EXTENSIONS OF ENDOMORPHISMS FROM THE HIGHER CENTRES

FRANKLIN HAIMO

Introduction. If $0 \to A \to C \to B \to 0$ is an exact sequence of abelian groups, if f is a 2-cocyle for this extension, if $\alpha \in \text{End } A$, and if $\beta \in \text{End } B$, then a necessary and sufficient condition that α extend to an endomorphism γ of C which induces β is that (M) αf and $f\beta$ be cohomologous; see Montgomery (2). We shall extend this result to the case where $1 \to A \to G \to B \to 1$ is an exact sequence of groups and A is abelian. For α to extend to a γ which induces β and extends an endomorphism on the centralizer of A in G, it is (Theorem 2) necessary and sufficient (i) that, for each $b \in B$, b and βb be carried onto the same element of G modulo the centralizer of A in G; (ii) that α commute with the automorphisms of A induced by B via the extension; and (iii) that condition (M) hold. If α is an endomorphism on Z_nG , the *n*th member of the ascending central series of G, if each Z_iG , $0 \leq i < n$, is α -admissible, if β is an endomorphism on G/Z_nG , and if α can be extended to a $\gamma \in \text{End } G$ which induces β , then we shall show (Theorem 3) that the respective cohomology classes of the extensions

$$1 \to Z_1(G/Z_iG) \to G/Z_iG \to G/Z_{i+1}G \to 1 \qquad (0 \le i < n)$$

lie in the kernels of suitable endomorphisms of the 2-cohomology groups $\mathfrak{H}^{(2)}(G/Z_{i+1}G, Z_{i+1}G/Z_iG)$, the endomorphisms generated in each case from α and β . Conversely, if essentially the cohomology classes lie in such kernels, then (Theorem 4) it is possible to modify α slightly so that the modification will extend to an endomorphism γ on G which induces β .

The principal device is that of an extended centrally compatible family of endomorphisms for $\alpha \in \text{End } Z_nG$, the family of endomorphisms induced on the various $Z_i(G/Z_jG)$, $0 \leq i + j \leq n$, by α . Theorem 1 provides us with such a family whenever all the Z_iG , $0 \leq i < n$, are α -admissible.

If A and B are groups or rings where B contains A, then C(A, B) is to be the centralizer of A in B, a normal subgroup of B whenever A is a normal subgroup of B. If B is a group which operates on the abelian group A via some $\theta \in \text{Hom}(B, \text{Aut } A)$, we sometimes write $\mathfrak{S}^{(2)}(B, A; \theta)$ for $\mathfrak{S}^{(2)}(B, A)$ in order to emphasize the map θ . For a function ϕ from X to Y, $\phi | U$ means ϕ with its domain cut down to the subset U of X. The symbol δ denotes the usual coboundary operator. The symbol ι is reserved for the identity map of any set

Received August 20, 1965. This research was supported jointly by the National Science Foundation and by Washington University under grants GP-89 and GP-3874.

under consideration. If g is an element of the group G, then $\langle g \rangle$ is to be the inner automorphism on G given by $\langle g \rangle x = gxg^{-1}$ for each $x \in G$. If γ_1 and γ_2 are functions from a group G to a group H, $\gamma_1 + \gamma_2$ is to be that function γ from G to H which is given by $\gamma(g) = \gamma_1(g)\gamma_2(g)$ for each $g \in G$. Note that the order of summation is important. The function $-\gamma$ has its values given by $(-\gamma)(x) = (\gamma(x))^{-1}$. All maps are written to the left: if a product of maps $\prod_{j=1}^n \beta_j$ is given, it is to be understood that the first map to be applied is β_n and the last is β_1 . Frequently, an inverse ϕ^{-1} will appear in a product of homomorphisms even though ϕ is not single valued. In each instance it will be found that ker ϕ is such that the ambiguities disappear. In general, $\phi^{-1}(x)$ means the complete inverse image of x under ϕ .

