EXTENSIONS OF ENDOMORPHISMS FROM THE HIGHER CENTRES

FRANKLIN HAIMO

Introduction. If $0 \rightarrow A \rightarrow C \rightarrow B \rightarrow 0$ is an exact sequence of abelian groups, if f is a 2 -cocyle for this extension, if $\alpha \in$ End A, and if $\beta \in \operatorname{End} B$, then a necessary and sufficient condition that α extend to an endomorphism γ of C which induces β is that (M) αf and $f \beta$ be cohomologous; see Montgomery (2). We shall extend this result to the case where $1 \rightarrow A \rightarrow G \rightarrow B \rightarrow 1$ is an exact sequence of groups and A is abelian. For α to extend to a γ which induces β and extends an endomorphism on the centralizer of A in G, it is (Theorem 2) necessary and sufficient (i) that, for each $b \in B, b$ and βb be carried onto the same element of G modulo the centralizer of A in G; (ii) that α commute with the automorphisms of A induced by B via the extension; and (iii) that condition (M) hold. If α is an endomorphism on $Z_{n} G$, the nth member of the ascending central series of G, if each $Z_{i} G, 0 \leqslant i<n$, is α-admissible, if β is an endomorphism on $G / Z_{n} G$, and if α can be extended to a $\gamma \in$ End G which induces β, then we shall show (Theorem 3) that the respective cohomology classes of the extensions

$$
1 \rightarrow Z_{1}\left(G / Z_{i} G\right) \rightarrow G / Z_{i} G \rightarrow G / Z_{i+1} G \rightarrow 1 \quad(0 \leqslant i<n)
$$

lie in the kernels of suitable endomorphisms of the 2 -cohomology groups $\mathfrak{S}^{(2)}\left(G / Z_{i+1} G, Z_{i+1} G / Z_{i} G\right)$, the endomorphisms generated in each case from α and β. Conversely, if essentially the cohomology classes lie in such kerneis, then (Theorem 4) it is possible to modify α slightly so that the modification will extend to an endomorphism γ on G which induces β.

The principal device is that of an extended centrally compatible family of endomorphisms for $\alpha \in \operatorname{End} Z_{n} G$, the family of endomorphisms induced on the various $Z_{i}\left(G / Z_{j} G\right), 0 \leqslant i+j \leqslant n$, by α. Theorem 1 provides us with such a family whenever all the $Z_{i} G, 0 \leqslant i<n$, are α-admissible.

If A and B are groups or rings where B contains A, then $C(A, B)$ is to be the centralizer of A in B, a normal subgroup of B whenever A is a normal subgroup of B. If B is a group which operates on the abelian group A via some $\theta \in \operatorname{Hom}(B$, Aut $A)$, we sometimes write $\mathfrak{S}^{(2)}(B, A ; \theta)$ for $\mathfrak{S}^{(2)}(B, A)$ in order to emphasize the map θ. For a function ϕ from X to $Y, \phi \mid U$ means ϕ with its domain cut down to the subset U of X. The symbol δ denotes the usual coboundary operator. The symbol ι is reserved for the identity map of any set

[^0]under consideration. If g is an element of the group G, then $\langle g\rangle$ is to be the inner automorphism on G given by $\langle g\rangle x=g x g^{-1}$ for each $x \in G$. If γ_{1} and γ_{2} are functions from a group G to a group $H, \gamma_{1}+\gamma_{2}$ is to be that function γ from G to H which is given by $\gamma(g)=\gamma_{1}(g) \gamma_{2}(g)$ for each $g \in G$. Note that the order of summation is important. The function $-\gamma$ has its values given by $(-\gamma)(x)=(\gamma(x))^{-1}$. All maps are written to the left: if a product of maps $\prod_{j=1}^{n} \beta_{j}$ is given, it is to be understood that the first map to be applied is β_{n} and the last is β_{1}. Frequently, an inverse ϕ^{-1} will appear in a product of homomorphisms even though ϕ is not single valued. In each instance it will be found that $\operatorname{ker} \phi$ is such that the ambiguities disappear. In general, $\phi^{-1}(x)$ means the complete inverse image of x under ϕ.

