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Abstract
The well-known Erdős-Hajnal conjecture states that for any graph F, there exists ε > 0 such that every
n-vertex graphG that contains no induced copy of F has a homogeneous set of size at least nε . We consider
a variant of the Erdős-Hajnal problem for hypergraphs where we forbid a family of hypergraphs described
by their orders and sizes. For graphs, we observe that if we forbid induced subgraphs on m vertices and
f edges for any positive m and 0≤ f ≤ (m

2

)
, then we obtain large homogeneous sets. For triple systems,

in the first nontrivial case m= 4, for every S⊆ {0, 1, 2, 3, 4}, we give bounds on the minimum size of a
homogeneous set in a triple system where the number of edges spanned by every four vertices is not in
S. In most cases the bounds are essentially tight. We also determine, for all S, whether the growth rate is
polynomial or polylogarithmic. Some open problems remain.
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1. Introduction
For an integer r ≥ 2, an r-graph or r-uniform hypergraph is a pairH = (V , E), where V =V(H) is
the set of vertices and E= E(H)⊆ (V

r
)
is the set of edges. A 2-graph is simply a graph. A homoge-

neous set is a set of vertices that is either a clique or a coclique (independent set). For an r-graph
H, let h(H) be the size of a largest homogeneous set. Given r-graphs F,H, say that H is F-free if H
contains no isomorphic copy of F as an induced subgraph.We say that an r-graph F has the Erdős-
Hajnal-property or simply EH property if there is a constant ε = εF > 0 such that every n-vertex
F-free r-graphH satisfies h(H)≥ nε . A conjecture of Erdős and Hajnal [13] states that any 2-graph
has the EH property. The conjecture remains open, see for example a survey by Chudnovsky [8],
as well as [1, 5, 17], to name a few central results on the topic. When F is a fixed graph and G is an
F-free n-vertex graph, Erdős and Hajnal proved that h(G)≥ 2c

√
log n. This was recently improved

to h(G)≥ 2c
√

log n log log n by Bucić, Nguyen, Scott, and Seymour [7].
The Erdős-Hajnal conjecture fails for r-graphs, r ≥ 3, already when F is a clique of size r + 1.

Indeed, well-known results on off-diagonal hypergraph Ramsey numbers show that there are
n-vertex r-graphs that do not have a clique on r + 1 vertices and do not have cocliques on fr(n) ver-
tices, where fr is an iterated logarithmic function (see [25] for the best known results). Moreover,
the following result (Claim 1.3 in [19]) tells us exactly which r-graphs, r ≥ 3, have the EH property.
Here D2 is the unique 3-graph on 4 vertices with exactly 2 edges.
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Theorem 1.1 (Gishboliner and Tomon [19]). Let r ≥ 3. If F is an r-graph on at least r + 1 vertices
and F �=D2, then there is an F-free r-graph H on n vertices such that h(H)=O( log n). On the other
hand, there is a constant c> 0 such that if H is an D2-free n-vertex 3-graph, then h(H)≥ nc.

It is natural to consider the EH property for families of r-graphs instead of a single r-graph.
In this paper, we consider families determined by a given set of orders and sizes. Several special
cases of this have been extensively studied over the years (see, e.g. [12]). For 0≤ f ≤ (m

r
)
, we call

an r-graph F on m vertices and f edges an (m, f )-graph and we call the pair (m, f ) the order-
size pair for F. Say that H is (m, f )-free if it contains no induced copy of an (m, f )-graph. If Q=
{(m1, f1), . . . , (mt , ft)}, say that H is Q-free if H is (mi, fi)-free for all i= 1, . . . , t.

Definition 1.2. Given r ≥ 2 and Q= {(m1, f1), . . . , (mt , ft)}, let h(n,Q)= hr(n,Q) be the mini-
mum of h(H), taken over all n-vertex Q-free r-graphs H. Say that Q has the EH property if there
exists ε = εQ > 0 such that h(n,Q)> nε .

For example h3(n, {(4, 0), (4, 2)})= kmeans that every n-vertex 3-graph in which any 4 vertices
induce 1, 3, or 4 edges has a homogenous set of size k, and there is a 3-graph H as above with
h(H)= k. We may omit the subscript r in the notation hr(n,Q) if it is obvious from context.
When Q= {(m, f )} we use the simpler notation h(n,m, f ) instead of h(n, {(m, f )}). Let us make
two simple observations:

hr(n,Q)≤ hr(n,Q′) if Q⊆Q′, (1)

hr(n,Q)= hr(n,Q) where Q= {(
m,

(m
r
) − f

)
: (m, f ) ∈Q

}
. (2)

Our first result concerns 2-graphs, where we show that forbidding a single order-size pair already
guarantees large homogeneous sets.

Proposition 1.3. For any integers m, f with m≥ 2 and 0≤ f ≤ (m
2
)
there exists c> 0 such that

h2(n,m, f )≥ c n1/(m−1).

Proposition 1.3 is proved in Section 2. It seems a challenging problem to give good upper
bounds on h2(n,m, f ). For example, determining h2(n,m,

(m
2
)
) is equivalent to determining

off-diagonal Ramsey numbers.
Our second main result concerns the case r = 3 andm= 4. We shall consider sets Q consisting

of pairs (4, i) for i ∈ {0, 1, 2, 3, 4}. The cases where Q contains both (4, 0) and (4, 4) are trivial,
because Ramsey’s theorem guarantees that for sufficiently large n we cannot avoid both (4, 0) and
(4, 4). In all remaining cases, the following theorem determines whether h3(n,Q) is polynomial or
polylogarithmic in n.

Theorem 1.4. Let ∅ �= S⊆ {0, 1, 2, 3, 4} and suppose that {0, 4} �⊆ S. Set Q= {(4, i) : i ∈ S}.
1. If S= {0}, {1}, {0, 1}, {1, 3} or S := {4− i : i ∈ S} is one of these four sets, then there are

constants c1, c2 > 0 such that logc1 (n)≤ h3(n,Q)≤ logc2 (n).
2. In all other cases, there is a constant c> 0 such that h3(n,Q)≥ nc.

Wewill prove Theorem 1.4 by considering separately each of the cases (up to complementation,
see (2)). Some cases follow from known results, and these are surveyed in Section 1.1. Many cases
are new results, and these are presented in Section 1.2.