1. Preliminaries. (a) Let A be an abelian group, let B be a group, and let θ be any member of Hom (B, Aut A). Observe that $C(\operatorname{Im} \theta, \operatorname{End} A)$ is a subring of End A. Let $\operatorname{End}_{\theta} B$ be the set of all $\beta \in \operatorname{End} B$ for which $\theta\beta = \theta$, a set which is closed under multiplication. If $\alpha \in C(\operatorname{Im} \theta, \operatorname{End} A)$ and if $\beta \in \operatorname{End}_{\theta} B$, then, each in a standard way **(1)**, α induces α^* and β induces β^{\sharp} , both in End $\mathfrak{H}^{(2)}(B, A; \theta)$. The map ()* is a ring homomorphism while ()* preserves multiplication.

(b) Let $1 \to A \to G \xrightarrow{\Phi} B \to 1$ be any extension of A by B. Then there exist homomorphisms λ and μ such that the following diagram is commutative with exact rows and columns:

$$(C) \qquad \begin{array}{c} 1 \\ \downarrow \\ 1 \rightarrow A \xrightarrow{} A \xrightarrow{} 1 \\ \downarrow \\ 1 \rightarrow A \xrightarrow{} A \xrightarrow{} 1 \\ \downarrow \\ \downarrow \\ 1 \rightarrow C(A, G) \xrightarrow{} G \xrightarrow{} G/C(A, G) \xrightarrow{} 1 \\ \downarrow \\ 1 \xrightarrow{} C(A, G)/A \xrightarrow{} B \xrightarrow{\mu} G/C(A, G) \xrightarrow{} 1 \\ \downarrow \\ 1 \xrightarrow{} 1 \\ 1 \xrightarrow{} 1 \\ 1 \xrightarrow{} 1 \\ 1 \end{array}$$

Let $\operatorname{End}_{\mu} B$ be the set of all $\beta \in \operatorname{End} B$ for which $\mu\beta = \mu$, a set which is closed under multiplication.

(c) For a group G, let $Z_0 G = 1$, and let $Z_i G$ be the *i*th member of the ascending central series of G, where $i = 1, 2, \ldots$. Let $J^0G = G$, let $J^1G = JG$, the inner automorphism group on G, and let $J^{i+1}G = J(J^jG)$ for $j = 1, 2, \ldots$. Let ϕ_j be the homomorphism which makes the sequence

$$(A_j) 1 \to Z_1 J^{j-1}G \to J^{j-1}G \xrightarrow{\phi_j} J^jG \to 1$$

F. HAIMO

exact, j = 1, 2, ... If we let $\phi_{i,j} = \phi_j | Z_{i+1} J^{j-1} G$, then

$$(A_{i,j}) 1 \to Z_1 J^{j-1}G \to Z_{i+1} J^{j-1}G \xrightarrow{\phi_{i,j}} Z_i J^j G \to 1$$

is exact.

For a positive integer n and for $\alpha \in \operatorname{End}(Z_n G)$, we say that α is centrally compatible on $Z_n G$ if $\operatorname{Im}(\alpha | Z_m G) \leq Z_m G$ for each positive integer $m \leq n$. Given a centrally compatible α , write $\alpha_{n,0} = \alpha$, $\alpha_{m,0} = \alpha | Z_m G(1 \leq m \leq n)$ and $\alpha_{0,0} = 0$, the trivial (and sole) endomorphism on 1. The finite set $\{\alpha_{m,0}\}_{m=0}^n$ is called the centrally compatible family for (centrally compatible) α on $Z_n G$. Each $\beta = \alpha_{m,0}$ of such a family is centrally compatible on $Z_m G$, and if k is an integer for which $0 \leq k \leq m$, then $\beta_{k,0} = \alpha_{k,0}$. Later, we shall need the fact that the map

$$\sigma_i = \prod_{j=0}^{i-1} \phi_{i-j}$$

(multiplication proceeding from the left to right with increasing j) for each positive integer i makes

$$(A'_{i}) \qquad \qquad 1 \to Z_{i} G \to G \xrightarrow{\sigma_{i}} J^{i} G \to 1$$

exact.

