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KINEMATIC FORMULA AND TUBE FORMULA IN SPACE OF
CONSTANT CURVATURE

by SUNGYUN LEE*

(Received 12th April 1988)

The Euler characteristic of an even dimensional submanifold in a space of constant curvature is given in terms
of Weyl's curvature invariants. A derivation of Chern's kinematic formula in non-Euclidean space is
completed. As an application of above results Weyl's tube formula about an odd-dimensional submanifold in
a space of constant curvature is obtained.
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1. Introduction

Let P be a compact orientable p-dimensional Riemannian manifold which is
imbedded in n-dimensional non-Euclidean space E"(K) of constant curvature K (briefly
PcE"(K)). Denote by RP and RK the curvature tensor fields of P and E"(K) respectively.

In 1987 Ishihara [3] derived an interesting formula for the Euler characteristic /(P).
Let p = dimP be even. He showed that

t n D \ Mil

\£il) OSiSp/2

where klc{Rp — RK) are Weyl's curvature invariants (see Section 2) and
m\\=m(m —2).. .4-2 or m\\ = m(m — 2) . . .3-1 according as n is even or odd.

Ishihara's derivation of (1.1) relied on a Teufel's result [6]. In this article we give a
simple proof of it using the exterior product of double forms and the contraction
operator.

Ishihara [3] also mentioned the following result which generalizes Chern's kinematic
formula in Euclidean space [1]. Let Pc=E"(K) gmd QczE"(K) be compact submanifolds
of dimensions p and q respectively. Let £«(n) be the group of proper motions of E"(K)
and dg the standard kinematic density on EK(ti). If 0 ̂  e even ^ p + q — n and g e EK(n),
then

= X ce,i/ii(P,K)//e_i(Q,K) (1-2)
0 £ i even S e
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with constants ce>, depending on p, q, n, e and i. Here integral invariants ne(P, K) are
related to ke(RP-RK) by

He(P,K) = ke(RP-RK). (1.3)

The second purpose of this article is to determine constants cei which Ishihara could
not do. In fact ce, in (1.2) are given by

ceJ = On+1On...O2-/ O,+ e+2

/Op + 1Op + 2( ty2)!Woa + 1Oa + 2((e-Q/2)!N

V O,_(+2 J\ O,_,+f+2

Here Oj = 2nJI2/T(j/2) is the volume of unit sphere in Euclidean y-space.
As an application of the formulas (1.1) and (1.2) we derive Weyl's tube formula for a

compact odd-dimensional submanifold P<=.E"(K). This derivation shows a close rela-
tionship among the Gauss-Bonnet theorem, Chern's kinematic formula and Weyl's tube
formula.

2. New derivation of Ishihara's formula

We refer to [2] for basic facts on double forms. We shall say that a double form R of
type (2,2) which has the same symmetries as the curvature tensor of a Riemannian
manifold P is curvature-like. Let R be a curvature-like tensor field on P. The complete
contraction C2c(Rc) of Rc = R A • • • A R (C times) is then given by

O l , . . . , O 2 c = 1

Rc(eai,...,eaJ(eai,...,eaJ (2.1)

where {eu ..., ep} is any orthonormal frame on P. We put

where dP is the volume element of P. For the case PcE"(K), k2c(RP—RK) are Weyl's
curvature invariants which appear in (1.1).

If p is even, then the Gauss-Bonnet theorem says that

p (2.3)

In order to prove (1.1) we need the following lemmas.
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KINEMATIC FORMULA AND TUBE FORMULA 81

Lemma 2.1. Let R and S be curvature-like tensor fields on a Riemannian manifold P.
Then

C2c((R + S)c) = £ (°) C2c(Rc ~' A S'). (2.4)

Proof. This is a simple consequence of the binomial theorem and Bianchi identities.

The ith power R^ of the curvature operator RK of E"(K) has the following properties.