1. Preliminaries. (a) Let A be an abelian group, let B be a group, and let θ be any member of $\operatorname{Hom}(B$, Aut $A)$. Observe that $C(\operatorname{Im} \theta, \operatorname{End} A)$ is a subring of End A. Let $\operatorname{End}_{\theta} B$ be the set of all $\beta \in \operatorname{End} B$ for which $\theta \beta=\theta$, a set which is closed under multiplication. If $\alpha \in C(\operatorname{Im} \theta$, End $A)$ and if $\beta \in \operatorname{End}_{\theta} B$, then, each in a standard way (1), α induces α^{*} and β induces β^{*}, both in End $\mathfrak{S}^{(2)}(B, A ; \theta)$. The map ($)^{*}$ is a ring homomorphism while ()* preserves multiplication.
(b) Let $1 \rightarrow A \rightarrow G \xrightarrow{\Phi} B \rightarrow 1$ be any extension of A by B. Then there exist homomorphisms λ and μ such that the following diagram is commutative with exact rows and columns:

Let $\operatorname{End}_{\mu} B$ be the set of all $\beta \in \operatorname{End} B$ for which $\mu \beta=\mu$, a set which is closed under multiplication.
(c) For a group G, let $Z_{0} G=1$, and let $Z_{i} G$ be the i th member of the ascending central series of G, where $i=1,2, \ldots$ Let $J^{0} G=G$, let $J^{1} G=J G$, the inner automorphism group on G, and let $J^{i+1} G=J\left(J^{j} G\right)$ for $j=1,2, \ldots$ Let ϕ_{j} be the homomorphism which makes the sequence

$$
\begin{equation*}
1 \rightarrow Z_{1} J^{j-1} G \rightarrow J^{j-1} G \xrightarrow{\phi_{j}} J^{j} G \rightarrow 1 \tag{j}
\end{equation*}
$$

exact, $j=1,2, \ldots$ If we let $\phi_{i, j}=\phi_{j} \mid Z_{i+1} J^{j-1} G$, then
$\left(A_{i, j}\right) \quad 1 \rightarrow Z_{1} J^{j-1} G \rightarrow Z_{i+1} J^{j-1} G \xrightarrow{\phi_{i, j}} Z_{i} J^{j} G \rightarrow 1$
is exact.
For a positive integer n and for $\alpha \in \operatorname{End}\left(Z_{n} G\right)$, we say that α is centrally compatible on $Z_{n} G$ if $\operatorname{Im}\left(\alpha \mid Z_{m} G\right) \leqslant Z_{m} G$ for each positive integer $m \leqslant n$. Given a centrally compatible α, write $\alpha_{n, 0}=\alpha, \alpha_{m, 0}=\alpha \mid Z_{m} G(1 \leqslant m \leqslant n)$ and $\alpha_{0,0}=0$, the trivial (and sole) endomorphism on 1 . The finite set $\left\{\alpha_{m, 0}\right\}_{m=0}^{n}$ is called the centrally compatible family for (centrally compatible) α on $Z_{n} G$. Each $\beta=\alpha_{m, 0}$ of such a family is centrally compatible on $Z_{m} G$, and if k is an integer for which $0 \leqslant k \leqslant m$, then $\beta_{k, 0}=\alpha_{k, 0}$. Later, we shall need the fact that the map

$$
\sigma_{i}=\prod_{j=0}^{i-1} \phi_{i-j}
$$

(multiplication proceeding from the left to right with increasing j) for each positive integer i makes
($A^{\prime}{ }_{i}$)

$$
1 \rightarrow Z_{i} G \rightarrow G \xrightarrow{\sigma_{i}} J^{i} G \rightarrow 1
$$