THEOREM 1. Let α be a centrally compatible endomorphism on $Z_n G$ where n is a positive integer. For each pair of non-negative integers i and j with $0 \leq i + j \leq n$ there exists an endomorphism $\alpha_{i,j}$ centrally compatible on $Z_i J^i G$ such that

4

(i) $\alpha_{n,0} = \alpha$;

(ii) $\alpha_{i,j}|Z_m J^j G = \alpha_{m,j}$ whenever $0 \leq m \leq i$; and

(iii) the following diagrams are commutative with exact rows:

$$(B_{i,j}) \qquad \begin{array}{c} 1 \longrightarrow Z_1 J^{j-1}G \longrightarrow Z_{i+1} J^{j-1}G \xrightarrow{\phi_{i,j}} Z_i J^j G \longrightarrow 1 \\ & \downarrow^{\alpha_{1,j-1}} & \downarrow^{\alpha_{i+1,j-1}} & \downarrow^{\alpha_{i,j}} \\ 1 \longrightarrow Z_1 J^{j-1}G \longrightarrow Z_{i+1} J^{j-1}G \xrightarrow{\phi_{i,j}} Z_i J^j G \longrightarrow 1 \end{array}$$

for each pair of integers i and j satisfying $1 \leq i + j \leq n, 0 \leq i$, and $1 \leq j$.

Proof. Let $\{\alpha_{m,0}\}_{m=0}^{n}$ be the centrally compatible family for α . Let $\alpha_{0,1}$ be the trivial (and only) endomorphism of $Z_0 JG = 1$. For each integer m such that $1 \leq m < n$, let $\alpha_{m,1} = \phi_{m,1} \alpha_{m+1,0} \phi_{m,1}^{-1}$. Even though $\phi_{m,1}^{-1}$ need not be single valued, the fact that $Z_1 G = \ker \phi_{m,1}$ makes the definition of $\alpha_{m,1} \in \operatorname{End} Z_m JG$ unambiguous. One readily checks that (ii) holds in that $\alpha_{m,1}|Z_k JG = \alpha_{k,1}$ for each integer k such that $0 \leq k \leq m < n$. Further, the diagram $(B_{m,1})$ is commutative with exact rows for each integer m with $1 \leq m < n$. Now suppose, inductively, that (1) there exist

$$\alpha_{n-l,l} \in \operatorname{End} Z_{n-l} J^l G$$

1252

for each integer l such that $1 \leq l \leq j < n$; (2) there exist $\alpha_{m,l} \in \text{End } Z_m J^l G$ for each integer m such that $0 \leq m \leq n-1$, where $\alpha_{m,l} = \alpha_{n-l,l} |Z_m J^l G$; and (3) $(B_{m,l})$ is commutative with exact rows for all such m and l; or (4) $j \geq n$. Then, if (4) holds for j, it holds for j + 1. If j < n, let

$$\alpha_{n-j-1,\,j+1} = \phi_{n-j-1,\,j+1} \,\alpha_{n-j,\,j} \,\phi_{n-j-1,\,j+1}^{-1},$$

unambiguously defined as a member of End $Z_{n-j-1}J^{j+1}G$, since $Z_1J^jG = \ker \phi_{n-j-1,j+1}$, and since the induction assumption gives $\alpha_{n-j,j}|Z_1J^jG = \alpha_{1,j}$. By construction and by the induction assumption, $(B_{n-j-1,j+1})$ is commutative with exact rows. If *m* is an integer for which $0 \leq m \leq n-j-1$, let

$$\alpha_{m,j+1} = \phi_{m,j+1} \alpha_{m+1,j} \phi_{m,j+1}^{-1},$$

unambiguously defined as a member of End $Z_m J^{j+1}G$, since $Z_1 J^j G = \ker \phi_{m,j+1}$, and since $\alpha_{m+1,j}|Z_1 J^j G = \alpha_{1,j}$ by the induction assumption. By construction and by the induction assumption, $(B_{m,j+1})$ is commutative with exact rows. Finally, upon further appeal to the induction assumption, we have that, for each integer m such that $0 \leq m \leq n-j-1$,

$$\begin{aligned} \alpha_{n-j-1,j+1} | Z_m J^{j+1} G &= \phi_{n-j-1,j+1} \alpha_{n-j,j} \phi_{n-j-1,j+1}^{-1} | Z_m J^{j+1} G \\ &= \phi_{m,j+1} \alpha_{m+1,j} \phi_{m,j+1}^{-1} = \alpha_{m,j+1}, \end{aligned}$$

and the proof is complete.

We call the set $\{\alpha_{i,j}\}, 0 \leq i+j \leq n$, for non-negative integers *i* and *j*, the extended centrally compatible family for α on $Z_n G$.