1.1. Prior work
In this section we review the cases of Theorem 1.4 that follow from prior work. The problem of
estimating h(n, 4, 0) (or, equivalently, of h(n, 4, 4)) is equivalent to estimating the Ramsey number
R3(4, t). Recall that Rr(s, t) is the minimum n such that every n-vertex r-graph contains a clique of
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size s or an independent set of size t. It is known [9] that 2c1t log t ≤ R3(4, t)≤ 2c2t2 log t . This yields
positive constants c1 and c2 such that

c1
(

log n
log log n

)1/2
< h3(n, 4, 0)< c2

log n
log log n

.

Similarly, the case Q= {(4, 0), (4, 1)} is equivalent (due to complementation (2)) to estimating
the minimum possible independence number of an n-vertex 3-graph where no 4 vertices span at
least 3 edges. This is a well-studied problem in hypergraph Ramsey theory, and an old result of
Erdős and Hajnal [12] gives the bound h3(n, {(4, 0), (4, 1)})≥ c1 log n

log log n for some constant c1 > 0.
Recently, Fox and He [16] proved a corresponding upper bound, showing that

h3(n, 4, 1)≤ h3(n, {(4, 0), (4, 1)})< c2
log n

log log n
(3)

for a suitable constant c2. It is worth mentioning that the caseQ= {(4, 3), (4, 4)} (which is equiva-
lent to {(4, 0), (4, 1)}) is the first instance of a (different) conjecture of Erdős and Hajnal [12] about
the growth rate of generalized hypergraph Ramsey numbers that correspond to our setting of
h(n,Q), whereQ= {(m, f ), (m, f + 1), . . . , (m,

(m
r
)
)}. Recent results of Mubayi and Razborov [24]

on this problem determine, for each m> r ≥ 4, the minimum f such that hr(n,Q)< c loga n for
some a and Q= {(m, f ), . . . , (m,

(m
r
)
)}. When r = 3, the minimum f was determined by Conlon,

Fox, and Sudakov [9] form being a power of 3 and for growingm, as well as some other values.
For the case Q= {(4, 2)}, we have h(n, 4, 2)≥ nc for a suitable constant c> 0, by Theorem 1.1.
Finally, we discuss two known cases with |Q| = 3. If Q= {(4, 0), (4, 1), (4, 2)}, then a Q-free

3-graph is the same as a partial Steiner system (STS), and it is well-known [6, 14, 26] that the
minimum independence number of an n-vertex partial STS has order of magnitude

√
n log n.

Thus h3(n,Q) has order of magnitude
√
n log n.

If Q= {(4, 1), (4, 2), (4, 3)} and n≥ 4, then it is a simple exercise to show that any Q-free 4-
graph on at least four vertices is a clique or coclique and therefore h3(n,Q)= n for n≥ 4.

1.2. New results
In this section we state our new results for the cases not covered in Section 1.1. The results of this
section and Section 1.1 immediately imply Theorem 2. Up to complementation, the missing cases
correspond to the following sets Q of order-size pairs:

• {(4, 1)};
• {(4, 0), (4, 2)}, {(4, 0), (4, 3)}, {(4, 1), (4, 2)}, {(4, 1), (4, 3)}; and
• {(4, 0), (4, 1), (4, 3)}, {(4, 0), (4, 2), (4, 3)}.

For |Q| = 1, 2, we summarize our results in the following table. Here, c1, c2 always denote suit-
able positive constants. The table also indicates the section where each result is proved. Note that
for Q= {(4, 1)}, the lower bound is proved in Section 3.1 and the upper bound follows from (3).

For the two remaining cases with |Q| = 3, we obtain exact results:

Theorem 1.5. Let n≥ 4. Then h3(n, {(4, 0), (4, 2), (4, 3)})= n− 1 and

h3(n, {(4, 0), (4, 1), (4, 3)})=
{n

2 if n≡ 0 (mod 6)

�n+1
2 
 if n �≡ 0 (mod 6).

Theorem 1.5 is proved in Section 7.
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Notation:
Throughout the paper, for a hypergraph H, let ω(H) and α(H) denote the size of a largest clique
and independent set in H, respectively. Recall that h(H)=max{ω(H), α(H)}. For a 3-graph H
and one of its vertices v, we define the link graph of v to be the graph L(v) whose vertex set is
V(H) \ {v} and whose edge set is {e⊆V(H) \ {v} : e∪ {v} ∈ E(H)}. Moreover, for S⊆V(H) \ {v},
we use LS(v) to denote the subgraph of L(v) induced by S. A clique on s vertices is denoted Ks.
When denoting edges in 3-graphs, we shall often omit parentheses and commas; for example,
instead of writing {x, y, z}, we shall simply write xyz. A star is a hypergraph consisting of a set S
and a vertex v /∈ S with edge set {vxy : x, y ∈ S, x �= y}. We will denote this star by (v, S). As usual,
we write f (n)=O(g(n)) if there is a constant C > 0 such that f (n)≤ Cg(n) for all n, and we write
f (n)= �(g(n)) to mean that g(n)=O(f (n)).

2. Graphs: Proof of Proposition 1.3

Proof of Proposition 1.3. We show that c= 2/
√
5 suffices. We shall use induction on m with

basis m= 2. In this case f ∈ {0, 1}. Note that h(n, 2, 0)= h(n, 2, 1)= n= n1 = n1/(m−1), since for-
bidden graphs are either a non-edge or an edge. Consider an (m, f )-free graph G on n vertices,
m≥ 3, and assume that the statement of the proposition holds for smaller values of m. We
can also assume that G is not a complete graph or an empty graph. Suppose first that G is an
odd cycle or a complement of an odd cycle. Then α(G) or ω(G) is at least n−1

2 , so it suffices
to check that n−1

2 ≥ cn1/2, as n1/2 ≥ n1/(m−1). And indeed, by squaring, we get the inequality
(n− 1)2 ≥ 4c2n= 16

5 n, and after rearranging we get n
2 − 26n

5 + 1≥ 0, which holds for every n≥ 5.
So from now on, suppose thatG is neither an odd cycle nor the complement of an odd cycle. Let

� and � be the maximum degree of G and of the complement G of G, respectively. Using Brooks’
theorem, the chromatic number of G and of G is at most � and �, respectively. Thus, α(G)≥
n/� and ω(G)≥ n/�. Therefore, we can assume that � ≥ n(m−2)/(m−1) and � ≥ n(m−2)/(m−1),
otherwise we are done. Thus, there is a vertex with at least n(m−2)/(m−1) edges incident to it and
there is a vertex with at least n(m−2)/(m−1) non-edges incident to it.

