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Abstract. We prove uniqueness of positive solutions for the boundary value
problems {−�u = λf (u) in �,

u = 0 on ∂�,

where � is a bounded domain in �n with smooth boundary ∂�, λ is a positive
parameter and f : (0,∞) → (0,∞) is sublinear at ∞ and is allowed to be singular
at 0.
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1. Introduction. Consider the boundary value problem{−�u = λf (u) in �,

u = 0 on ∂�,
(1.1)

where � is a bounded domain in �n with smooth boundary ∂�, f : (0,∞) → (0,∞)
is possibly singular at 0 and λ is a positive parameter.

We are interested in the uniqueness of positive solutions to (1.1) when f is sublinear
at ∞ and is singular at 0. Let us briefly recall the literature on uniqueness of positive
solutions for (1.1) when f is nonsingular. Schuchman in [7] showed that (1.1) has a
unique positive solution for λ large when f (0) > 0 and there exists α > 1 such that

0 ≤ f ′(u) ≤ K(1 + u)−α for u ≥ 0.

The result in [7] was improved by Dancer [2], in which the uniqueness and asymptotic
behaviour of positive solutions to (1.1) for λ large were established for C1 functions f
satisfying f (u) → C > 0, uf ′(u) → 0 as u → ∞, f > 0 on (0,∞), and either f (0) > 0
or f ′(0) > 0. The cases when there exist β ∈ (0, 1) and C > 0 such that u1−β f ′(u) → βC
as u → ∞, or when there is an a > 0 such that f > 0 on (0, a) and f (a) = 0 were also
studied in [2]. Wiegner in [9] included cases where f (u) → 0 as u → ∞ or f (u) does
not behave like uβ at ∞ for some β ∈ (0, 1) such as (1 + u)−γ for γ > 0 small and
ln(2 + u), but required f (0) > 0. Related results when f ∈ C1(0,∞) and f ′ is possibly
singular at 0 (but not f ) were obtained by Lin [5] and Hai and Smith [4]. In [5],
uniqueness was established when u2f ′(u) is bounded near 0 and f (u) ∼ uβ at ∞ for
some β ∈ (0, 1), while in [4], nonlinearities such as uβ ln(2 + u) for some β ∈ [0, 1) are
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allowed but required that f (u) be nondecreasing for u large. In this paper, we shall
establish uniqueness and asymptotic behaviour of positive solutions to (1.1) for λ large
when f is sublinear at ∞ and is possibly singular at 0, which have not been considered
in the literature to the best of our knowledge. Note that in the case when f (u) ∼ uβ

at ∞ for some β ∈ [0, 1), we do not require that f be nondecreasing for u large. Thus,
our results provide an extension of the corresponding results in [2, 4, 7] to the singular
case. In particular, our results when applied to the model case{

−�u = λ
(

a
uγ + uβe

1
1+u

)
in �,

u = 0 on ∂�,

where a ≥ 0, γ, β ∈ [0, 1), give the existence of a unique positive solution for λ large.
Our approach depends on sharp upper and lower estimates on the solutions when λ is
large.

2. Main results. We make the following assumptions:

(A1) f : (0,∞) → (0,∞) is differentiable and there exist a constant A > 0 and a
continuous function g : (0,∞) → (0,∞) such that g(u) is nondecreasing and g(u)

u is
decreasing for u > A,

lim
u→∞

f (u)
g(u)

= 1, lim
u→∞

g(u)
u

= 0.

(A2) For each c > 0, there exist constants Ac, Bc > 0 such that

H−1(cu) ≤ AcH−1(u) for u > Bc,

where H(u) = u
g(u) .

(A3) There exists a constant γ ∈ (0, 1) such that

lim sup
u→0+

uγ+1|f ′(u)| < ∞.

(A4) lim inf
u→0+

f (u)
u > 0.

(A5) lim inf
u→∞ (f (u) − uf ′(u)) > 0.

(B1) f : (0,∞) → (0,∞) is differentiable and there exist constants β ∈ [0, 1) and
C > 0 such that

lim
u→∞

f (u)
uβ

= C,

and

lim sup
u→∞

u|f ′(u)|
f (u)

< 1.