2. The basic extension theorem.

THEOREM 2. Let A be an abelian group, B be a group, $\theta \in \text{Hom}(B, \text{Aut } A)$, and let

$$1 \to A \to G \xrightarrow{\Phi} B \to 1$$

be any extension of B by A which belongs to some $t \in \mathfrak{H}^{(2)}(B, A; \theta)$. Suppose that $\alpha \in \operatorname{End} A$ and that $\beta \in \operatorname{End} B$. Then there exists $\gamma \in \operatorname{End} G$ such that $\operatorname{Im}(\gamma | C(A, G)) \leq C(A, G)$, and that both

$$(D) \qquad \begin{array}{c} 1 \longrightarrow A \longrightarrow G \xrightarrow{\Phi} B \longrightarrow 1 \\ \downarrow^{\alpha} \qquad \downarrow^{\gamma} \qquad \downarrow^{\beta} \\ 1 \longrightarrow A \longrightarrow G \longrightarrow B \longrightarrow 1 \end{array}$$

and

$$(D') \qquad \begin{array}{c} 1 \longrightarrow C(A, G) \longrightarrow G \xrightarrow{\lambda} G/C(A, G) \longrightarrow 1 \\ & \downarrow \gamma | C(A, G) & \downarrow \gamma & \downarrow \iota \\ 1 \longrightarrow C(A, G) \longrightarrow G \longrightarrow G/C(A, G) \longrightarrow 1 \end{array}$$

are commutative diagrams with exact rows, if and only if

- (i) $\beta \in \operatorname{End}_{\mu} B$,
- (ii) $\alpha \in C(\operatorname{Im} \theta, \operatorname{End} A)$, and
- (iii) $t \in \ker(\alpha^* \beta^{\#})$.

Proof. Suppose that C(A; G) is γ -admissible and that both (D) and (D') are commutative with exact rows. From the commutativity of (C), $\lambda = \mu \Phi$ whence $\mu\beta = (\mu\Phi)\Phi^{-1}\beta = \lambda\Phi^{-1}\beta$. But, from the commutativity of (D), $\beta = \Phi\gamma\Phi^{-1}$; and from the commutativity of (D'), $\lambda\gamma = \lambda$ so that

$$\lambda \Phi^{-1}\beta = (\lambda \gamma) \Phi^{-1} = \lambda \Phi^{-1} = (\mu \Phi) \Phi^{-1},$$

and $\mu\beta = \mu$, or, equivalently, $\beta \in \text{End}_{\mu}B$, establishing (i). Since $\lambda = \mu\Phi$, and since $\mu = \mu\beta$,

$$\lambda \Phi^{-1} = \mu = \mu \beta = \mu \Phi \Phi^{-1} \beta = \lambda \Phi^{-1} \beta$$

so that $\theta\beta = \theta$, and $\beta \in \operatorname{End}_{\theta} B$.

Since $\Phi \gamma \Phi^{-1} = \beta$, since $\gamma | A = \alpha$, and since $\theta \beta = \theta$,

$$\alpha(\theta(b)) = \gamma(\theta(b)) = (\theta\beta(b))\alpha = \theta(b)\alpha$$

for each $b \in B$, and (ii) holds. Because of (i) and (ii), α^* and $\beta^{\#}$ are defined.

Choose $g_b \in \Phi^{-1}b$ for each $b \in B$; and, for all $x, y \in B$, let $t(x, y) = g_x g_y g_{xy}^{-1}$. Here, t is a 2-cocycle which represents t. Since $\beta = \Phi \gamma \Phi^{-1}$, $(\gamma g_b)(g_{\beta b})^{-1} = h_b \in A$ for every $b \in B$. Then,

$$\begin{aligned} \alpha t(x, y)h_{xy} g_{\beta(xy)} &= \gamma(t(x, y)g_{xy}) = \gamma(g_x g_y) = h_x g_{\beta x} h_y g_{\beta y} \\ &= h_x \theta(\beta x) (h_y)g_{\beta x} g_{\beta y} = h_x(\theta x) (h_y)t(\beta x, \beta y)g_{\beta(xy)} \end{aligned}$$

so that αt differs from $t\beta$ by δh , yielding (iii).