exact.
Theorem 1. Let α be a centrally compatible endomorphism on $Z_{n} G$ where n is a positive integer. For each pair of non-negative integers i and j with $0 \leqslant i+$ $j \leqslant n$ there exists an endomorphism $\alpha_{i, j}$ centrally compatible on $Z_{i} J^{j} G$ such that
(i) $\alpha_{n, 0}=\alpha$;
(ii) $\alpha_{i, j} \mid Z_{m} J^{j} G=\alpha_{m, j}$ whenever $0 \leqslant m \leqslant i$; and
(iii) the following diagrams are commutative with exact rows:
$\left(B_{i, j}\right)$

for each pair of integers i and j satisfying $1 \leqslant i+j \leqslant n, 0 \leqslant i$, and $1 \leqslant j$.
Proof. Let $\left\{\alpha_{m, 0}\right\}_{m=0}^{n}$ be the centrally compatible family for α. Let $\alpha_{0,1}$ be the trivial (and only) endomorphism of $Z_{0} J G=1$. For each integer m such that $1 \leqslant m<n$, let $\alpha_{m, 1}=\phi_{m, 1} \alpha_{m+1,0} \phi_{m, 1}{ }^{-1}$. Even though $\phi_{m, 1^{-1}}$ need not be single valued, the fact that $Z_{1} G=\operatorname{ker} \phi_{m, 1}$ makes the definition of $\alpha_{m, 1} \in$ End $Z_{m} J G$ unambiguous. One readily checks that (ii) holds in that $\alpha_{m, 1} \mid Z_{k} J G=\alpha_{k, 1}$ for each integer k such that $0 \leqslant k \leqslant m<n$. Further, the diagram $\left(B_{m, 1}\right)$ is commutative with exact rows for each integer m with $1 \leqslant m<n$. Now suppose, inductively, that (1) there exist

$$
\alpha_{n-l, l} \in \operatorname{End} Z_{n-l} J^{l} G
$$

for each integer l such that $1 \leqslant l \leqslant j<n$; (2) there exist $\alpha_{m, l} \in \operatorname{End} Z_{m} J^{l} G$ for each integer m such that $0 \leqslant m \leqslant n-1$, where $\alpha_{m, l}=\alpha_{n-l, l} \mid Z_{m} J^{l} G$; and (3) ($B_{m, l}$) is commutative with exact rows for all such m and l; or (4) $j \geqslant n$. Then, if (4) holds for j, it holds for $j+1$. If $j<n$, let

$$
\alpha_{n-j-1, j+1}=\phi_{n-j-1, j+1} \alpha_{n-j, j} \phi_{n-j-1, j+1}{ }^{-1},
$$

unambiguously defined as a member of End $Z_{n-j-1} J^{j+1} G$, since $Z_{1} J^{j} G=$ ker $\phi_{n-j-1, j+1}$, and since the induction assumption gives $\alpha_{n-j, j} \mid Z_{1} J^{j} G=\alpha_{1, j}$. By construction and by the induction assumption, $\left(B_{n-j-1, j+1}\right)$ is commutative with exact rows. If m is an integer for which $0 \leqslant m \leqslant n-j-1$, let

$$
\alpha_{m, j+1}=\phi_{m, j+1} \alpha_{m+1, j} \phi_{m, j+1}^{-1},
$$

unambiguously defined as a member of End $Z_{m} J^{j+1} G$, since $Z_{1} J^{j} G=$ $\operatorname{ker} \phi_{m, j+1}$, and since $\alpha_{m+1, j} \mid Z_{1} J^{j} G=\alpha_{1, j}$ by the induction assumption. By construction and by the induction assumption, $\left(B_{m, j+1}\right)$ is commutative with exact rows. Finally, upon further appeal to the induction assumption, we have that, for each integer m such that $0 \leqslant m \leqslant n-j-1$,

$$
\begin{aligned}
& \alpha_{n-j-1, j+1}\left|Z_{m} J^{j+1} G=\phi_{n-j-1, j+1} \alpha_{n-j, j} \phi_{n-j-1, j+1}-1\right| Z_{m} J^{j+1} G \\
&=\phi_{m, j+1} \alpha_{m+1, j} \phi_{m, j+1}^{-1}=\alpha_{n, j+1}
\end{aligned}
$$

and the proof is complete.
We call the set $\left\{\alpha_{i, j}\right\}, 0 \leqslant i+j \leqslant n$, for non-negative integers i and j, the extended centrally compatible family for α on $Z_{n} G$.

