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Abstract

Let M = (M)n∈N be a discrete-time normal martingale satisfying some mild requirements. In this paper
we show that through the full Wiener integral introduced by Wang et al. (‘An alternative approach to
Privault’s discrete-time chaotic calculus’, J. Math. Anal. Appl. 373 (2011), 643–654), one can define
a multiplication-type operation on square integrable functionals of M, which we call the convolution.
We examine algebraic and analytical properties of the convolution and, in particular, we prove that the
convolution can be used to represent a certain family of conditional expectation operators associated
with M. We also present an example of a discrete-time normal martingale to show that the corresponding
convolution has an integral representation.
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1. Introduction

In recent years, there has been much interest in functionals of stochastic processes in
discrete time. In 2001 Émery [2] discussed the chaotic representation property of a
class of discrete-time stochastic processes. In 2008 Privault [5] surveyed his discrete-
time chaotic calculus, which is a Malliavin-type theory of stochastic calculus for
functionals of discrete-time normal martingales. In 2010 Nourdin et al. [4] considered
Rademacher functionals by using Stein’s method. Recently Wang et al. [6] introduced
a notion of quantum Bernoulli noises and defined corresponding quantum stochastic
integrals, which are actually about operator processes acting on functionals of discrete-
time Bernoulli noises. More recently Wang et al. [7] have presented an alternative
approach to Privault’s discrete-time chaotic calculus.

Let M = (M)n∈N be a discrete-time normal martingale satisfying some mild
requirements. In [7] the authors introduced a Wiener-type integral with respect to
the noise associated with M, which is called the full Wiener integral. In this paper
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we show that through the full Wiener integral, one can define a multiplication-type
operation on square integrable functionals of M, which we call the convolution. We
examine algebraic and analytical properties of the convolution and, in particular, we
prove that the convolution can be used to represent a certain family of conditional
expectation operators associated with M. We also present an example of discrete-
time normal martingale to show that the corresponding convolution has an integral
representation.

The paper is organised as follows. Section 2 recalls some basic notions and facts
such as discrete-time normal martingales, the full Wiener integral, and the chaotic
representation property. Sections 3 and 4 state our main results. We first define the
convolution on square integrable functionals of a discrete-time normal martingale M.
Then we examine its algebraic and analytical properties and show its interesting
link with a certain family of conditional expectation operators associated with M.
Finally, we present an example of a discrete-time normal martingale to show that the
corresponding convolution has an integral representation.

Notation and conventions. Let N be the set of all nonnegative integers. For a
subset S ⊂ N, we define Γ(S ) as the finite power set of S , namely

Γ(S ) = {σ | σ ⊂ S and #σ <∞},

where #σ means the cardinality of σ as a set. If S = {0, 1, . . . , k}, then we simply
write Γk] = Γ(S ). We set Γ−1] = Γ(∅), where ∅ denotes the empty set.

We write Γ = Γ(N) for brevity. (Clearly, Γ is countable.) As usual, l2(Γ) denotes the
space of square summable real-valued functions on Γ.

2. Normal martingale

Let (Ω, F , P) be a probability space with E denoting the expectation with respect
to P. We use L2(Ω) to mean L2(Ω, F , P) if there is no risk of confusion.

D 2.1. An L2-stochastic process M = (Mn)n∈N on (Ω, F , P) is called a
discrete-time normal martingale if it satisfies:

(i) E[M0|F−1] = 0 and E[Mn|Fn−1] = Mn−1 for n ≥ 1;
(ii) E[M2

0 |F−1] = 1 and E[M2
n |Fn−1] = M2

n−1 + 1 for n ≥ 1,

where F−1 = {∅,Ω} and Fn = σ(Mk; 0 ≤ k ≤ n) for n ∈ N.

Let M = (Mn)n∈N be a discrete-time normal martingale. Then, from M, we can
construct another stochastic process Z = (Zn)n∈N as follows:

Z0 = M0, Zn = Mn − Mn−1, n ≥ 1. (2.1)

We may view Z as a noise in discrete time, which we call the noise associated with M.
It can be verified that, as a process on (Ω, F , P), Z admits the following two properties:

(i) for each n ∈ N, Zn is conditionally centred, that is,

E[Zn|Fn−1] = 0; (2.2)
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(ii) for each n ∈ N, Zn has a standard conditional quadratic variation, that is,

E[Z2
n |Fn−1] = 1.