Conversely, suppose that $t \in \ker(\alpha^* - \beta^{\sharp})$ where (i) and (ii) hold for β and α . Choose a normalized transversal $\{g_b\}$ and form the representing, normalized, 2-cocycle *t*. Then $\alpha t - t\beta = \delta h$ where *h* is a normalized 1-cochain on *B* with values $h_b \in A$. Each member of *G* has a unique representation in the form ag_b where $a \in A$. Define $\gamma \in G^q$ via $\gamma(ag_b) = \alpha(a)h_b g_{\beta b}$. By its definition, γ makes (*D*) commutative. As in the proof above, $\beta \in \operatorname{End}_{\theta} B$. An easy consequence is that

$$g_b^{-1}g_{\beta b} \in \ker \lambda = C(A, G).$$

From this one shows that $\operatorname{Im}(\gamma|C(A, G)) \leq C(A, G)$, so that (D') is commutative. A routine check, employing (a) $\theta\beta = \theta$, (b) $\alpha t - t\beta = \delta h$, and (c) the values of $t\beta$ can be written in terms of the transversal elements, shows that $\gamma \in \operatorname{End} G$.

COROLLARY. (a) If $1 \to A \to G \xrightarrow{\Phi} B \to 1$ is an extension of A by B where $A \leq Z_1 G$, if $\alpha \in \text{End } A$, and if $\beta \in \text{End } B$, then a necessary and sufficient condition that there exist $\gamma \in \text{End } G$ making (D) commutative is that the coho-

1254

mology class t of the extension lie in ker ($\alpha^* - \beta^{\sharp}$). (b) Let α be an endomorphism of $Z_1 G$. A necessary and sufficient condition that α possess an extension γ which is a central endomorphism of G (Im $\gamma \leq Z_1 G$) is that t₀, the cohomology class of the extension

$$1 \to Z_1 G \to G \xrightarrow{\phi_1} JG \to 1,$$

be in ker α^* . The set of all such α is a left ideal in End $Z_1 G$. (c) Let α be an endomorphism of $Z_1 G$. A necessary and sufficient condition that α possess an extension which is a normal endomorphism of G (induces ι on JG) is that $\alpha^*(t_0) = t_0$. (d) If $\beta \in \text{End } JG$, then there exists an extension of the identity automorphism on $Z_1 G$ to a $\gamma \in \text{End } G$ which induces $\beta \in \text{End } JG$ if and only if $\beta^{\sharp}(t_0) = t_0$. (e) If $\beta \in \text{End } JG$, then there exists an extension of the trivial endomorphism of $Z_1 G$ to a $\gamma \in \text{End } G$ which induces $\beta \in \text{End } JG$ if and only if $t_0 \in \text{ker } \beta^{\sharp}$.

3. Endomorphisms on the higher centres.

THEOREM 3. Let n be a positive integer; let $\alpha \in \text{End } Z_n G$ be centrally compatible with extended family $\{\alpha_{i,j}\}$. For each integer i such that $0 \leq i < n$, let

$$\mathbf{t}_i \in \mathfrak{H}^{(2)}(J^{i+1}G, Z_1 J^i G)$$

be the cohomology class of the extension

$$(A_{i+1}) \quad 1 \to Z_1 J^i G \to J^i G \xrightarrow{\phi_{i+1}} J^{i+1} G \to 1;$$

and let β be in End JⁿG. Suppose that there exist $\gamma \in$ End G such that

$$(E_n) \qquad \begin{array}{c} 1 \longrightarrow Z_n \ G \longrightarrow G \xrightarrow{\sigma_n} J^n G \longrightarrow 1 \\ & \downarrow^{\alpha} \qquad \qquad \downarrow^{\gamma} \qquad \qquad \downarrow^{\beta} \\ 1 \longrightarrow Z_n \ G \longrightarrow G \xrightarrow{\sigma_n} J^n G \longrightarrow 1 \end{array}$$

is commutative. Let $\gamma^{(n)} = \beta$, and let $\gamma^{(i)} = \sigma_i \gamma \sigma_i^{-1} \in \text{End } J^i G$ be the map on $J^i G$ which is induced by γ via (A'_i) , $1 \leq i < n$. Then $t_i \in \text{ker}(\alpha_{1,i}^* - \gamma^{(i+1)\sharp})$, $0 \leq i < n$.