2. The basic extension theorem.

Theorem 2. Let A be an abelian group, B be a group, $\theta \in \operatorname{Hom}(B$, Aut $A)$, and let

$$
1 \rightarrow A \rightarrow G \xrightarrow{\Phi} B \rightarrow 1
$$

be any extension of B by A which belongs to some $\mathrm{t} \in \mathfrak{S}^{(2)}(B, A ; \theta)$. Suppose that $\alpha \in \operatorname{End} A$ and that $\beta \in \operatorname{End} B$. Then there exists $\gamma \in \operatorname{End} G$ such that $\operatorname{Im}(\gamma \mid C(A, G)) \leqslant C(A, G)$, and that both
(D)

and
$\left(D^{\prime}\right)$

are commutative diagrams with exact rows, if and only if
(i) $\beta \in \operatorname{End}_{\mu} B$,
(ii) $\alpha \in C(\operatorname{Im} \theta$, End $A)$, and
(iii) $t \in \operatorname{ker}\left(\alpha^{*}-\beta^{*}\right)$.

Proof. Suppose that $C(A ; G)$ is γ-admissible and that both (D) and $\left(D^{\prime}\right)$ are commutative with exact rows. From the commutativity of (C), $\lambda=\mu \Phi$ whence $\mu \beta=(\mu \Phi) \Phi^{-1} \beta=\lambda \Phi^{-1} \beta$. But, from the commutativity of (D), $\beta=\Phi \gamma \Phi^{-1}$; and from the commutativity of (D^{\prime}), $\lambda \gamma=\lambda$ so that

$$
\lambda \Phi^{-1} \beta=(\lambda \gamma) \Phi^{-1}=\lambda \Phi^{-1}=(\mu \Phi) \Phi^{-1}
$$

and $\mu \beta=\mu$, or, equivalently, $\beta \in \operatorname{End}_{\mu} B$, establishing (i). Since $\lambda=\mu \Phi$, and since $\mu=\mu \beta$,

$$
\lambda \Phi^{-1}=\mu=\mu \beta=\mu \Phi \Phi^{-1} \beta=\lambda \Phi^{-1} \beta
$$

so that $\theta \beta=\theta$, and $\beta \in \operatorname{End}_{\theta} B$.
Since $\Phi \gamma \Phi^{-1}=\beta$, since $\gamma \mid A=\alpha$, and since $\theta \beta=\theta$,

$$
\alpha(\theta(b))=\gamma(\theta(b))=(\theta \beta(b)) \alpha=\theta(b) \alpha
$$

for each $b \in B$, and (ii) holds. Because of (i) and (ii), α^{*} and β^{*} are defined.
Choose $g_{b} \in \Phi^{-1} b$ for each $b \in B$; and, for all $x, y \in B$, let $t(x, y)=g_{x} g_{y} g_{x y}{ }^{-1}$. Here, t is a 2 -cocycle which represents t . Since $\beta=\Phi \gamma \Phi^{-1},\left(\gamma g_{b}\right)\left(g_{\beta b}\right)^{-1}=$ $h_{b} \in A$ for every $b \in B$. Then,