Lemma 2.2. For any subset {e1,.,.,e2i} of an orthonormal frame {«!,... ,en} on E"(K)
we have

K&i , • • •, e2l)(et,..., e2l) = X'(20!/2'. (2.5)

m/2. (2.6)

Proof. From the definition of the double form multiplication A ([2, p. 158 (2.2)])
and from the property of RK we have

peSh(2i-2,2)

Here Sh(p, r) denote the set of all (p, r) shuffles. By an induction it follows that

* & i . • • • . e 2 i ) ( e 1 , . . . , e 2 i ) = K'

Then from (2.1) and (2.5) we obtain (2.6).

Lemma 2.3. For PcE"(K) we have

(RyiARi
K)(el,...,e2c)(e1,...,e2c)

= —^T1 Z RJ-"l(«p,.-
z peS/i(2c-2i,2i)
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CU((RP-RKY-'AR1
K)

Proof. From the definitions we have

R%-iARi
K(ei,...,e2c)(e1,...,e2c)

= K £ (RF'AR'I-1)^ eM._2)(
peSH2c-2,2)

By an induction it follows that

R p ' ' A R i i c ( e i , • • • • , e l c ) { e y , . . . , e 2 c )

This gives (2.7). Next from (2.1) and (2.7) we obtain

2WP~' A R'K)= X Rp-
lARi

tie1,...,e2e)(e1,...,e2e)
ei e2c=l

Z Z *#- '(ep..---.eWc-2i)
ei e2c=l peS*(2c-2i,2i)

Z l I RCp~i(ep1>--->ep2c-2,)(epV->ef>2c-j\
><r-2i,2i)Upi Cp2c-2i=l J

2c + 2i -J

Z RK(eP2c.li.l,...,e,,J(eP2c_2.tl,...,eP2n
i ep2c = l J

peS*(2<r-2i,2i)Upi

p-2c + 2i

Now we are ready to prove (1.1).
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Proof of Ishihara's formula (1.1). Let PaE"(K) and dimP = 2c be even. Applying the
Gauss-Bonnet theorem (2.3), and Lemmas 2.1, 2.2, 2.3 we have

c!(2c)!;

= £ Kl(2i-l)\\k2c_2i(RP-RK).

3. Determination of constants cti

We refer to [5] for basic facts on non-Euclidean integral geometry and use the
notations of [1,5]

In this section we determine the constants ce , of (1.2) by evaluating the integral

Ae = $ne(S>(a)ngSq(b),K)dg, (3.1)

where S£(a) is a fixed p-dimensional geodesic sphere of radius a in a (p+l)-plane
EP+1(K) (briefly £p+1) and S"(b) is a q-dimensional geodesic sphere of radius b in E"(K).
Note that

S-l( (*^/pye~ 'He(S-l(a), K) = On (*^/py (cos ̂ /Ka)'. (3.2)

We prove the result for the elliptic space E"(K) where K>0. The proof for the
hyperbolic space E"(K) where K<0 is similar. Assume b<a<{n/6y/K). We begin with
the following lemma.

Lemma 3.1. Let S^'^a) be a fixed geodesic sphere of radius a in Em(K) and Sm~l{b)
the geodesic sphere of radius b with center x. Let

(3.3)
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where dx is the volume element of Em{K). Then

m-e-1+i

('even

x (cos ̂ /Kb)'{sin y/Kb)m~l+', (3.4)

where b e m _ , _,- are given by

e , m — 1 — i /-» y-» I - / < • »

Om+lOm-e \i/2

Proof. Let p be the distance of x from the centre of S"~i(a). Then the radius y of
\b) = Sm-\y) is given by

cos2 ^fky= -j=- (cos2 y/Ka + cos2 ̂ /Kfe - 2 cos , /Ka cos y/lCb cos
sin2

N/Kp

Applying (3.2) and (17.46) in [5, p. 307] we obtain

sin/KasinjKb

Be = K{el2)-m+10m0m^l f (cos2 ,/Ka sin2
 s/Rb + cos2 ^/Kb sin

- sin v/Ka sin yKfc

- 2« cos y ^ a cos v/^fc)c/2(sin 2 ̂ a sin2 ^/xfc - u2)(m " e " 2)/2 du.

Now from the calculations in [4, pp. 478-479] we get (3.4).

