A MODEL FOR THE GLOBULAR CLUSTER LUMINOSITY FUNCTION

DEAN E. MCLAUGHLIN AND RALPH E. PUDRITZ Dept. of Physics and Astronomy, McMaster University Hamilton, Ontario L8S 4M1 Canada

We develop the idea (Harris & Pudritz 1994, ApJ, 429, 177) that, like currently forming star clusters and associations, globular clusters (mean mass $\simeq 3 \times 10^5 M_{\odot}$) were born in the 'cores' of much larger ($\sim 10^8 - 10^9 M_{\odot}$) star-forming complexes which we call 'supergiant molecular clouds,' or SGMCs. The number N(m) of protoclusters at mass m is then determined by a steady-state balance between their growth by core-core collisions, and their self-destruction via the side effects of star formation. This mass spectrum is ultimately passed on to the globular cluster system (GCS) itself, by virtue of the very high star-formation efficiency required to produce a bound stellar cluster from a gaseous core.

The major influence on the shape of the GCS mass spectrum is the ratio β of fiducial core disruption and collision timescales. Our models are further characterized by a mass-dependent core lifetime: below a critical mass m_* , star formation is too passive to disrupt a core; but above this limit, cores will self-destruct in a finite amount of time. We identify m_* with the peak magnitude of the globular cluster luminosity function $[\phi \sim mN(m)]$. Its value and the peak mass m_1 of the luminosity-weighted luminosity function $[\psi \sim m^2 N(m)]$ are then used to fit the observed mass spectra (above m_*) of the Milky Way, M31, and M87 GCSs (see McLaughlin & Pudritz 1996, ApJ, 456, in press; also Harris, these proceedings).

Our main results are: (1) The ratio β , and hence the shape of the GCS mass spectrum, is expected to be independent of position within a galaxy. (2) m_1 varies among GCSs, and is roughly that mass above which a core's collisional growth time is longer than its lifetime. (3) More massive cores in a given SGMC must be shorter-lived; specifically, the data imply that core disruption times scale as $m^{-0.6}$ above m_* . (4) β is significantly larger, and the GCS mass spectrum shallower, in M87 than in the Local Group spirals. This is likely an effect more of environment than of Hubble type alone.