Assume first that f ≤m− 2. Then f ≤ (m−1
2

)
. Take v ∈V(G) with at least n(m−2)/(m−1) non-

edges incident to it, i.e. with a set X of vertices each non-adjacent to v, |X| ≥ n(m−2)/(m−1).
SinceG is (m, f )-free,G[X] is (m− 1, f )-free. Thus, by induction, h(G)≥ h(G[X])≥ c|X|1/(m−2) ≥
cn1/(m−1).

Now assume that f ≥m− 1. Consider a vertex v with at least n(m−2)/(m−1) edges incident to it,
i.e. with a set X of vertices each adjacent to v, |X| ≥ n(m−2)/(m−1). Since G is (m, f )-free, G[X] is
(m− 1, f − (m− 1))-free. Thus, by induction, h(G)≥ h(G[X])≥ c|X|1/(m−2) ≥ cn1/(m−1). �

3. Two short proofs
3.1. Q= {(4, 1)}
To prove the lower bound on h(n, 4, 1) from Table 1, we shall consider the complementary set-
ting and an arbitrary n-vertex (4, 3)-free 3-graph H. We need the following theorem of Fox and
He [16].

Theorem 3.1 (Fox and He [16], Thm. 1.4). For all t, s≥ 3, any 3-graph on more than (2t)st vertices
contains either a coclique on t vertices or a star (v, S) with |S| = s.

Proposition 3.2. h(n, 4, 3)≥ c
(

log n
log log n

)1/2
for a constant c> 0.

Proof. We shall apply Theorem 3.1 with the largest possible t = s such that (2t)st < n. In this
case t = s≥ c( log n/ log log n)1/2. If H has a coclique of size t, then h(H)≥ t and we are done.
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Table 1. Bounds for h3(n, Q)

Q Lower bound Upper bound Appears in

{(4, 0), (4, 2)} c1
√
n c2

√
n log n Section 4

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

{(4, 1), (4, 2)} c1n1/3 log1/3 n c2n1/3 log4/3 n Section 5
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

{(4, 0), (4, 3)} c1n
⌈ n
3
⌉ + 1 Section 3.2

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

{(4, 1), (4, 3)} c1 log n c2 log n Section 6
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

{(4, 1)} c1
(

log n
log log n

)1/2
c2

log n
log log n Section 3.1 and (3)

OtherwiseH contains a star (v, S) with |S| = s. Note that S induces a clique inH, because otherwise
v and three vertices of S not inducing an edge give a (4, 3)-subgraph. Thus, h(H)≥ s. In each case
h(H)≥ c( log n/ log log n)1/2. �

3.2. Q= {(4, 0), (4, 3)}
Let us restate our result from Table 1:

Proposition 3.3. �(n)≤ h3(n, {(4, 0), (4, 3)})≤
⌈n
3
⌉ + 1.

Proof. Let H be a {(4, 0), (4, 3)}-free 3-graph. We may assume that e(H)= �(n3), else H is not
(4, 0)-free. (Indeed, if e(H)= o(n3), then the probability that a random set of 4 vertices contains
an edge is o(1), so H contains a (4, 0)-subgraph.) Fix v ∈V(H) with e(L(v))= �(n2). Note that
L(v) is induced C4-free. Indeed, if C is an induced C4 in L(v), then for each A⊆V(C), |A| = 3,
it holds that A /∈ E(H), because else A∪ {v} spans exactly 3 edges. This means that V(C) spans 0
edges, a contradiction. By a result of Gyárfás, Hubenko and Solymosi [21], an n-vertex graph with
�(n2) edges and no induced C4 contains a clique of size �(n). So L(v) contains a clique X of size
�(n). For each A⊆ X, |A| = 3, we have A ∈ E(H) because else A∪ {v} spans exactly 3 edges. So X
is a clique in H, implying ω(H)= �(n). This proves the lower bound in the proposition.

For the upper bound, let H be a 3-graph on n vertices with vertex set A∪ B∪ C, where
A, B, and C are pairwise disjoint sets of almost equal sizes. Let E(H)= {abc : a ∈A, b ∈ B,
c ∈ C} ∪ {abb′ : a ∈A, b, b′ ∈ B} ∪ {bcc′ : b ∈ B, c, c′ ∈ C} ∪ {caa′ : c ∈ C, a, a′ ∈A}. We see that H
is {(4, 1), (4, 4)}-free, α(H)≤ �n/3
 + 1, andω(H)= 3. Using complementation gives the required
upper bound. �

4. Q= {(4, 0), (4, 2)}
It will be convenient to consider Q= {(4, 2), (4, 4)} (which is equivalent to {(4, 0), (4, 2)} via
complementation). Let us restate our result from Table 1:

Theorem 4.1. �(
√
n)≤ h3(n, {(4, 2), (4, 4)})≤O(

√
n log n).

To lower bound h3(n, {(4, 2), (4, 4)}), we prove the following characterization of {(4, 2), (4, 4)}-
free 3-graphs. A tight component is a maximal (with respect to inclusion) set of edges C such
that for any distinct e1, e2 ∈ C, there is a tight walk from e1 to e2, i.e. a sequence of edges e1 =
f1, . . . , fk = e2 with |fi ∩ fi+1| = 2. We call a tight component a star if it is an edge set of a star.

Theorem 4.2. A 3-graph H is {(4, 2), (4, 4)}-free if and only if every tight component is a star.

Proof. Suppose first that every tight component of H is a star. If H contains 4 vertices spanning
exactly 2 or 4 edges, then the edges on these vertices are in the same tight component, but a star
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does not contain 4 vertices spanning exactly 2 or 4 edges, a contradiction. So H is {(4, 2), (4, 4)}-
free. �

We now prove the other direction. Let H be a {(4, 2), (4, 4)}-free 3-graph. Observe that for
every star (v, S) in H, the set S is independent, because otherwise H would not be (4, 4)-free.

Claim 4.3. Let (v, S) be a star in H with |S| ≥ 3. There is no edge in H of the form uxy with u /∈
{v} ∪ S and x, y ∈ S.