Here Fn is the same as in Definition 2.1.
Recall that Γ is the finite power set ofN. The next lemma shows that, from the noise

Z, one can construct an orthonormal system for L2(Ω), which is indexed by σ ∈ Γ.

L 2.2. Let Z∅ = 1, where ∅ denotes the empty set and

Zσ =
∏
i∈σ

Zi, σ ∈ Γ, σ , ∅. (2.3)

Then the set {Zσ | σ ∈ Γ} forms a countable orthonormal system of L2(Ω).

For a proof of this lemma, we refer to [2, 5] or [7]. Using this lemma and related
general results in functional analysis [1], we come to the next lemma.

L 2.3. There exists a unique isometry J : l2(Γ)→L2(Ω) such that

J( f ) =
∑
σ∈Γ

f (σ)Zσ, f ∈ l2(Γ), (2.4)

where the series is convergent in the norm of L2(Ω).

The isometry J mentioned in Lemma 2.3 is referred to as the full Wiener integral
operator [7] and J( f ) the full Wiener integral of f .

D 2.4. The noise Z is said to have the chaotic representation property if the
set {Zσ | σ ∈ Γ} is total in L2(Ω).

So if the noise Z has a chaotic representation property, the set {Zσ | σ ∈ Γ} actually
forms an orthonormal basis of L2(Ω). In that case, the full Wiener integral operator
J : l2(Γ)→L2(Ω) becomes an isometric isomorphism.

L 2.5 [7]. Let the noise Z have the chaotic representation property. Then for
each k ∈ N, there exists a bounded operator ∂k on L2(Ω) such that

∂kZσ = 1σ(k)Zσ\k, σ ∈ Γ,

where σ \ k stands for σ \ {k}.

The operator ∂k is called the annihilation operator at k and its dual ∂∗k the creation
operator. As its name suggests, the creation operator has the following property:

∂∗kZσ = (1 − 1σ(k))Zσ∪k, σ ∈ Γ,

where σ ∪ k means σ ∪ {k}. See [7] for details about annihilation and creation
operators.
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3. Convolution

In this section, we always assume that M = (Mn)n∈N is a given discrete-time normal
martingale on the probability space (Ω, F , P). We also assume that the noise Z =

(Zn)n∈N associated with M has a chaotic representation property (see (2.1) for the
meaning of Zn).

So the set {Zσ | σ ∈ Γ} forms an orthonormal basis of L2(Ω), where Zσ is defined
by (2.3). This means that F is generated by the noise Z (equivalently, by the normal
martingale M). Thus we may call random variables on (Ω, F , P) functionals of the
normal martingale M or functionals of the noise Z.

Note that the full Wiener integral operator J : l2(Γ) 7→ L2(Ω) is an isometric
isomorphism (see (2.4) for its definition) and l2(Γ) forms an algebra with the usual
product given by

( f g)(σ) = f (σ)g(σ), σ ∈ Γ,

where f , g ∈ l2(Γ). In view of these two facts, we come to the next definition.

D 3.1. Let ξ, η ∈ L2(Ω). Then the convolution ξ ∗ η of ξ and η is defined as

ξ ∗ η = J( f g),

where f = J−1(ξ) and g = J−1(η).

Thus we have an operation ∗ on L2(Ω), which we call the convolution. The next
two propositions show that, with the convolution as multiplication, L2(Ω) becomes a
commutative Banach algebra.

P 3.2. Let ξ, η, ζ ∈ L2(Ω) and s, t ∈ R (the real numbers). Then:

(i) ξ ∗ η = η ∗ ξ;
(ii) ξ ∗ (η ∗ ζ) = (ξ ∗ η) ∗ ζ;
(iii) ξ ∗ (sη + tζ) = s(ξ ∗ η) + t(ξ ∗ ζ).

P. The proof is straightforward. �

P 3.3. The convolution is continuous with respect to the norm of L2(Ω);
more precisely,

‖ξ ∗ η‖ ≤ ‖ξ‖ ‖η‖, ξ, η ∈ L2(Ω),

where ‖ · ‖ denotes the L2(Ω)-norm.

P. Take f , g ∈ l2(Γ) such that ξ = J( f ) and η = J(g). Then, by the isometric
property of J,

‖ξ ∗ η‖ = ‖J( f g)‖ = ‖ f g‖l2(Γ) ≤ ‖ f ‖l2(Γ)‖g‖l2(Γ) = ‖ξ‖ ‖η‖.