Proof. Recall that $\sigma_1 = \phi_1$ and that $\sigma_{j+1} = \phi_{j+1} \sigma_j$, $j = 1, 2, \ldots$. By the definition of $\gamma^{(i)}$, $\gamma^{(i)}\sigma_i = \sigma_i \gamma$, $i = 1, 2, \ldots, n$. Hence, for $1 \leq i < n$,

$$\phi_{i+1} \gamma^{(i)} \sigma_i = \phi_{i+1} \sigma_i \gamma = \sigma_{i+1} \gamma = \gamma^{(i+1)} \sigma_{i+1} = \gamma^{(i+1)} \phi_{i+1} \sigma_i.$$

But σ_i is an epimorphism with image J^iG , so that $\phi_{i+1}\gamma^{(i)} = \gamma^{(i+1)}\phi_{i+1}$, $i = 1, 2, \ldots, n-1$. That is, the right rectangle of

$$(F_i) \qquad \begin{array}{c} 1 \longrightarrow Z_1 J^i G \longrightarrow J^i G \longrightarrow J^{i+1} G \longrightarrow 1 \\ & \downarrow^{\alpha_{1,i}} & \downarrow^{\gamma^{(i)}} & \uparrow^{\gamma^{(i+1)}} \\ 1 \longrightarrow Z_1 J^i G \longrightarrow J^i G \longrightarrow J^{i+1} G \longrightarrow 1 \end{array}$$

is commutative for integers *i* such that $1 \leq i < n$. It is likewise commutative for i = 0 if we take $\gamma^{(0)} = \gamma$ and recall the definitions of $\gamma^{(1)}$, ϕ_1 , and σ_1 .

Since α is centrally compatible and since (E_n) is commutative, $\gamma | Z_1 G = \alpha | Z_1 G = \alpha_{1,0}$, making the left rectangle of (F_0) commutative. Suppose that $1 \leq t < n$. Then

$$\gamma^{(1)}\phi_{t,1} = \gamma^{(1)}\phi_1 | Z_{t+1} G = \phi_1 \gamma | Z_{t+1} G = \phi_1 \alpha_{t+1,0} = \alpha_{t,1} \phi_{t,1}$$

since $(B_{i,1})$ is commutative. The fact that Im $\phi_{i,1} = Z_i JG$ leads to

$$\gamma^{(1)}|Z_t JG = \alpha_{t,1}, 1 \leq t < n.$$

Let (S_k) be the statement that if *i* is an integer such that $0 \le i < k$, then (I) i > n, or (II) $\gamma^{(i)}|Z_t J^i G = \alpha_{t,i}$ whenever $1 \le t \le n - i$. From the commutativity of (E_n) , (S_1) holds. If k = 2, then $\gamma^{(1)}|Z_t JG = \alpha_{t,1}$, $1 \le t < n$, leads to (S_2) . Now suppose, inductively, that $k \ge 2$ and that (S_j) holds for each integer *j* such that $1 \le j \le k$. Then, if $k \le n$, we have for $0 < t \le n - k$ that

$$\begin{split} \gamma^{(k)}\phi_{t,k} \phi_{t+1,k-1} &= \gamma^{(k)}\phi_k \phi_{t+1,k-1} = \phi_k \gamma^{(k-1)}\phi_{t+1,k-1} \\ &= \phi_k \gamma^{(k-1)}\phi_{k-1} | Z_{t+2} J^{k-2}G = \phi_k \phi_{k-1} \gamma^{(k-2)} | Z_{t+2} J^{k-2}G \\ &= \phi_k \phi_{k-1} \alpha_{t+2,k-2} \end{split}$$

(by the induction assumption since $0 \le k - 2 < n$)

$$= \phi_{t,k} \phi_{t+1,k-1} \alpha_{t+2,k-2} = \alpha_{t,k} \phi_{t,k} \phi_{t+1,k-1}$$