Theorem 3.2. We have

Ae = K(e-p-q)t2 - + ! • • • 1 P + , - n + 3 £ j

O l O p + 2 O 1 j + 2 Ogige
ieven

x (cos jKaf ~ '(sin ^/Ka)p+' ~ e(cos ̂ ^ ' ( s i n ^Kb)" ~'. (3.5)

Proof. We apply Chern's argument [1, pp. 115-117] to E"(K) and evaluate the
integral by iterations. Let Ep+l and Eq+1 be planes which contain Sp(a) and gS9(b)
respectively, and let x be the centre of gS9(b). First from the fibering

{(x, £*+ !)|x e £*+1 unoriented}
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it is not difficult to see that

A. = 2O,+ x . . . 020^^ ... O2 Jne(S>(a)ngS*(b), K)d(x, £«+*), (3.6)

where

1) A d£«+1(n)

and d£«+1(n) is the density for (q+ l)-planes in £"(K).
Next we fix £«+1 c£"(K) and integrate over dx(£*+1). By transversality we may

assume dim(£p + 1n£*+ 1) = p + <?-n + 2. Let £ ' + 1 n £ « + 1 = £ '+«-"+ 2 , and let £•- ' -» =
(£p+«-'1+2)J-(£«+1) be the complement of £ P + « - " + 2 in £«+1 through x. A point xe£« + 1

can be coordinatized by its projections x16£p +*"n + 2 and x26£""' '"1 . Let s be the
distance from x to £P+«-" + 2. The intersection gS«(&)n£p+«-'I + 2 = S''+«-n+1(p)<=£*+1 is

a geodesic sphere of radius p, where cos yJKp=cos y/Kb/cos y/Ks. Then we have

= K(-n+p+2) /2(cos>/Ks)p+«"'1+2(sinv
/Ks)n"p"2dx1 Ads/\dun^p^i (3.7)

where dun_p_! is the solid angle element such that |dun_p_1 = On_p_1. Using (3.7) we
again calculate the integral by iteration. It follows that

b

x J dE" + 1 J (cos y/Ks)"+• ""+2(sin y/Ks)n ~ " ' 2 ds
o

xlne(S
p

0
+'>-n+l(r)nS''+q-n+\p),K)dx1(E

p+''-n+2).

Here Sp+"-'I+1(r) = Sp(fl)n£p+«-n+2 is a geodesic sphere of radius r in £ '+«-"+ 2 ,
O^rga . According to (3.4), we obtain, after simple computations,

xe=/c(n+e-p-2'-1"2o,+1...o1on_,_1...o2

x X
OSiS

even

(3.8)
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In order to evaluate the last integral we recall the following lemma due to Chern [1, p.
106].

Lemma 3.3 (Chern). Let p + q^.n and F(E") be an integrable function which depends
only on Ep+q~n{l>) = EpnE'', where E" is a fixed q-plane. Then we have

f F(Fp\dFp ~ " + 1 " ' 1 P"M » + ! • • • 1 f p / pp + q ~ n(q)\ J pp + q ~ n(q) /1Q\
J o p + 1 . . . o ,o , + 1 . . . o 1

 J

Applying (3.9) we obtain

j(cosN/^r)e"'(sinv/Ar)p + '~"+ 1 + '"eJ£' '+ 1

-n+l+i-e

To integrate over dEp+q~n + 2{p+l) let » be the distance of Ep+q'n+2 from the centre of
SP(a). Then cosS/Ru = (cos ^/Ka/coSy/Kr). Since we have

n-q-2

where dE"o]
q~l{p+1) is the density for (n—q— l)-planes through the origin in £ p + 1 , we

find, from (17.53b) in [5, p. 309],

$(coss/Kry-\sins/Kr)p+q-n+i+i-edEp + q-

op+1.. .o,op+l_«+a

(3.11)

Combining (3.8), (3.10) and (3.11) we obtain the final result (3.5).

Corollary 3.4.

