be a /f-valued
measure, where K is an Abelian group. We have, for every a € E, n € N, /(n(l /n)a)
= /(a) , so that n / ( ( l / n ) a ) = / (a) . We extend / : E -* K as follows. First assume

k

that p € G+, then g = X)a<, <*i € £ (we may identify £ with G+[0,u]). Define /.(#)
i l
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k
= 53 f{o-t)- Let g = 53 bj, bj € E be another expression of g. Then we have

1 1 m 1

ifl

so that (\/mk)g € £. From this we obtain

t= l t= l

This proves that / , is well defined, and it is clearly additive on positive elements.

Now let g = gi - g2 with 51,52 e G+. Put f,(g) = ft(gx) - f,{g2). If g = hx

— h2, h\,h2 £ G+ is another form of 5, then from 51 — g2 = hi — h2 we obtain 51 + h2

= 52 + hi, and by the previous part of this proof, /.(51) + /.{h?) = f*{g2) + f*{hi), hence
/*(<7i) ~ /«(ff2) = f*(hi) — f*(h2). This proves that / , : G -* K is well defined group
homomorphism. D

3. T E N S O R PRODUCTS OF ABELIAN GROUPS

Let us consider structures consisting of sets endowed with a commutative, associative
operation + with zero element 0 (commutative monoids, Abelian groups), and possibly
with a partial ordering < (partially ordered Abelian groups).

If A, B, C are structures, and / : A x B -» C, we say that / is a bi-morphism
([15]) when for all a € A (respectively, b € B) the map f(a,.) (respectively, /(.,6))is
a homomorphism of monoids, if ^ is defined in A, B, C, we say that / is positive when
for all positive a € A and b € B, we have f(a,b) ^ 0. We say that the [positive]
bimorphism / is universal (relative to a given category of structures) when for every
structure D and every [positive] bimorphism 5 : A x B —> D, there exists a unique
[positive] homomorphism 5 : C —> D such that 5 • / = 5, in this case the pair (C, f)
is unique up to isomorphism and the custom is to call it the tensor product of A and
B, written C = A ® B, f(a,b) = a <8> b. This notion is very sensitive to the category
of structures under consideration, the latter will be used as a superscript: ®cm will
denote the tensor product of commutative monoids, ®°9 will denote the tensor product
of Abelian groups and <g>°°s will denote the tensor product of partially ordered Abelian
groups. Notice that for all the categories above, the tensor product exists. For relations
between 0™ and ®°°9 see [15].
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The tensor product of Abelian groups does not preserve all inner structure of the
given groups. In [15, Example 1.5], two torsion-free directed interpolation groups A and
B are constructed such that A®009B is not an interpolation group. Even more surprising
result is [15, Example 1.6]: R®0"9 R is not lattice-ordered group.

Observe that every torsion free partially ordered Abelian group can be made unper-
forated if we define a new ordering cone by putting G+ := {g € G : 3n G N, ng ^ 0}.
Indeed, it suffices to prove that G+ is strict. So assume that x, y G G+ and x + y = 0.
Then there are n , m € N such that nx ^ 0, ray ^ 0 (in the original ordering). Then
0 = mn[x + y) = m{nx) + n(my), which implies that mnx = mny = 0, and since G is
torsion free, x = 0 = y.

THEOREM 3 . 1 . Let G and H be partially ordered Abelian groups. Then

(i) the tensor product G ®ag H of G and H is a partially ordered Abelian

group,

(ii) if uG and UH are (generative) order units in G and H respectively, then
UG ® uH is a (generative) order unit in G ®a9 H.

PROOF: (i) Let G®ag H be a tensor product of G and H as Abelian groups. Define
(G®ag H)+ as the set of all finite sums of pure tensors a®b where a e G+,b e H+. To
see that G ®°9 H is partially ordered, it suffices to prove that whenever x\,..., xn in G
and j/i, •.. ,yn in H are strictly positive, then

In this part, we follow the proof of [8, Proposition 2.1]. Let G' be the subgroup of G
generated by i i , . . . , xn, then the element v — x\ + • • • + xn is an order unit in G'. Since
v > 0, there is a state s on (G',v), and since s(v) = s(xi) + ••• + s(xn) = 1, there
must be S(XJ) > 0 for at least one j . Since R is divisible, s extends to a homomorphism
g : G —> R (not necessarily positive). Similarly, there is a homomorphism h : H -t R
such that h(yi) ^ 0 for i = 1 , . . . , k and h(yj) > 0 for at least one j G { 1 , . . . , k}. Let us
renumber { 1 , . . . , n} such that S(XJ) > 0 for i = 1 , . . . , k and s(xi) = 0 for i = k +1,..., n.