Proof. Suppose otherwise. The vertices {v, u, x, y} must span exactly 3 edges, because vxy, uxy ∈
E(H) but {v, u, x, y} cannot span 2 or 4 edges. Without loss of generality, suppose that vux ∈ E(H),
vuy /∈ E(H). Let z ∈ S \ {x, y}. Suppose first that vuz ∈ E(H). Then uyz ∈ E(H) because otherwise
{v, u, y, z} spans 2 edges. This implies that uxz ∈ E(H), because else {u, x, y, z} spans 2 edges.
Now {v, u, x, z} spans 4 edges, contradiction. Similarly, suppose that vuz /∈ E(H). Then uyz /∈ E(H)
because else {v, u, y, z} spans 2 edges. This implies that uxz /∈ E(H), because else {u, x, y, z} spans
2 edges. Now, {v, u, x, z} spans 2 edges, contradiction. �

Now we complete the proof of the theorem. Let C be a tight component of H, and let us show
that C is a star. If |C| = 1 (i.e. C contains only one edge) then this is immediate, so suppose that C
contains at least 2 edges. Let e, f ∈ C with |e∩ f | = 2. Write e= uvx, f = uvy. Then exactly one of
the triples vxy, uxy is an edge, say vxy ∈ E(H). So C contains the edges of the star (v, {u, x, y}). Let
S be a maximal subset of V(H) \ {v} such that C contains the edges of the star (v, S), so |S| ≥ 3. We
claim that C contains no other edges. Suppose otherwise. Recall that S induces no edges. So there
must be an edge e ∈ C which contains one vertex w outside {v} ∪ S and two vertices s, t in {v} ∪ S.
By Claim 4.3, it is impossible that s, t ∈ S. So suppose that s= v, t ∈ S. Fix an arbitrary z ∈ S \ {t}.
We have vzt ∈ E(H). Also, vwt ∈ E(H) (because s= v). By Claim 4.3, wzt /∈ E(H), which implies
that vwz ∈ E(H) as otherwise {v,w, t, z} spans exactly two edges. As this holds for every z ∈ S, we
get that (v, S∪ {w}) is a star contained in C, contradicting the maximality of S.

In what follows, for a tight component C that is a star, we denote by V(C) the vertex set of the
respective graph and e(C)= |C|, the number of edges in C.

Lemma 4.4. Let C1, C2 be distinct tight components of a {(4, 2), (4, 4)}-free 3-graph. Then |V(C1)∩
V(C2)| ≤ 1.

Proof. Suppose by contradiction that there are distinct x, y ∈V(C1)∩V(C2). Note that in a star,
every pair of vertices is contained in some edge of the star. Let ei be an edge of Ci containing x, y,
i= 1, 2. Then there is a tight walk between every edge of C1 and every edge of C2 by using the
connection e1, e2. It follows that C1, C2 are in the same tight component, a contradiction. �

Next, we prove a tight bound for the number of edges in a {(4, 2), (4, 4)}-free 3-graph. The
extremal case is when H is a star.

Proposition 4.5. For a {(4, 2), (4, 4)}-free n-vertex 3-graph H, it holds that e(H)≤ (n−1
2

)
.

Proof. Let C1, . . . , Cm be the tight connected components of H. Each edge is contained in a
unique Ci, and e(Ci)=

(|V(Ci)|−1
2

)
because Ci is a star. Therefore, e(H)= ∑m

i=1
(|V(Ci)|−1

2
)
. Also,∑m

i=1
(|V(Ci)|

2
) ≤ (n

2
)
, because each pair of vertices is contained in at most one V(Ci), by Lemma

4.4. Let f be the function f (x)= x− 1
2
√
8x+ 1+ 1

2 , so that f (
(k
2
)
)= (k−1

2
)
. Put xi =

(|V(Ci)|
2

)
, so

that f (xi)=
(|V(Ci)|−1

2
)
. We have

∑m
i=1 xi ≤

(n
2
)
. The function f is convex on [0,∞), so

∑m
i=1 f (xi)

is maximized when exactly one of the xi’s, say x1, is non-zero. As x1 ≤ (n
2
)
, we have e(H)=∑m

i=1 f (xi)≤ f (
(n
2
)
)= (n−1

2
)
. �

Proof of Theorem 4.1. The upper bound in the theorem follows from the fact that every linear
3-graph is {(4, 2), (4, 4)}-free (this follows, e.g. from Theorem 4.2, because every tight component
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of a linear hypergraph has size 1), and the well-known result that there exist linear 3-graphs with
independence number O(

√
n log n) (which is tight), see [6, 14, 26].

The lower bound in the theorem follows from Proposition 4.5 and the known fact that every
n-vertex 3-graph H has an independent set of size min

{
n
2 ,

cn3/2
e(H)1/2

}
. (To see this, take a random

subset X ⊆V(H) by keeping each vertex with probability p= cn1/2
e(H)1/2 , and delete one vertex from

each edge inside X.) �

5. Q= {(4, 1), (4, 2)}
Here we consider Q= {(4, 1), (4, 2)}. By complementation, we may equivalently consider Q=
{(4, 2), (4, 3)}. Let us restate our result from Table 1.

Theorem 5.1. �(n1/3 log1/3 n)≤ h3(n, {(4, 2), (4, 3)})≤O(n1/3 log4/3 ).

For the lower bound in Theorem 5.1, we need the following result of Kostochka, Mubayi, and
Verstraëte [23] on independent sets in sparse hypergraphs.

Theorem 5.2 (Kostochka, Mubayi, and Verstraëte [23]). Suppose that H is an n-vertex 3-graph
in which every pair of vertices lies in at most d edges, where 0< d < n/( log n)27. Then H has an
independent set of size at least c

√
(n/d) log (n/d) where c is an absolute constant.

Proof of the lower bound in Theorem 5.1. Let H be an n-vertex {(4, 2), (4, 3)}-free 3-graph,
where n is sufficiently large. Let u, v be a pair of vertices in H whose common neighbourhood
S has maximum size d > 0. Given vertices x, y ∈ S, the edges xyu and xyv are both in H, else
{u, v, x, y} induces a (4, 2)- or (4, 3)-graph. Next, any three vertices x, y, z ∈ S must form an edge
of H, otherwise {u, x, y, z} induces a (4, 3)-graph. Therefore S induces a clique in H of size d. If
d > n0.4, say, then we are done as h(H)≥ d. Recalling that n is large enough, we may assume that
d ≤ n0.4 < n/( log n)27. Now Theorem 5.2 yields a coclique in H of size at least c

√
(n/d) log n for

some positive constant c. Consequently, there is a constant c′ such that

h(H)≥max{d, c√(n/d) log n} > c′ (n log n)1/3.