THEOREM 2.1. Let (A1)–(A5) hold and let f be nondecreasing for u > A, or let
(B1),(A3) and (A4) hold. Then there exists a positive number λ0 such that (1.1) has a
unique positive solution for λ > λ0.

THEOREM 2.2. Let (A1)–(A4) hold with g(u) = Cuβ for some β ∈ [0, 1), C > 0. Let
uλ be a solution of (1.1). Then

λ
1

β−1 uλ → C
1

1−β wβ in C1(�̄) as λ → ∞,

where wβ is the unique positive solution of −�wβ = w
β

β in �, wβ = 0 on ∂�.
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REMARK 2.1. Theorems 2.1 and 2.2 extend corresponding results in Theorem 1
and Remark 1 in [2] to include singular nonlinearities f. Note that the assumption (B1)
is weaker than the condition limu→∞ u1−β f ′(u) = βC for some β ∈ [0, 1) and C > 0 in
[2].

REMARK 2.2. It follows from (A2) that

H−1(u) = H−1(c−1(cu)) ≤ A1/cH−1(cu) for cu > B1/c,

i.e.

H−1(cu) ≥ A−1
1/cH−1(u) for u > c−1B1/c.

REMARK 2.3. Note that condition (A2) is satisfied if for each b > 1there exists a
function h : (1,∞) → � such that

lim sup
u→∞

g(bu)
g(u)

≤ h(b),

and

lim sup
b→∞

h(b)
b

= 0.

Indeed, let c > 1 and choose b > 1 so that h(b)+1
b < 1

c . Since limx→∞ H−1(x) = ∞, there
exists a constant Bc > H(A) be such that

g(bH−1(x))
g(H−1(x))

≤ h(b) + 1 <
b
c

for x > Bc,

which implies

H(H−1(cx)) = H−1(cx)
g(H−1(cx))

= cH−1(x)
g(H−1(x))

≤ bH−1(x)
g(bH−1(x))

= H(bH−1(x))

for x > Bc. Hence, H−1(cx) ≤ bH−1(x) for x > Bc.

REMARK 2.4. It should be noted that the assumptions
(i) (A1)–(A5) and f are nondecreasing for u large, and
(ii) (B1), (A3) and (A4) are different.

Indeed, it follows from Remark 2.3 that the function g(u) = Cuβ with C > 0 satisfies
(A2). Hence, it is easily seen that (B1) implies (A1),(A2) and (A5). However, (B1) does
not imply that f is nondecreasing for u large as the following example shows:

Let β ∈ [0, 1) and k ∈ (β, 1). Let ζ : [0,∞) → � be a continuous function such that
0 ≤ ζ ≤ k + β, ζ (n) = k + β for all n ∈ �, ζ = 0 on [0, 1/2], and

∫ ∞
0 ζ (t)dt < ∞. For

u > 0, define f (u) = uβφ(u), where φ(u) = e− ∫ u
1

ζ (t)
t dt. Then f > 0 on (0,∞),

u−βf (u) → C as u → ∞,

where C = e− ∫ ∞
1

ζ (t)
t dt, and

uf ′(u)
f (u)

= β + φ′(u)
φ(u)

= β − ζ (u) ≡ z(u) for u > 0.
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Since −k ≤ z ≤ β and z(n) = −k for all n ∈ �, it follows that f ′(n) < 0 or all n ∈ �

and

lim sup
u→∞

u|f ′(u)|
f (u)

≤ k < 1.

Thus, f satisfies (B1) but f is not nondecreasing on (A,∞) for any A > 0. Note
that f also satisfies (A3) and (A4). On the other hand, a function such as f (u) =
u−γ + uδ ln(1 + u), where γ, δ ∈ (0, 1), is nondecreasing for u large and satisfies (A1)–
(A5), but does not satisfy (B1) since there do not exist β ∈ [0, 1) and C > 0 such that
u−βf (u) → C as u → ∞.