This completes the proof. �
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P 3.4. Let ξ ∈ L2(Ω). Then for each σ ∈ Γ,

ξ ∗ Zσ = 〈ξ, Zσ〉Zσ, (3.1)

where 〈ξ, Zσ〉 = E[ξZσ].

P. Take f ∈ l2(Γ) such that ξ = J( f ). Then, noticing that Zσ = J(1{σ}),

ξ ∗ Zσ = J( f 1{σ}) =
∑
τ∈Γ

f (τ)1{σ}(τ)Zτ = f (σ)Zσ,

which together with 〈ξ, Zσ〉 = f (σ) gives (3.1). �

In the following we write F−1 = {∅,Ω} and Fn = σ
(
Mk; 0 ≤ k ≤ n

)
for n ∈ N. In this

way (Fn)n≥−1 forms a filtration on (Ω, F , P). We note that Fn can also be expressed in
terms of Z, namely Fn = σ

(
Zk; 0 ≤ k ≤ n).

For k ∈ N, we define a functional ψk as

ψk =
∑
σ∈Γk]

Zσ, (3.2)

where Γk] = {σ | σ ⊂ {0, 1, . . . , k}}. Clearly ψk ∈ L
2(Ω) for each k ∈ N. The next

proposition is one of our main results, showing that the conditional expectation
operator E[ · |Fk] can be represented by ψk through the convolution.

P 3.5. Let ξ ∈ L2(Ω) and k ∈ N. Then

E[ξ|Fk] = ξ ∗ ψk. (3.3)

P. We first show that E[Zσ|Fk] = 0 if σ ∈ Γ \ Γk]. In fact, if σ ∈ Γ \ Γk], then σ , ∅
and n = max σ > k; hence, by the conditionally centred property of Zn (see (2.2)),

E[Zσ | Fk] = E[Zσ\nE[Zn|Fn−1]|Fk] = 0.

We now use this property to verify (3.3). Let ξ = J( f ) with f ∈ l2(Γ). Then

E[ξ|Fk] =
∑
σ∈Γk]

f (σ)E[Zσ|Fk] +
∑

σ∈Γ\Γk]

f (σ)E[Zσ|Fk] =
∑
σ∈Γk]

f (σ)Zσ.

On the other hand, by Proposition 3.4, we find that

ξ ∗ ψk =
∑
σ∈Γk]

ξ ∗ Zσ =
∑
σ∈Γk]

〈ξ, Zσ〉Zσ =
∑
σ∈Γk]

f (σ)Zσ.

Thus (3.3) holds. �

The next proposition suggests that the sequence ψk, k ∈ N, can be viewed as an
approximate identity of the Banach algebra

(
L2(Ω), ∗

)
.
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P 3.6. Let ξ ∈ L2(Ω). Then

lim
k→∞
‖ξ ∗ ψk − ξ‖ = 0. (3.4)

P. Set ξk = ξ ∗ ψk, k ∈ N. Then it follows from Proposition 3.5 that

ξk = E[ξ|Fk], k ∈ N.

It is easy to see that F = σ(
⋃

k∈N Fk). Thus by the well-known martingale convergence
theorem (see, for example, [3]) we come to (3.4). �

As an immediate consequence of Proposition 3.5, we have the following version of
the Clark formula in discrete time (see, for example, [7]).

C 3.7. For each ξ ∈ L2(Ω),

ξ = Eξ +
∑
k∈N

Zk∂k(ξ ∗ ψk) = Eξ +
∑
k∈N

Zk[(∂kξ) ∗ ψk−1],

where ψk is defined by (3.2).

4. Integral representation

In this section, we present an example of a discrete-time normal martingale to show
that the corresponding convolution has an integral representation.

Let Ω = {−1, 1}N, the set of all mappings ω : N→ {−1, 1}. Then Ω is a commutative
group with the natural product given by

(ω1ω2)(n) = ω1(n)ω2(n), n ∈ N,

where ω1, ω2 ∈Ω. Note that this group has 1 as its identity and, moreover, each ω ∈Ω

has itself as its inverse, namely ω−1 = ω.
Let (Zn)n∈N be the sequence of canonical projections on Ω given by

Zn(ω) = ω(n), ω ∈Ω.