Replacing c′ by a possibly smaller constant c1 yields the result for all n> 4. �
In the rest of this section, we prove the upper bound in Theorem 5.1. We begin with the

following two lemmas, giving a structural characterization of {(4, 2), (4, 3)}-free 3-graphs and
rephrasing the problem of estimating h3(n, {(4, 2), (4, 3)}) in terms of a certain extremal problem
for (non-uniform) linear hypergraphs.

Lemma 5.3. Let H be a {(4, 2), (4, 3)}-free 3-graph. Then every two maximal cliques in H intersect
in at most one vertex.

Proof. Let X, Y be maximal cliques and suppose that |X ∩ Y| ≥ 2. Fix u, v ∈ X ∩ Y and y ∈
Y \ X. Note that uvy ∈ E(H). For every x ∈ X \ {u, v}, we have uvx ∈ E(H), so we must have
uxy, vxy ∈ E(H), because else {u, v, x, y} spans 2 or 3 edges. Next, for every x1, x2 ∈ X \ {u}, we
have ux1y, ux2y ∈ E(H), so we must also have x1x2y ∈ E(H). It follows that X ∪ {y} is a clique, in
contradiction to the maximality of X. �

For a (not necessarily uniform) hypergraphH, let α2(H) be themaximum size of a set I ⊆V(H)
such that |I ∩ e| ≤ 2 for every e ∈ E(H). Denote g(H)=max

(
maxe∈E(H) |e|, α2(H)

)
. Denote by

g(n) the minimum of g(H) over all linear (not necessarily uniform) hypergraphs with n vertices.

Lemma 5.4. h3(n, {(4, 2), (4, 3)})= g(n).
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Proof. Let H be an n-vertex Q-free 3-graph with h(H)= h(n,Q), where Q= {(4, 2), (4, 3)}. LetH
be the hypergraph on V(H) whose edges are the maximal cliques of H. Then H is linear by the
previous lemma. Also, maxe∈E(H) |e| = ω(H), and α2(H)= α(H), so h(H)= g(H).

In the other direction, let H be an n-vertex linear hypergraph with g(H)= g(n). Let H be the
3-graph obtained bymaking each e ∈ E(H) a clique. Then h(H)= g(H), and it is easy to check that
H is {(4, 2), (4, 3)}-free. �

From now on, our goal is to upper bound g(n). As we will shortly show, the problem can be
translated to a problem about C4-free bipartite graphs. We prove the following.

Theorem 5.5. For some positive constant C and every large m, there is a C4-free bipartite graph
G= (X, Y , E) with |X| ≥ 1

2m
3/4 log2 m and |Y| = (1+ o(1))m, such that the following holds:

1. d(y)≤ 2m1/4 log2 m for every y ∈ Y.
2. For every set X′ ⊆ X of size at least Cm1/4 log2 m, there is y ∈ Y with |N(y)∩ X′| ≥ 3.

Proof of the upper bound in Theorem 5.1. By Lemma 5.4, it is enough to show that g(n)=
O(n1/3 log4/3 n). Let G= (X, Y , E) be the graph given by Theorem 5.5. Put n= |X| =
�(m3/4 log2 m). Let H be the hypergraph whose edges are the sets NG(y)⊆ X, y ∈ Y . Then H
is linear because G is C4-free. Also maxe∈E(H) |e| =O(m1/4 log2 m)=O(n1/3 log4/3 n) by Item 1
of Theorem 5.5. Finally, α2(H)=O(m1/4 log2 m)=O(n1/3 log4/3 n) by Item 2 of Theorem 5.5. �

5.1. Proof of Theorem 5.5
Let H be the incidence graph of a finite projective plane with n= (1+ o(1))m points and lines;
that is, H is a bipartite C4-free graph with sides X0, Y of size n, and every pair of vertices in X0
have exactly one common neighbour in Y . Let X be a random subset of X0 obtained by including
every vertex independently with probability p= n−1/4 log2 n. Let G=H[X, Y]. Clearly, with high
probability |X| ≥ 3

4pn≥ 1
2pm≥ 1

2m
3/4 log2 m. Also, we have dH(y)= (1+ o(1))

√
n for every y ∈

Y , and it is easy to show, using the Chernoff bound, that w.h.p. d(y)≤ 2
√
np= 2n1/4 log2 n for

every y ∈ Y . So it remains to show that w.h.p., G satisfies Item 2. To this end, we use the container
method. Let I be the set of all subsets I ⊆ X0 of size Cn1/4 log2 n such that |N(y)∩ I| ≤ 2 for every
y ∈ Y . We want to show that with high probability X contains no set in I . We will prove the
following claim.

Claim 5.6. There is a positive constant C0, a set S ⊆ ( X0
C0n1/4 log n

)
and a function f : S → ( X0

≤C0
√
n
)

such that for every I ∈ I , there exists S= S(I) ∈ S satisfying S⊆ I ⊆ f (S).

Let us first complete the proof given Claim 5.6. Fix an arbitrary S ∈ S . Note that |X ∩ f (S)| is
distributed as Bin(|f (S)|, p).We haveP[Bin(N, p)≥ k]≤ (N

k
)
pk ≤ ( eNpk )k. So for k= Cn1/4 log2 n≥

C
C0

· p|f (S)|, we have (assuming C � C0),

P
[|X ∩ f (S)| ≥ Cn1/4 log2 n

] ≤ exp
(−Cn1/4 log2 n

)
. (4)

Taking the union bound over all S ∈ S , of which there are at most
( n
C0n1/4 log n

) ≤
exp(2C0n1/4 log2 n), it follows that with high probability, |X ∩ f (S)| < Cn1/4 log2 n holds for every
S ∈ S . Recall that for every I ∈ I there is S ∈ S such that I ⊆ f (S(I)). Hence, for every I ∈ I , we
have |I ∩ X| < Cn1/4 log2 n≤ |I|, which implies I �⊆ X, as required.