3. Preliminary results. Let λ1 be the first eigenvalue of −� with Dirichlet
boundary conditions and φ1 be the corresponding normalized positive eigenfunction,
i.e. ||φ1||∞ = 1.

LEMMA 3.1. [5] Let (A4) hold. Then there exist positive numbers δ and β such that
any positive solution u of (1.1) satisfies

u ≥ δφ1 in � for λ > λ1/β.

Proof. Lemma 3.1 was proved in [5] using Serrin’s sweeping principle. Here we give
a short, new proof. By (A4), there exist positive numbers δ, β > 0 such that

f (u) > βu for u ∈ (0, δ).

Let u be a positive solution of (1.1) and v = u − δφ1. Define D = {x ∈ � : u(x) <

δ}. Then v ≥ 0 on ∂D and

−�v − λ1v = −�u − λ1u > (λβ − λ1)u > 0 in D

for λ > λ1/β. By the maximum principle [8, Theorem 2], v ≥ 0 in D. Clearly, v ≥ 0 in
�\D, and so v ≥ 0 in �,

i.e. u ≥ δφ1 in �.

�
LEMMA 3.2. Let (A5) hold and α0 ∈ (0, 1). Then there exist positive numbers K and

Cα0 such that

f (αu) − αf (u) ≥ K(1 − α)

for α ∈ [α0, 1), u ≥ Cα0.

Proof. By (A5), there exist constants C, K > 0 such that

f (u) − uf ′(u) ≥ K for u > C,

which implies

(
f (u) − K

u

)′
= uf ′(u) − f (u) + K

u2
≤ 0
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for u > C. Hence, if u > C/α0,

f (αu) − K
αu

≥ f (u) − K
u

for α ∈ [α0, 1), and therefore

f (αu) − αf (u) ≥ K(1 − α) for u > C/α0.

�
The next Lemma gives sharp lower and upper estimates for positive solutions of

(1.1). Let φ be the solution of −�φ = 1 in �,φ = 0 on ∂�.

LEMMA 3.3. Let (A1)–(A4) hold. Then there exist positive constants C1, C2 and λ̃

such that any positive solution of (1.1) satisfies

C1H−1(λ)φ ≤ u ≤ C2H−1(λ)φ in � (3.1)

for λ > λ̃.

Proof. Let u be a positive solution of (1.1). By (A1), for each c > 0, there exist
constants Kc, K̃c > 0 such that

K̃cg(z) ≥ f (z) ≥ Kcg(z) for z ≥ c. (3.2)

In particular, there exists a constant Mc > 0 such that

f (z) ≥ Mc for z ≥ c.

Let D be an open subset of � with D̄ ⊂ �. By Lemma 3.1, u ≥ δφ ≥ δ0 > 0 in D for
λ large. Hence,

−�u = λf (u) ≥
{

λMδ0 in D,

0 in �|D,

and the weak comparison principle [6, Lemma A2] implies u ≥ λMδ0 φ̃ in �, where φ̃

is the solution of

−�φ̃ =
{

1 in D,

0 in �\D,
φ̃ = 0 on ∂�.

Let cλ be the largest number such that u ≥ cλφ̃ in �, and k0 = infD φ̃. Then

u ≥ cλk0 > λMδ0 k0 > A in D

for λ > (Mδ0 k0)−1 A, which we shall assume. Hence, it follows from (3.2) and the fact
that g is nondecreasing on (A,∞) that

−�u = λf (u) ≥
{

λKAg(cλk0) in D,

0 in �|D,

which implies u ≥ λKAg(cλk0)φ̃ in � and therefore

cλ ≥ λKAg(cλk0).
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Consequently,

H(cλk0) = cλk0

g(cλk0)
≥ λKAk0.