Denote by F the σ-field generated by the sequence (Zn)n∈N. Then (see [5]) there exists
a unique probability measure P on F such that

P ◦ (Zn1 , Zn2 , . . . , Znk )
−1{(ε1, ε2, . . . , εk)} =

1
2k

for n j ∈ N, ε j ∈ {−1, 1} (1 ≤ j ≤ k) with ni , n j when i , j and k ∈ N with k ≥ 1. Note
that P is also the only invariant probability measure on the group Ω.

So we come to a probability measure space (Ω, F , P) and a sequence Z = (Zn)n∈N

of independent random variables on it. Define

Mn =

n∑
k=0

Zk, n ∈ N.
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Then M = (Mn)n∈N is a discrete-time normal martingale on (Ω, F , P). Thus Z is the
noise associated with M, which we call the Bernoulli noise. It can be shown [5] that
the Bernoulli noise Z has the chaotic representation property.

P 4.1. Let ξ, η ∈ L2(Ω). Then the convolution ξ ∗ η defined as in
Definition 3.1 has the following integral representation:

ξ ∗ η(ω1) =

∫
Ω

ξ(ω)η(ω1ω) dP(ω), for P-almost all ω1 ∈Ω.

P. Define an operation � on L2(Ω) as follows:

ξ � η(ω1) =

∫
Ω

ξ(ω)η(ω1ω) dP(ω), ω1 ∈Ω,

where ξ, η ∈ L2(Ω). It can be shown that ξ � η ∈ L2(Ω) whenever ξ, η ∈ L2(Ω) and,
moreover, L2(Ω) becomes a commutative Banach algebra with the operation � as
multiplication.

Now let ξ, η ∈ L2(Ω). To complete the proof, we need only verify that ξ ∗ η = ξ � η.
Take g ∈ l2(Γ) such that

η =
∑
σ∈Γ

g(σ)Zσ.

For each σ ∈ Γ, noticing that Zσ(ωω1) = Zσ(ω)Zσ(ω1), ω, ω1 ∈Ω, we have

ξ � Zσ(ω1) =

∫
Ω

ξ(ω)Zσ(ω1ω) dP(ω) = Zσ(ω1)
∫

Ω

ξ(ω)Zσ(ω) dP(ω), ω1 ∈Ω,

which together with Proposition 3.4 gives

ξ ∗ Zσ = ξ � Zσ.

Thus by the continuity of both ∗ and � we get

ξ ∗ η =
∑
σ∈Γ

g(σ)ξ ∗ Zσ =
∑
σ∈Γ

g(σ)ξ � Zσ = ξ � η.

This completes the proof. �
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Probabilités, XXXV, Lecture Notes in Mathematics, 1755 (Springer, Berlin, 2001), pp. 123–138.
[3] O. Kallenberg, Foundations of Modern Probability (Springer, Berlin, 1997).
[4] I. Nourdin, G. Peccati and G. Reinert, ‘Stein’s method and stochastic analysis of Rademacher

functionals’, Electron. J. Probab. 15 (2010), 1703–1742.
[5] N. Privault, ‘Stochastic analysis of Bernoulli processes’, Probab. Surv. 5 (2008), 435–483.

https://doi.org/10.1017/S0004972711003091 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972711003091


[8] Convolution of functionals of normal martingales 231

[6] C. S. Wang, H. F. Chai and Y. C. Lu, ‘Discrete-time quantum Bernoulli noises’, J. Math. Phys. 51
(2010), 053528.

[7] C. S. Wang, Y. C. Lu and H. F. Chai, ‘An alternative approach to Privault’s discrete-time chaotic
calculus’, J. Math. Anal. Appl. 373 (2011), 643–654.

QI HAN, School of Mathematics and Information Science,
Northwest Normal University, Lanzhou, Gansu 730070, PR China
e-mail: hanqi1978@nwnu.edu.cn

CAISHI WANG, School of Mathematics and Information Science,
Northwest Normal University, Lanzhou, Gansu 730070, PR China
e-mail: wangcs@nwnu.edu.cn, cswangnwnu@163.com

YULAN ZHOU, School of Mathematics and Information Science,
Northwest Normal University, Lanzhou, Gansu 730070, PR China
e-mail: zhouylw123@163.com

https://doi.org/10.1017/S0004972711003091 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972711003091