Proof of Claim 5.6. We present an algorithm which, given I, produces sets S(I)⊆ I and f (S)⊇ I.
The algorithm maintains sets At , St . Initially, we set A0 = X0, S0 = ∅. The algorithm runs for q=
C0n1/4 log n steps t = 0, . . . , q− 1 and in step t, obtains an index it , to be defined later, and new
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setsAt+1, St+1. Recall that for any I ∈ I , we have |I| = Cn1/4 log2 n> q. Throughout the algorithm
we will have |St| = t, St ⊆ I ⊆ St ∪At and St ∩At = ∅. Now, suppose we are at step t. We define
a graph Ft with V(Ft)=At and where aa′ ∈ E(Ft) if and only if there exist s ∈ St and y ∈ Y such
that a, a′, s ∈N(y). Note that Ft only depends on At , St , but not on I. Let at1, a

t
2, . . . , a

t|At | be an
ordering of At such that for all i, ati is a vertex of maximum degree in Ft[{ati , ati+1, . . . , a

t|At |}], with
ties broken according to some fixed ordering of X0. Let it be the minimum index i such that ati ∈ I.
We let St+1 = St ∪ {atit } andAt+1 =At \ ({at1, . . . , atit } ∪NFt (ait )). Note that it is well-defined since
we have |St| < q< |I| and I ⊆ St ∪At (which we will soon prove). After q steps, we let S(I)= Sq
and f (Sq)= Sq ∪Aq. We denote S = {S(I) | I ∈ I}.

Clearly, we have St ⊆ I, St ∩At = ∅ for any t ∈ {0, . . . q} and St+1 ∪At+1 ⊆ St ∪At for any t ∈
{0, . . . , q− 1}. Let us also verify that I ⊆ St ∪At throughout, which clearly implies that I ⊆ f (S(I)).
Indeed, suppose that I ⊆ St ∪At at some step of the algorithm, let at1, . . . , a

t|At | be the ordering of
At as described in the algorithm, and let i= it be the index chosen in the algorithm, i.e. such that
ati ∈ I and at1, . . . , a

t
i−1 /∈ I. Consider a neighbour v of ati in Ft . By definition, there exist s ∈ St ⊆ I

and y ∈ Y such that s, ati , v ∈N(y). Then, since I ∈ I and s, ati ∈ I, it follows that v �∈ I. Hence, I ⊆
At+1 ∪ St+1.

Let us now prove that f (S) is indeed uniquely determined by S. In the following, we will denote
by St(I),At(I) the relevant St ,At when the input of the algorithm is I, and similarly denote by it(I)
the relevant index it . Fix I, I′ ∈ I such that S(I)= S(I′). We show that St(I)= St(I′) and At(I)=
At(I′) for all t ∈ {0, . . . , q}. This clearly holds for t = 0. Suppose that this holds for some t, and
let us prove this for t + 1. Denote St = St(I)= St(I′),At =At(I)=At(I′) and Ft = Ft(I)= Ft(I′),
where the last equality holds since Ft(J) is uniquely determined by St(J) andAt(J). Let at1, . . . , a

t
|At |

be the ordering of At =V(Ft) as above. Denote i= it(I) and i′ = it(I′). If i= i′, then it follows that
St+1(I)= St+1(I′) and from the definition of the algorithm, alsoAt+1(I)=At+1(I′), as required. So
let us assume without loss of generality that i< i′. Then, ati ∈ St+1(I)⊆ S(I). On the other hand, by
definition of i′, we have ati �∈ I′ which, using that S(I′)⊆ I′, implies ati �∈ S(I′). Hence, S(I) �= S(I′),
contradicting our assumption.

Finally, we need to show that |f (S)| ≤ C0
√
n for every S ∈ S . We will prove the following claim.

Claim 5.7. Suppose that t ≥ 2n1/4 and |At| ≥ 10
√
n. Then |At+1| ≤ (1− n−1/4)|At|.

Let us finish the proof given Claim 5.7. Fix any I ∈ I and S= S(I), and suppose for the sake of
contradiction that |f (S)| = |S∪Aq(I)| ≥ 11

√
n. As |S| = q� √

n, we must have |Aq(I)| ≥ 10
√
n.

Then, by Claim 5.7, for any t ∈ [2n1/4, q− 1], we have |At+1| ≤ (1− n−1/4)|At|, which implies

|Aq| ≤ n · (1− n−1/4)q−2n1/4
< n · e−n−1/4·(q/2) ≤ n · e− log n = 1,

a contradiction.

Proof of Claim 5.7. Let St ,At , Ft , at1, . . . , a
t
|At | and i

t be as given in the algorithm. For 1≤ j≤ |At|,
denote Fj = Ft[{atj , . . . , at|At |}]. It is enough to prove that�(Fj)≥ |V(Fj)|/n1/4 for every j≤ |At|/2.
Indeed, then if it ≤ |At|/2, we obtain |At+1| ≤ |At| − it − �(Fit )≤ |At| − it − |V(Fit )|/n1/4 =
|At| − it − (|At| − it + 1)/n1/4 ≤ (1− n−1/4)|At|, and if it ≥ |At|/2, then |At+1| ≤ |At|/2.

Consider a fixed 1≤ j≤ |At|/2. Denote A′ = {aj, . . . , a|At |} =V(Fj). We need to show that
�(Fj)≥ |A′|/n1/4. Fix any s ∈ St . Then, for every y ∈NH(s) and distinct a, a′ ∈A′ ∩NH(y), we
have aa′ ∈ E(Fj). Note that the sets (NH(y) \ {s})y∈NH(St) partition X0 \ {s}, since every two vertices
in X0 have exactly one common neighbour in H. The number of pairs (y, {a, a′}) with a, a′ ∈A′
and a, a′, s ∈NH(y) is
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∑
y∈NH(s)

(|A′ ∩NH(y)|
2

)
≥ |NH(s)| ·

(|A′|/|NH(s)|
2

)
≥ |A′|2

4
√
n
,

where we used Jensen’s inequality for the convex function
(x
2
)
, the fact thatNH(s)= (1+ o(1))

√
n,

and the assumption that |A′| ≥ |At|/2≥ 5
√
n. Hence, every s ∈ St contributes at least |A′|2

4
√
n edges

to Fj. Finally, we prove that for every aa′ ∈ E(Fj), there are unique s ∈ St , y ∈ Y such that s, a, a′ ∈
NH(y). Indeed, recall that every pair of vertices in X0 have a unique common neighbour in Y .
Hence, given a, a′, the vertex y ∈ Y is uniquely determined. But then, the vertex s ∈ St ∩NH(y) is
also uniquely determined. Indeed, suppose there are two distinct s, s′ ∈ St ∩NH(y). Without loss
of generality, there is an index t0 such that {s} = St0 \ St0−1 and s′ ∈ St0−1. Then, by definition,
sa ∈ E(Ft0−1), so a �∈ St0 ∪At0 ⊇At , a contradiction.