There is a homomorphism / : G ®ag H -* R such that

f(x ®y) = g{x)h{y), xeG,y€H

and from

f(xi ®yi-\ + xn ® yn) = s(zi)/i(yi) + • • • + s{xn)h{yn) > 0,

we see that X\ ® yi + • • • + xn ® yn ^ 0.

Let xi,j/i G G, z2,2/2 € H, 0 ^ x{ ^ t/i, i - 1,2. We have

2/i ® 2/2 - xi ® x2 = yi ® j/2 - 2/i ® £2 + yi ® x2 - xi ® x2 = 2/i ® (2/2 - x2)
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and since both summands on the right are in (G <8>°9 H)+, we have

2/1 ® J/2-

(ii) Let ua and u# be order units in G and H, respectively, and u = uG ® uH- Let
x € G ®°9 if. Then x is a finite sum of pure tensors, and we have to prove that every
of these pure tensors is bounded by a positive multiple of u. Thus we may assume that
x = Xi ® x2, xi 6 G, x2 € H. Hence x is the sum of terms of the form ±(yi ® y2),
j/i € G+, t/2 £ # + - So it suffices to prove that x = x\ <g> x2, x\ € G+, x2 € # + is bounded
by nu, n € N. Since xi ^ fciUc, x2 ^ k2un for some &i, k2 E N, we have xx <g> x2 < fc2u,
where A; = max(fci, A;2). If uc and u# are generative, then for every v € (G <8>°9 i / ) + , we

have v = Xi<g>yi-\ hx n ®j / n , xt € G+,?/,- € i f + , i = 1,. . . ,n , and x4 = X J H \-ximi,
i = l,...,n,yj-yji-\ h yjkj, j = 1 , . . . , n with 0 ^ x{j ^ uG, 0 ^ yra < uff. We then
get that v is the sum of pure tensors of the form x^ ® yT3, which all are under uG®uH,
and hence UG <8>«// generates (G ®°9 H)+. D

THEOREM 3 . 2 . Let G and i? be divisibie unperforated partially ordered groups.
Tbe tensor product G ®d H in tbe category of divisible unperforated partially ordered
Abelian groups exists, and equals toG®009^. More precisely, G®°°9# has tbe following
universal property: to every positive d-bi-morphism 0 : G x H -¥ K, where K is an
unperforated partially ordered Abelian group, there is a unique positive d-bomomorpbism
0. : G <g>oas H ->K such that P(a, b) = 0,{a®b).

P R O O F : Let F be the free group on the set G x H and 77: G x H -»• F the natural
n

embedding. Every element of F can be expressed uniquely by x = ^2 v(xii 2/«) where
t=i

Xi € G, j/i € H, i = 1 , . . . , n. We define 0 ^ x € F to be positive if for each i, 0 ^ Xj € G,
0 ^ t/i € H. Then F becomes an unperforated partially ordered group. Let M be the
subgroup of F generated by the elements of the form

r)(ax + a2, b) - Tf(aub) - 77(02,6) and

•n{a, 61 + 62) - 7?(a, bx) - 77(0, h).

It was proved in [14] that M is convex in F. The order on F then induces the desired
order on F/M, and F/M = G ®°a<> H.

Let r : G x H —t F/M be the canonical mapping, so r(g, h) = 77(17, h) + M. The
mapping r is clearly positive bilinear with respect to rational numbers. Indeed,

r(na, b) = nr(a, b) = r(a, nb) and

r(a, b) = nrl — a, b) =nT[a,—b)
\n 1 \ n 1

implies that
—r(a,b) = r ( — a,6) = r ( a , — 6 ) ,
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since F/M is torsion free.

We need to verify that F/M is unperforated. Let x e F/M and suppose that nx > 0
k

for some n € N. Then nx = £ T(a<, 6<), where 0 < ô  € G and 0 < 64 6 if (1 ^ i ^ fc).
«=i

For each i let Cj € G be the (unique) solution to the equation nz = Ojj necessarily c* > 0
since G is unperforated. Then

fc fc k

« = 1 i-l > = 1

F/M is torsion free, so that x = ^2 r(ci, 6<) ̂  0 by the definition of (F/M)+.

Now let ft be any positive d-bi-morphism of G x if into an unperforated, partially
ordered group L. Define fi(r(g, /i)) = fi(g, h), since /3 and r are positive d-bi-morphisms,
so is p. So /3 can be extended to the whole F/M.

Hence F/M is the tensor product of G and H in the category of unperforated,
divisible, partially ordered Abelian groups, and we may write G®d H = F/M. D

4. TENSOR PRODUCT OF DIVISIBLE EFFECT ALGEBRAS

Let E, F and T be effect algebras. We recall that a mapping /3 : E x F -¥ T is a.
bi-morphism if the following conditions are satisfied.