This, together with Remark 2.2, implies the existence of a positive constant k1 such
that

cλk0 ≥ H−1(λKAk0) ≥ k1H−1(λ)

for λ large. Let k̃ > 0 be such that φ̃ ≥ k̃φ in �. Then

u ≥ cλk̃φ ≥ C1H−1(λ)φ in � (3.3)

for λ large, where C1 = k̃(k1/k0).
Next, let ψ be the solution of⎧⎨

⎩
−�ψ = 1

φγ in �,

ψ = 0 on ∂�,
(3.4)

and let k2 > 0 be such that ψ ≤ k2φ in �. (see e.g. [1, Theorem 2.25], [3, Lemma
3.1]. From (3.3), (A3) and (3.2) with c = A, we deduce the existence of positive
constants M and K̃ ≡ K̃A such that

−�u ≤ λ

(
M
uγ

+ K̃g(u)
)

≤ λ

(
M

(C1H−1(λ)φ)γ
+ K̃g(||u||∞)

)
in �.

By the comparison principle,

u ≤ λ

(
M

(C1H−1(λ))γ
ψ + K̃g(||u||∞)φ

)

≤ λ

(
Mk2

(C1H−1(λ))γ
+ K̃g(||u||∞)

)
φ ≤ 2λK̃g(||u||∞)φ in � (3.5)

if λ is large enough. Consequently,

H(||u||∞) = ||u||∞
g(||u||∞)

≤ 2λK̃||φ||∞,

which implies

||u||∞ ≤ H−1(2λK̃||φ||∞). (3.6)

From (3.5), (3.6) and (A2), we get

u ≤ 2λK̃g(H−1(2λK̃||φ||∞))φ = H−1(2λK̃||φ||∞)
||φ||∞ φ ≤ C2H−1(λ)φ in �

for λ large. This completes the proof of Lemma 3.3. �
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4. Proofs of main results. We are now ready to give the proof of main results.

Proof of Theorem 2.1. By Theorem 2.1 in [3], (1.1) has a positive solution u ∈
C1,α(�̄) for λ large when f is sublinear at ∞ and there exist constants a > 0, β ∈ (0, 1)
such that lim supu→0+ uβ |f (u)| < ∞ and f (u) ≥ a

uβ for u large. Thus, we only need to
establish the uniqueness part. Let u1, u2 be positive solutions of (1.1). Since (A1)–(A4)
hold, it follows from Lemma 3.3 that for λ large enough, α0u2 ≤ u1 ≤ α−1

0 u2 in �,

where α0 = C1/C2. Let α be the largest number such that αu2 ≤ u1 ≤ α−1u2 in � and
suppose α < 1. Then

|u1 − u2| ≤ 1 − α

α
u2 ≤ 1 − α

α0
u2 in �. (4.1)

Suppose (A1)–(A5) hold and f is nondecreasing for u > A. Then it follows from
Lemma 3.2 that

f (u1) − αf (u2) ≥ f (αu2) − αf (u2) ≥ K(1 − α) (4.2)

for u2 > max{A/α0, Cα0} ≡ B.

By (A4), there exists a constant K1 > 0 such that

z|f ′(z)| ≤ K1α
2+γ

0

zγ
for z ∈ (0, B/α0], (4.3)

and

f (z) ≤ K1

zγ
for z ∈ (0, B]. (4.4)

Using (4.1), (4.3) and the Mean Value Theorem, we obtain for u2 ≤ B,

|f (u1) − f (u2)| = |u1 − u2||f ′(ζ )| ≤ 1 − α

α0
u2|f ′(ζ )|

= 1 − α

α0
ζ |f ′(ζ )|

(
u2

ζ

)
≤ K1(1 − α)

uγ

2

, (4.5)

for some ζ between u1 and u2. Here we have used the fact that ζ ≤ u2/α0 ≤ B/α0 and
ζ ≥ α0u2. This, together with (4.4), implies

|f (u1) − αf (u2)| ≤ |f (u1) − f (u2)| + (1 − α)f (u2) ≤ 2(1 − α)K1

uγ

2

(4.6)

for u2 ≤ B. Since

K ≤ K2

uγ

2

for u2 ≤ B,

where K2 = KBγ , we deduce from (4.2), (4.6) and Lemma 3.3 that

−�(u1 − αu2) = λ(f (u1) − αf (u2)) ≥ λ

(
K − K3

uγ

2

)
(1 − α)