Therefore, we have e(Fj)≥ |St| · |A′|2
4
√
n ≥ |A′|2

2n1/4 , which implies that �(Fj)≥ |A′|/n1/4 as
required. �

This concludes the proof of Claim 5.6 and hence the theorem. �

6. Q= {(4, 1), (4, 3)}
Here we prove that h3(n, {(4, 1), (4, 3)})= �( log n). We note that {(4, 1), (4, 3)}-free 3-graphs are
also known as two graphs (not to be confused with 2-graphs, which are just graphs), and have been
thoroughly studied in algebraic combinatorics due to their connection to sets of equiangular lines,
see e.g. [22, Chapter 11]. Every two-graph H arises from some graph G by taking x, y, z ∈V(G) to
be an edge of H if and only if {x, y, z} induces an odd number of edges in G. This will be used in
the proof. We start with the following lemma.

Lemma 6.1. There is a constant C > 0 such that for every n, there is an n-vertex graph in which
every set of size C log n contains a triangle and a coclique of size 3.

Proof. Take G∼G(n, 1/2). Fix any U ⊆V(G), |U| = k := C log n. It is well-known that there is
a partial Steiner system on U with m= ( 16 − o(1))k2 ≥ k2/7 triples, T1, . . . , Tm. The probability
that no Ti is a triangle in G is (7/8)m ≤ (7/8)k2/7 = (7/8)

1
7C

2 log2 n. Taking the union bound over
all

( n
C log n

) ≤ eC log2 n choices for U, and assuming that C is large enough, we get that with high
probability, every set of size C log n contains a triangle. By the same argument, w.h.p. every such
set contains a coclique of size 3. �
Theorem 6.2. h3(n, {(4, 1), (4, 3)})= �( log n).

Proof. For the lower bound, let H be an n-vertex {(4, 1), (4, 3)}-free 3-graph. Pick a vertex v in H
and consider its link graph L(v). Since R2(t, t)< 4t−1 (see Erdős and Szekeres [15]), we see that
L(v) has a clique or cocliqueK of size at least 1

2 log n. In the first case,K is a clique inH, else we find
a (4, 3)-subgraph in H; and in the second case, K is a coclique in H, else we find a (4, 1)-subgraph
in H.

For the upper bound, let G be the graph from Lemma 6.1. Let H be the 3-graph on vertex
set V(G) whose edge set consists of all triples of vertices x, y, z which induce an odd number of
edges in G. Lemma 6.1 guarantees that every set of C log n vertices contains both an edge and a
non-edge of H. Hence, h(H)≤ C log n. Let us show that H is Q-free, Q= {(4, 1), (4, 3)}. Fix any
X ⊆V(G)=V(H), |X| = 4. For each A⊆ X, |A| = 3, we have A ∈ E(H) if and only if eG(A) is odd,
where eG(A) is the number of edges spanned byA inG. Note that each edge ofG[X] is contained in
exactly two sets A⊆ X, |A| = 3. Hence,

∑
A⊆X,|A|=3 eG(A)= 2eG(X). The right-hand side is even,

so there is an even number of A with eG(A) odd. It follows that every four vertices in H induce an
even number of edges. So H is Q-free. �
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7. Forbidden sets of size 3: Proof of Theorem 1.5
We will need the following structural characterization of Q-free 3-graphs for Q=
{(4, 1), (4, 3), (4, 4)}.
Theorem 7.1 (Frankl and Füredi [18]). Let H be an {(4, 1), (4, 3), (4, 4)})-free 3-graph. Then H is
isomorphic to one of the following 3-graphs:

1. A blow-up of the 6 vertex 3-graph H′ with vertex set V(H′)= [6] and edge set E(H′)=
{123, 124, 345, 346, 561, 562, 135, 146, 236, 245}. Here for the blow-up we replace every ver-
tex of H′ by an independent set, and whenever we have 3 vertices from three distinct of those
sets, they induce an edge if and only if the corresponding vertices in H′ do.

2. The 3-graph whose vertices are the points of a regular n-gon where 3 vertices span an edge if
and only if the corresponding points span a triangle whose interior contains the centre of the
n-gon.

Proof of Theorem 1.5.
Case Q= {(4, 1), (4, 3), (4, 4)}.
We are to prove that

h(n, {(4, 0), (4, 1), (4, 3)})= h(n,Q)=
{n

2 if n≡ 0 (mod 6)

�n+1
2 
 if n �≡ 0(mod 6).

First, let us prove that the second 3-graph H in Theorem 7.1 has independence number exactly
�(n+ 1)/2)
. Assume the vertex set is [n] and the vertices are labelled by consecutive integers in
clockwise orientation. The lower bound is by taking �(n+ 1)/2)
 consecutive vertices on the n-
gon and noting that no three of them contain the centre in their interior. For the upper bound, let
us see how many vertices can lie in an independent set containing 1. When n is odd, the triangle
formed by {1, i, (n− 1)/2+ i} contains the centre and hence is an edge. Therefore wemay pair the
elements of [n] \ {1} as (2, (n+ 3)/2), (3, (n+ 5)/2), . . . , ((n+ 1)/2, n) and note that each pair
can have at most one vertex in an independent set containing 1. Hence the maximum size of an
independent set containing 1 is at most (n+ 1)/2 and by vertex transitivity ofH, the independence
number ofH is at most (n+ 1)/2. For n even we consider the n/2− 1 pairs (2, n/2+ 1), (3, n/2+
2), . . . , (n/2, n− 1) and add the vertex n to get an upper bound n/2+ 1= �(n+ 1)/2)
.

Next we observe that the 6-vertex 3-graphH′ in Theorem 7.1 has independence number exactly
3 (we omit the short case analysis needed for the proof). Hence if we blow-up each vertex of H′
into sets of the same size, then we obtain n-vertex 3-graphs with independence number exactly
n/2 whenever n≡ 0 (mod 6). This concludes the proof of the upper bound.