(i) For every a € E, fi(a,b©c) = #(a,b) ©/?(a,c) whenever b®c exists in F.
(ii) For every c 6 F, /J(a © b, c) = /?(a, c) © fi{b, c) whenever a © b exists in J51.
(iii) /?(1,1) = 1.

DEFINITION 4.1: Let E, F and T be effect algebras. A bi-morphism ft : ExF -tT
is called a d-bi-morphism if the following conditions hold.

(i) For all n € N, a, b € E, p{(\/n)a, b) = (l/n)£(a, 6) whenever (l/n)a exists
in£ ,

(ii) For all n € N, a, b € £, £(a, (l/n)6) = (l/n)P(a, b) whenever (l/n)6 exists
inF.

Proof of the following lemma is straightforward.

LEMMA 4 . 2 . Let E,F and L be divisible effect algebras. Then every bi-
morphism P : E x F -¥ L is a d-bi-morphism.

DEFINITION 4.3: ([2, 3]) Let E and F be effect algebras. An effect algebra T is a
tensor product of E and F in the category of effect algebras if the following statements
hold.

(i) There is a bi-morphism r : E x F -> T, such that for any bi-morphism
/? : E x F -> L into an effect algebra L there is a morphism <j> : T -> L
such that <}> o ft = r.
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(ii) Every element d e T is a finite ©-sum of elements of the form r(a, b), that

is,d = © r ( a i , 6 s ) .
t=i

If the tensor product exists, it is unique up to isomorphism It has been proved
in [2] that the tensor product exists if and only if there is at least one bi-morphism
j3 : E x F —> L, where L is any effect algebra. In particular, the tensor product exists
if each of E and F has at least one state (that is, a morphism into the unit interval of
reals) ([6]).

The following definition is a natural reformulation of the definition of tensor products
of effect algebras.

DEFINITION 4.4: Let E and F be divisible effect algebras. A divisible effect algebra
T is a tensor product of E and F in the category of divisible effect algebras if the following
statements hold.

(i) There is a d-bi-morphism r : Ex F -> T, such that for any d-bi-morphism
/? : E x F -* L into a divisible effect algebra L there is a d-morphism
4>:T -t L such that <j) o £ = T.

(ii) Every element d € T is a finite ©-sum of elements of the form r(a, b), that

is, d= ®T{aubi).

It is usual to denote by E <8> F the tensor product of effect algebras E and F in the
category of effect algebras. We shall write T = E ®d F if T is a tensor product of E and
F in the category of divisible effect algebras. Clearly, if E <g>d F exists, it is unique up to
a d-isomorphism.

We shall say that an effect algebra has the property (d) if for all x, y € E, n € N
such that nx and ny exist, nx — ny implies x = y. Clearly, every divisible effect algebra
has this property.

THEOREM 4 . 5 . Let E,F be divisible effect algebras. The tensor product E®dF
in the category of divisible effect algebras exists and coincides with the tensor product
E <g> F in the category of effect algebras with property (d).

PROOF: Let ( G E , U ) , (GF,V) be universal groups for E and F, respectively, and
let 7 E : E —> Gj[0,u], 7 F : F —> G~£[0,v] the corresponding isomorphisms. Let T
= GE <8>oaff GF be the tensor product of universal groups. Define r : E x F -> T+[0, u ® v]
by T(a,b) = a<2> b. Then r is a d-bi-morphism into a divisible effect algebra T+[0, u <2> v].
Similarly as in the case of tensor product of effect algebras, we can prove that tensor
product in the category of divisible effect algebras exists. Denote it by K. Similarly,
tensor product in the category of effect algebras with property (d) exists, and denote it
by L. Let K : E x F -> K and A : E x F -t L be the corresponding tensor product
bi-morphisms. Since K has property (d), there is a morphism (j>: L -» K which extends
K. If we prove that L is divisible, then there is a morphism ip : K —• L which extends A.
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Since K(E X F) generates K, and \{E x F) generates L, the isomorphism of K and L
follows.

Let u e L, then u = ax <g> b\ © • • • © a,, <g> &„ with a, G £ , B,- 6 F , i = 1 , . . . , n. Define
(l/n)u = (l /n)ai ® 6i © • • • © (l/n)on ®6n. Since L has property (d), {l/n)u is uniquely
defined. It is easy to check that the properties of a divisible effect algebra are satisfied. D

THEOREM 4 . 6 . Let (GB,U) and (GF,v) be the universal groups for divisible
effect algebras E and F, respectively. Then (GE ®°°9 GF, u<B)v) is the universal group
for E 0d F.