≥ λ

(
K − K3

(C1H−1(λ)φ)γ

)
(1 − α) in �,
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where K3 = 2K1 + K2. By the comparison principle,

u1 − αu2 ≥ λ(1 − α)
(

Kφ − K3

(C1H−1(λ))γ
ψ

)

≥ λ(1 − α)
(

K − K3k2

(C1H−1(λ))γ

)
φ ≥ λ(1 − α)K

2
φ in �

if λ is large enough, where ψ is defined in (3.4). Consequently, there exists a number
α̃ > α such that α̃u2 ≤ u1 ≤ α̃−1u2 in �, a contradiction with the maximality of α.

Thus, α = 1, and u1 = u2 in �.

Suppose next that (B1), (A3) and (A4) hold. In view of Remark 2.4, we see that
(A1)–(A4) hold and therefore Lemma 3.3 applies. We need only to show the existence
of a positive constant K > 0 such that

f (u1) − αf (u2) ≥ K(1 − α) for u2 large. (4.7)

The rest of the proof then follows the same way as above. Let α1 ∈ (0, 1) be such
that

lim sup
ζ→∞

ζ |f ′(ζ )|
f (ζ )

< α
2+β

1 . (4.8)

By the Mean Value Theorem,

|f (u1) − f (u2)| = |(u1 − u2)f ′(ζ )| ≤ 1 − α

α
u2|f ′(ζ )|,

where ζ is between u1 and u2. Note that αζ ≤ u2 ≤ (1/α)ζ. Suppose α > α1. Then

f (u1) − αf (u2) = f (u1) − f (u2) + (1 − α)f (u2) ≥ (1 − α)[f (u2) − α−1u2|f ′(ζ )|]

≥ (1 − α)f (ζ )
[

f (u2)
f (ζ )

− ζ |f ′(ζ )|
α2

1f (ζ )

]
. (4.9)

Since

f (u2)
f (ζ )

= f (u2)

uβ

2

(
u2

ζ

)β (
ζ β

f (ζ )

)
≥ α

β

1

(
f (u2)

uβ

2

) (
ζ β

f (ζ )

)

for α > α1, it follows from (4.8) that

lim inf
u2→∞

(
f (u2)
f (ζ )

− ζ |f ′(ζ )|
α2

1f (ζ )

)
≥ α

β

1 − α−2
1 lim sup

ζ→∞

ζ |f ′(ζ )|
f (ζ )

> 0,

which, together with (4.9), implies (4.7) when α > α1.

Next, suppose α ≤ α1. Then we have

f (u1) − αf (u2) = uβ

1

(
f (u1)

uβ

1

− α
f (u2)

uβ

2

(
u2

u1

)β
)

≥ uβ

1

(
f (u1)

uβ

1

− α
1−β

1 f (u2)

uβ

2

)
.
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Since u−β

1 f (u1) − α
1−β

1 u−β

2 f (u2) → C(1 − α
1−β

1 ) > 0 as u2 → ∞, (4.7) follows. This
completes the proof of Theorem 2.1.

Proof of Theorem 2.2. Let vλ = (Cλ)
1

1−β wβ and note that vλ is the solution of

{−�vλ = λCv
β

λ in �,

vλ = 0 on ∂�.

Note that Lemma 3.3 holds for uλ and vλ when λ is large enough, which we shall
assume. As in the proof of Theorem 2.1, let α0 = C1/C2 and α be the largest number
such that αvλ ≤ uλ ≤ α−1vλ in �. Let 0 < ε < 1 − α0 and suppose that α ≤ 1 − ε. Let
0 < ε0 < 1 − (1 − ε)1−β and choose A0 > 0 so that

Czβ

1 − ε0
≥ f (z) ≥ (1 − ε0)Czβ for z > A0.