(since $(B_{t+1,k-1})$ and $(B_{t,k})$ are commutative diagrams for the values of t and k allowed). Moreover, $\phi_{t,k} \phi_{t+1,k-1}$ is onto $Z_t J^k G$, and we now have $\gamma^{(k)} | Z_t J^k G = \alpha_{t,k}$ for $0 < t \leq n - k$ and $2 \leq k \leq n$. If k > n, then the induction assumption says that (S_n) holds, from which (S_{k+1}) holds. In either case, the induction is complete. In particular, $\gamma^{(i)} | Z_1 G = \alpha_{1,i}$ for each integer i such that $1 \leq i \leq n$, and the left rectangle of (F_i) is commutative, $0 \leq i < n$. By Theorem 2, Corollary (a), $t_i \in \ker(\alpha_{1,i}^* - \gamma^{(i+1)\sharp})$, $0 \leq i < n$, completing the proof.

Suppose that $\alpha^{(1)}$ and $\alpha^{(2)}$ are both centrally compatible endomorphisms on $Z_n G$. We say that $\alpha^{(1)}$ and $\alpha^{(2)}$ are equivalent centrally compatible endomorphisms on $Z_n G$ ($\alpha^{(1)} \sim \alpha^{(2)}$) if

$$\mathrm{Im}(\alpha^{(1)}_{i,0} - \alpha^{(2)}_{i,0}) \leq Z_{i-1}G$$

for each integer *i* such that $1 \leq i \leq n$. That is,

$$(\alpha^{(1)}_{i,0}(x)[\alpha^{(2)}_{i,0}(x)]^{-1} \in Z_{i-1}G$$

whenever $x \in Z_i G$, $1 \leq i \leq n$. If $\alpha^{(1)} \sim \alpha^{(2)}$, then $\alpha^{(1)}_{1,0} = \alpha^{(2)}_{1,0}$. The relation \sim is an equivalence, and all the automorphisms of *G* are equivalent. For $g \in G$ and for α centrally compatible on $Z_n G$,

$$\alpha(\langle g \rangle | Z_n G) \sim \alpha \sim (\langle g \rangle | Z_n G) \alpha$$

all centrally compatible endomorphisms on $Z_n G$.

Let ρ be any decreasing crossed endomorphism on $Z_n G$ related to a centrally compatible $\alpha \in \text{End } Z_n G$. That is, if $x \in Z_i G$, $0 < i \leq n$, then $\rho(x) \in Z_{i-1} G$; $\rho(1_G) = 1_G$; and if $x_1, x_2 \in Z_n G$, then

$$\rho(x_1 x_2) = (\langle \alpha(x_2)^{-1} \rangle \rho(x_1)) \rho(x_2).$$

We have $\alpha + \rho \sim \alpha$ where, for every $x \in Z_n G$, $(\alpha + \rho)(x) = \alpha(x)\rho(x)$; and if $\alpha' \sim \alpha$, then there exists some decreasing crossed endomorphism ρ on $Z_n G$ related to α such that $\alpha' = \alpha + \rho$.

THEOREM 4. Let n, α, β , and t_0 be as in the hypothesis of Theorem 3. Suppose that, for each integer *i* obeying $1 \leq i \leq n$, one can find $\Gamma^{(i)} \in \text{End } J^iG$ with the properties

(i)
$$\Gamma^{(n)} = \beta$$
.

- (ii) $t_0 \in \ker(\alpha_{1,0}^* \Gamma^{(1)\#})$, and
- (iii) the diagrams

$$(K_i) \qquad \begin{array}{c} 1 \longrightarrow Z_1 J^{i-1}G \longrightarrow J^{i-1}G \xrightarrow{\phi_i} J^iG \longrightarrow 1 \\ & \downarrow^{\alpha_{1,i-1}} & \downarrow^{\Gamma^{(i-1)}} & \downarrow^{\Gamma^{(i)}} \\ 1 \longrightarrow Z_1 J^{i-1}G \longrightarrow J^{i-1}G \xrightarrow{\phi_i} J^iG \longrightarrow 1 \end{array}$$

 $2 \leq i \leq n$, are commutative with exact rows. Then there exist $\gamma \in \text{End } G$ and a decreasing crossed endomorphism ρ on $Z_n G$ related to α such that the diagram

is commutative.