For the lower bound, let H be Q-free. Then by Theorem 7.1, H is isomorphic to one of the two
graphs described in Theorem 7.1. If H is isomorphic to the second graph, then we have already
shown that its independence number is at least (n+ 1)/2, so assume that H is isomorphic to the
blow-up of the 6-vertex 10-edge 3-graph H′. There are 10 non-edges in H′. Let V1, . . . ,V6 be
the blown up vertex sets. Since every vertex i ∈ [6] in H′ is contained in exactly 5 non-edges, we
obtain

5n= 5
∑
i∈[6]

|Vi| =
∑

j1j2j3 �∈E(H)
|Vj1 | + |Vj2 | + |Vj3 |.

By the pigeonhole principle, there is a non-edge i1i2i3, such that |Vi1 | + |Vi2 | + |Vi3 | ≥ n/2. Our
bound follows by observing that for any non-edge i1i2i3 in the original 3-graph H′ the set Vi1 ∪
Vi2 ∪Vi3 is an independent set. This gives an independent set of size at least n/2, and if n �≡ 0
(mod 6), then equality cannot hold throughout (a short case analysis, which we omit, is needed to
prove this) and we obtain an independent set of size strictly greater than n/2 as required.
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Case Q= {(4, 0), (4, 2), (4, 3)}.
We now prove h(n, {(4, 0), (4, 2), (4, 3)})= n− 1, for n≥ 4. Let H be a 3-graph that is a clique

on n− 1 vertices and a single isolated vertex, then H is Q-free, giving us the upper bound.
For the lower bound, let H be a Q-free 3-graph on n vertices, n≥ 4. Assume that H is not a

clique. We shall show that H is a clique and a single isolated vertex. Consider a maximal clique
S in H. Since |S| < n, there is a vertex v ∈V(H) \ S. From the maximality of S, LS(v) is not a
clique. If LS(v) contains an edge, then we have that for some vertices x, y, y′, xy ∈ E(LS(v)) and
xy′ �∈ E(LS(v)). But then {v, x, y, y′} induces a (4, 2) or a (4, 3)-graph, a contradiction. Thus, LS(v)
is an empty graph, i.e. there is no edge in H containing v and two vertices of S. Now assume
there exists a second vertex v′ ∈V(H) \ (S∪ {v}). Then by the same argument as above, v′ is also
not contained in any edge with two vertices from S. Consider triples vv′x, x ∈ S. Since |S| ≥ 3,
by the pigeonhole principle there are two vertices x, x′ ∈ S such that either vv′x, vv′x′ ∈ E(H) or
vv′x, vv′x′ �∈ E(H). Then {v, v′, x, x′} induces 2 or 0 edges respectively, a contradiction. Thus, |S| =
n− 1 and v is an isolated vertex.

8. Concluding remarks

• In Section 3.1, we showed that h3(n, 4, 1)≥ c1
(

log n
log log n

)1/2
, and from (3) we have

h3(n, 4, 1)≤ c2 log n
log log n (for constants c1, c2). It is unclear if either of these bounds represents

the correct order of magnitude, but the lower bound certainly seems far off.

Problem 8.1. Improve the exponent 1/2 in the lower bound on h3(n, 4, 1).

• In the cases Q= {(4, 0), (4, 2)} and Q= {(4, 1), (4, 2)}, there is a polylogarithmic gap
between our lower and upper bounds in Table 1, and it would be interesting to close
the gap. In particular, it would be interesting to decide whether h(n, {(4, 2), (4, 4)})=
�(

√
n log n) (this is equivalent to Q= {(4, 0), (4, 2)} by complementation). Recall that in a

({(4, 2), (4, 4)})-free 3-graph, every tight component is a star (Theorem 4.2). One example
of such 3-graphs is linear 3-graphs, and it is well-known that every n-vertex linear 3-graph
has an independent set of size �(

√
n log n), and that this is tight. Another example is to

take a projective plane and put a star on each line (so that each star has roughly
√
n ver-

tices). It would be interesting to estimate the smallest possible independence number of
such a hypergraph.

• Fix integers m> r. Recall that a set Q of order-size pairs {(m, f1), . . . , (m, ft)} has the
Erdős-Hajnal (EH) property if there exists ε = εQ such that hr(n,Q)> nε . As |Q| grows,
the collection of Q-free r-graphs is more restrictive, and hence hr(n,Q) grows (assuming
that large Q-free r-graphs are not forbidden to exist by Ramsey’s theorem). The case when
hr(n,Q)= �(n) was treated by the first author and Balogh [3] when r = 2. A natural ques-
tion then is to ask what is the smallest t such that every Q of size t has the EH property.
Call this minimum value EHr(m). Our results for r = 3 show that form= 4, all Q of size 3
have the EH property, but there are Q of size 2 which do not. Consequently, EH3(4)= 3.
In order to further study EHr(m), we need another definition. Given integers m≥ r ≥ 3,
let gr(m) be the number of edges in an r-graph on m vertices obtained by first taking a
partition of them vertices into almost equal parts, then taking all edges that intersect each
part, and then recursing this construction within each part. For example, g3(7)= 13 since
we start with a complete 3-partite 3-graph with part sizes 2, 2, 3 and then add one edge
within the part of size 3. It is known (see, e.g. [24]) that as r grows we have

gr(m)= (1+ o(1))
r!

rr − r
(m
r
)
.
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Note that r!
rr−r approaches 0 as r grows. The second author and Razborov [24] proved that

for all fixed m> r > 3, there are n-vertex r-graphs which are Q-free, Q= {(m, i) : gr(m)<
i≤ (m

r
)}, with h(G)=O( log n). In other words, there exists Q of size

(m
r
) − gr(m) which

does not have the EH property. This proves that EHr(m)≥ (m
r
) − gr(m)+ 1.

Erdős and Hajnal [12] proved that for all m> r ≥ 3, the set Q= {(m, i) : gr(m)≤ i≤ (m
r
)}

has the EH property. In other words, they proved that every n-vertex r-graph in which
every set of m vertices spans less than gr(m) edges has an independent set of size at least
nε , where ε depends only on r andm. This is a particular set Q of size

(m
r
) − gr(m)+ 1 that

has the EH property, and we speculate that every other set Q of this size also has the EH
property.

Problem 8.2. Prove or disprove that for all m> r > 2,

EHr(m)= (m
r
) − gr(m)+ 1.

We end by noting that EH3(4)= 3= (4
3
) − g3(4)+ 1.
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