Hence, for vλ > A0/α0 ≡ A1,

f (uλ) − αCv
β

λ ≥ [
(1 − ε0)Cuβ

λ − αCv
β

λ

] ≥ [
(1 − ε0)C(αvλ)β − αCv

β

λ

]
= Cαβ [1 − ε0 − α1−β ]vβ

λ ≥ δ0, (4.10)

where δ0 = Cα
β

0

[
1 − ε − (1 − ε)1−β

]
Aβ

1 > 0, and

f (uλ) − α−1Cv
β

λ ≤ Cuβ

λ

1 − ε0
− Cv

β

λ

α
≤ Cv

β

λ

(1 − ε0)αβ
− Cv

β

λ

α

= C
αβ

(
1

1 − ε0
− 1

α1−β

)
v

β

λ ≤ C
αβ

(
1

1 − ε0
− 1

(1 − ε)1−β

)
v

β

λ ≤ δ1, (4.11)

where δ1 = C((1 − ε0)−1 − (1 − ε)β−1)Aβ

1 < 0.

On the other hand, for vλ ≤ A1, there exists a constant K̃ > 0 such that

∣∣f (uλ) − αCv
β

λ

∣∣ ≤ K̃
v

γ

λ

. (4.12)

Combining (4.7)–(4.9), we obtain

f (uλ) − αCv
β

λ ≥ δ0 − K̃ + δ0Aγ

1

v
γ

λ

in �,

and

f (uλ) − α−1Cv
β

λ ≤ δ1 + K̃ − δ1Aγ

1

v
γ

λ

in �.

Hence, by Lemma 3.3,

−�(uλ − αvλ) = λ
(
f (uλ) − αCv

β

λ

) ≥ λ

(
δ0 − K̃ + δ0Aγ

1

(C1H−1(λ)φ)γ

)
in �,
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and

−�(uλ − α−1vλ) = λ
(
f (uλ) − α−1Cv

β

λ

) ≤ λ

(
δ1 + K̃ − δ1Aγ

1

v
γ

λ

)
in �.

Hence, by the comparison principle,

uλ − αvλ ≥ λ

(
δ0φ − K̃ + δ0Aγ

1

(C1H−1(λ))γ
ψ

)
≥ λ(δ0/2)φ in �,

and

uλ − α−1vλ ≤ λ

(
δ1φ + K̃ − δ1Aγ

1

(C1H−1(λ))γ
ψ

)
≤ λ (δ1/2) φ in �

if λ is large enough, where ψ is defined in (3.4), which is a contradiction. Therefore,
α > 1 − ε for λ large, i.e. (1 − ε)vλ ≤ uλ ≤ (1 − ε)−1vλ in � for λ large. Consequently,

−εC
1

1−β wβ ≤ λ
1

β−1 uλ − C
1

1−β wβ ≤ C
1

1−β wβε(1 − ε)−1 in �

for λ large. In particular, λ
1

β−1 uλ → C
1

1−β wβ in C(�̄) as λ → ∞. To show the C1(�̄)

convergence, let ũλ = λ
1

β−1 uλ − C
1

1−β wβ. Then

−�ũλ = λ
β

β−1 f (uλ) − C
1

1−β w
β

β ≡ hλ in �.

By writing

hλ = (λ
1

β−1 uλ)β
f (uλ)
uλβ

− C
1

1−β w
β

β ,

we see that there exist constants A2, K0 > 0 such that |hλ| < K0 for λ large and uλ > 1.

On the other hand, it follows from (A3) and Lemma 3.3 that there exists a constant
K1 > 0 such that

|hλ| ≤ 1
φγ

+ K1

for λ large and uλ ≤ 1. Thus, there exists a constant K2 > 0 such that |hλ| ≤ K2
φγ in

� for λ large. By [3, Lemma 3.1], there exist constants ν ∈ (0, 1) and K̄ > 0 such
that ũλ ∈ C1,ν(�̄) and |ũλ|1,ν < K̄. Since C1,ν(�̄) is compactly imbedded in C1(�̄) and
ũλ → 0 in C(�̄) as λ → ∞, it follows that ũλ → 0 in C1(�̄) as λ → ∞. This completes
the proof of Theorem 2.2.
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