Proof. From (ii) and from Theorem 2, Corollary (a), there exists $\Gamma^{(0)} = \gamma \in \text{End } G$ such that (K_1) is commutative. From the commutativity of the left rectangle in (K_1) ,

$$\gamma_1 = \gamma | Z_1 G = \alpha_{1,0}.$$

Suppose, inductively, that, for a positive integer j, we have (I) j > n, or (II) $\gamma_j = \gamma | Z_j G$ is a centrally compatible endomorphism on $Z_j G$ for which $\gamma_j \sim \alpha_{j,0}$. If $j + 1 \leq n$, consider the diagram with exact rows

$$(E_{j}) \qquad \begin{array}{c} 1 \longrightarrow Z_{j} G \longrightarrow G \xrightarrow{\sigma_{j}} J^{j}G \longrightarrow 1 \\ & \downarrow \gamma_{j} \qquad \qquad \downarrow \gamma \qquad \qquad \downarrow \Gamma^{(j)} \\ 1 \longrightarrow Z_{j} G \longrightarrow G \xrightarrow{\sigma_{j}} J^{j}G \longrightarrow 1 \end{array}$$

the commutativity of the left rectangle of which is immediate from the induction hypothesis. Since the diagrams (K_i) , $1 \le i \le n$, are commutative with exact rows, the right rectangle of (E_i) is commutative.

Consider the diagram with exact rows

$$(L_{j}) \qquad \begin{array}{c} 1 \longrightarrow Z_{j} G \longrightarrow Z_{j+1} G \xrightarrow{\phi^{(j)}} Z_{1} J^{j} G \longrightarrow 1 \\ & \downarrow \gamma_{j} & \downarrow \gamma_{j+1} & \downarrow \alpha_{1,j} \\ 1 \longrightarrow Z_{j} G \longrightarrow Z_{j+1} G \xrightarrow{\phi^{(j)}} Z_{1} J^{j} G \longrightarrow 1 \end{array}$$

where

$$\phi^{(j)} = \sigma_j | Z_{j+1} G = \prod_{k=1}^j \phi_{k,j-k+1},$$

multiplication proceeding with increasing k from left to right. The commutativity of (E_j) implies that $\Gamma^{(j)}\sigma_j = \sigma_j \gamma$. Now $\Gamma^{(j)}\sigma_j | Z_{j+1} G = \Gamma^{(j)}\phi^{(j)}$. From the commutativity of the left rectangle of (K_{j+1}) , $\Gamma^{(j)}\phi^{(j)} = \alpha_{1,j}\phi^{(j)}$ so that $\operatorname{Im}(\sigma_j \gamma | Z_{j+1} G) \leq Z_1 J^j G$. From the fact that $\sigma_j^{-1}(Z_1 J^j G) = Z_{j+1} G$, one obtains $\operatorname{Im}(\gamma | Z_{j+1}) \leq Z_{j+1} G$, so that $\gamma_{j+1} \in \operatorname{End} Z_{j+1}$, and (L_j) is commutative.

From the commutativity of the diagrams $(B_{k,j-k+1})$, $1 \leq k \leq j$, the commutativity of the diagram

. . .

$$(L'_{j}) \qquad \begin{array}{c} 1 \longrightarrow Z_{i} G \longrightarrow Z_{j+1} G \xrightarrow{\phi^{(j)}} Z_{1} J^{j} G \longrightarrow 1 \\ & \downarrow^{\alpha_{j,0}} & \downarrow^{\alpha_{j+1,0}} & \downarrow^{\alpha_{1,j}} \\ 1 \longrightarrow Z_{i} G \longrightarrow Z_{j+1} G \xrightarrow{\phi^{(j)}} Z_{1} J^{j} G \longrightarrow 1 \end{array}$$

follows. From the commutativity of the right rectangles of both (L_i) and (L'_i) ,

$$\phi^{(j)}\alpha_{j+1,0} = \alpha_{1,j} \phi^{(j)} = \phi^{(j)}\gamma_{j+1,0}$$

so that $\operatorname{Im}(\alpha_{j+1,0} - \gamma_{j+1}) \leq \ker \phi^{(j)} = Z_j G$, completing the proof.

References

1. L. Fuchs, Abelian groups (Budapest, 1958).

2. Ph. Montgomery, unpublished doctoral thesis, Washington University, St. Louis, 1964.

Washington University, St. Louis, Missouri