PROOF: Put H = GE ®°°9 GF, and let r : GE x GF ->• H be the tensor product bi-
morphism. We can identify E with an interval GJ[0,«], and F with an interval GJ[O, v],
where u G GE, v G GF are the corresponding generative units. Now Vx, y G GE X GF,
x € E if and only if 0 ^ x ^ u, y G F if and only if 0 ^ y ^ v, so that 0 ^ r(x, y)
^ T(U, V) = u <2> v. On the other hand, every element g G H+ is a finite sum of pure

n
tensors g = J2 T(xi> Vi) w i t n xi e G%> Vi G G j , and every Xi is a finite sum of elements

i=l
from E, every y^ is a finite sum of elements from F. Consequently, g can be written as

m
a finite sum ^)r(ai,6i) with a* G Gg[0,u], 6j G GJ[O,v] for all i, and ai,bt > 0 gives

i=l

r(oj,6j) > 0. Therefore, we may identify a <S> b in E <8> F with r(a,6) G H+[0, u 0 v],
and since the corresponding pure tensors generate E <g> F and i/+[0, u ® v], respectively,
we may identify E <g> F with i?+[0, u ® v\. Using the fact that E ® F is divisible, and
applying Proposition 2.4, we obtain the desired result. D

5. T H E TENSOR PRODUCT ! + [0 ,1 ] <8> K+[0,1]

It was an open problem whether K+[0,1] ® K+[0,1] = R+[0,1] (in the category of
effect algebras), see for example, [9, Section 5]. Using results in [15] and [9], we prove that
it is not the case. We note that in [9], there was proved that K+[0, l]®ffR

+[0,1] = M+[0,1]
(in the category of cr-orthocomplete-effect algebras). We shall need the following results.

LEMMA 5 . 1 . [15, Claim 1] Let A and B be torsion free AbeJian groups and let
a,a' G A\{0}, b,V G B\{0} such thata®a9b = a'®°96'. Then both (a,a') and (6,6') are
not independent over Z, that is, there axe nonzero pairs of integers (m, m!) and (n, n')
such that ma = m'a' and nb = n'U'.

The next result collets some useful results about bi-morphisms on R+[0,1] x R+[0,1]
[9, Theorem 4.8].

LEMMA 5 . 2 . Let0:ExE-+Pbea bimorphism, where E = R+[0,1] and P is
an effect algebra.

(i) For every o G E,r G Q+[0,1] we have 0{a, r) = 0(ar, 1).

(ii) If0(a, b) ̂  0(c, d), then ab ^ cd.

https://doi.org/10.1017/S0004972700037485 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700037485


138 S. Pulmannova [12]

(iii) Ifab > cd, then 0(a, b) > 0(c, d).

THEOREM 5 . 3 . Put E = R+[0,1]. Then E® E is not lattice ordered.

PROOF: Tensor product E® E exists, since there is a state on E, [5].
Put a = v/2/2, and let (j)n/qn) - 4 a b e a sequence of rational numbers such that

1/2 < P2n/92n ^ a ^ JWi/ftn+i ^ 1- We may assume that pn = (p2n+i/92n+i)
e OWftn) < i/«-

Put a = 1 ® (1/2), b = a® ( l /2a ) .

For all n ^ 2, we have

Similarly,

2
a © — a

n

, . 1 v P J n - l g2n+l

6 = a ® r - ^ — ®
2a ?2n

1+1

2
—a.
n

This yields that for every n ^ 2,

2 2
o 0 - o ^ K a © —a.

n n

For sufficiently great n,b@ (2/n)a ^ a ® 1 © (1/n) ® 1 = (a © (1/n)) ® 1 ^ 1 0 1.
If E ® E is lattice ordered, then Vn ^ no,

2
c := ((a V b) Q a) V ((a V b) 9 6) ^ - a

Let f$ : E Y. E -> E, /?(a, 6) = 06, then /? is a bi-morphism, and it uniquely extends
to a morphism <j>: E®E -t E. By Lemma 5.2, ab > 0 implies a® 6 > 0, and since every
element in E ® E is a finite ©-sum of pure tensors, it follows that ker <f> — {0}.
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Now

4>{c) ^ <l>(~a) = i

for all n~2 n0 implies </>(c) — 0, hence c = 0. That is, 1 ® (1/2) = a ® ( l /2a) .

Let T = R <g>°°9 R, and let r : R x R -»• T be the universal bi-morphism. The
restriction of r to E x E is a bi-morphism to the effect algebra T+[0, T ( 1 , 1)], which
by the properties of tensor products uniquely extends to a morphism ip : E ® E
-> r + [ 0 , r ( l , 1)] such that if>(a ® 6) = r(a,6). Now 1 <g> (1/2) = a ® (l/2a) implies
i/>(l ® (1/2)) = ip(a® ( l /2a)) , hence r ( l , ( l / 2 ) ) = r ( a , ( l / 2 a ) ) , and we may use
Lemma 5.1, which implies 1 = (m/n)a for some integers m,n, which is impossible since
a is irrational. It follows that E ® E is not a lattice, hence E <S> E ^ E. D
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