On+1 •••OlOp + q-n + 30q+2-iOp+2-e + i •
ee~'~n n n n n n n °e.P+«-n+i-i-

ul^'p-Hup+2uq+luq+2L'p + q-n + 3-iup + q-n + 3-e + i

Remark. (3.5) and (3.12) give (1.4).
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4. New derivation of Weyl's tube formula for odd-dimensional manifolds in E"(K)

Let M be a compact odd-dimensional imbedded submanifold of E"(K). Denote by
^MlK)(r) the n-dimensional volume of the tube T(M,r) of radius r about M and by
AEM{K\r) the (« —l)-dimensional volume of the boundary of T(M,r). In this section we
will derive Weyl's tube formula for AE^(K)(r) (see (4.4) below) by employing Chern's
kinematic formula (1.2) in E"(K) and Ishihara's formula (1.1).

Let dimM = 2p+l. We apply (1.2) with M as a stationary submanifold and with
S"~l(r) as the moving submanifold of E"(K). Here S"~l(r) is a geodesic sphere of radius
r, and r>0 is less than or equal to the distance from M to its nearest focal point. Let x
be the centre of gS"~l{r), geEK(n). Since EK(n) is the semidirect product E"{K) x SO(ri)
we can write gS"~i(r)=g0S"x~

J(r), where goeSO(ri) and S"~V) denotes the geodesic
sphere of radius r with centre x. If d(x, M)>r, then Mr\gS"~~ l(r) is empty. Hence we can
say that for 0 ̂  e even ^ 2p

\iie(McgSn~\r),K)dg= J j J He(Mng0Srl(r),K)dg0\dx, (4.1)
T(M,r) (.SO(n) J

where dg0 is the Haar measure on SO{n) normalized so that \so(n)dgo = OnOn_i...02,
and T(M,r) = {xeEn(K)\d(x,M)^r}. To evaluate the integral (4.1) we may assume
d{x,M)<r since the measure of the boundary of T(M,r) is equal to 0. Then
X(Mng0S"x~

l(r)) is 2 since Mng0Sx~
l(r) is homeomorphic to an even-dimensional

sphere, and

J dx=VF*>[r) = ]AF*\s)ds.
T(M.r) 0

Putting the formulas (1.1) and (1.2) together we obtain from (4.1)

2On...O2{2n)"i%\k% " * ~ ""'- '\2p-2kj

2l(M, K). (4.2)

According to (3.3), differentiating (4.2) with respect to r and applying

= K(2fc+l)!!(2p-2fc-3)!!(n + l - 2 p + 2* + 2i)c2p_2t_2.2/ (4.3)

for Og/c^p — i— 1. we have
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f (2p-l)!!(n-l-

By a simple calculation we finally get

" ~ " • ' 2 i . (4.4)

REFERENCES

1. S. S. CHERN, On the kinematic formula in integral geometry, J. Math. Mech. 16 (1966),
101-118.

2. A. GRAY, Some relations between curvature and characteristic classes, Math. Ann. 184
(1970), 257-267.

3. T. ISHIHARA, The Euler characteristics and Weyl's curvature invariants of submanifolds in
spheres, J. Math. Soc. Japan 39(2) (1987), 247-256.

4. A. NIJENHUIS, On Chern's kinematic formula in integral geometry, J. Differential Geom. 9
(1974), 475-482.

5. L. A. SANTALO, Integral Geometry and Geometric Probability (Encyclopedia of Mathematics
and its Applications, Vol. 1, Addison-Wesley, 1976).

6. E. TEUFEL, Anwendung der differentialtopologischen Berechnung der Totalen Knimmung
und Totalen Absolutkriimmung in der spharischen Differentialgeometrie, Manuscripta Math. 32
(1980), 239-262.

7. H. WEYL, On the volume of tubes, Amer. J. Math. 61 (1939), 461-472.

DEPARTMENT OF MATHEMATICS AND

MATHEMATICS RESEARCH CENTER

KOREA INSTITUTE OF TECHNOLOGY

DAEJEON, 305-701, KOREA

https://doi.org/10.1017/S001309150002890X Published online by Cambridge University Press

https://doi.org/10.1017/S001309150002890X