$$
\begin{aligned}
\alpha t(x, y) h_{x y} g_{\beta(x y)}=\gamma\left(t(x, y) g_{x y}\right) & =\gamma\left(g_{x} g_{y}\right)=h_{x} g_{\beta x} h_{y} g_{\beta y} \\
& =h_{x} \theta(\beta x)\left(h_{y}\right) g_{\beta x} g_{\beta y}=h_{x}(\theta x)\left(h_{y}\right) t(\beta x, \beta y) g_{\beta(x y)}
\end{aligned}
$$

so that αt differs from $t \beta$ by δh, yielding (iii).
Conversely, suppose that $\mathrm{t} \in \operatorname{ker}\left(\alpha^{*}-\beta^{4}\right)$ where (i) and (ii) hold for β and α. Choose a normalized transversal $\left\{g_{b}\right\}$ and form the representing, normalized, 2-cocycle t. Then $\alpha t-t \beta=\delta h$ where h is a normalized 1-cochain on B with values $h_{b} \in A$. Each member of G has a unique representation in the form $a g_{b}$ where $a \in A$. Define $\gamma \in G^{G}$ via $\gamma\left(a g_{b}\right)=\alpha(a) h_{b} g_{\beta b}$. By its definition, γ makes (D) commutative. As in the proof above, $\beta \in \operatorname{End}_{\theta} B$. An easy consequence is that

$$
g_{b}{ }^{-1} g_{\beta b} \in \operatorname{ker} \lambda=C(A, G) .
$$

From this one shows that $\operatorname{Im}(\gamma \mid C(A, G)) \leqslant C(A, G)$, so that (D^{\prime}) is commutative. A routine check, employing (a) $\theta \beta=\theta$, (b) $\alpha t-t \beta=\delta h$, and (c) the values of $t \beta$ can be written in terms of the transversal elements, shows that $\gamma \in$ End G.

Corollary. (a) If $1 \rightarrow A \rightarrow G \xrightarrow{\Phi} B \rightarrow 1$ is an extension of A by B where $A \leqslant Z_{1} G$, if $\alpha \in$ End A, and if $\beta \in$ End B, then a necessary and sufficient condition that there exist $\gamma \in$ End G making (D) commutative is that the coho-
mology class t of the extension lie in $\operatorname{ker}\left(\alpha^{*}-\beta^{*}\right)$. (b) Let α be an endomorphism of $Z_{1} G$. A necessary and sufficient condition that α possess an extension γ which is a central endomorphism of $G\left(\operatorname{Im} \gamma \leqslant Z_{1} G\right)$ is that t_{0}, the cohomology class of the extension

$$
1 \rightarrow Z_{1} G \rightarrow G \xrightarrow{\phi_{1}} J G \rightarrow 1
$$

be in $\operatorname{ker} \alpha^{*}$. The set of all such α is a left ideal in End $Z_{1} G$. (c) Let α be an endomorphism of Z_{1}. A necessary and sufficient condition that α possess an extension which is a normal endomorphism of G (induces ι on $J G)$ is that $\alpha^{*}\left(\mathrm{t}_{0}\right)=\mathrm{t}_{0}$. (d) If $\beta \in \operatorname{End} J G$, then there exists an extension of the identity automorphism on $Z_{1} G$ to a $\gamma \in$ End G which induces $\beta \in$ End $J G$ if and only if $\beta^{\sharp}\left(\mathrm{t}_{0}\right)=\mathrm{t}_{0}$. (e) If $\beta \in$ End $J G$, then there exists an extension of the trivial endomorphism of $Z_{1} G$ to $a \gamma \in$ End G which induces $\beta \in$ End $J G$ if and only if $\mathrm{t}_{0} \in \operatorname{ker} \beta^{*}$.

3. Endomorphisms on the higher centres.

Theorem 3. Let n be a positive integer; let $\alpha \in$ End $Z_{n} G$ be centrally compatible with extended family $\left\{\alpha_{i, j}\right\}$. For each integer i such that $0 \leqslant i<n$, let

$$
\mathrm{t}_{i} \in \mathfrak{S}^{(2)}\left(J^{i+1} G, Z_{1} J^{i} G\right)
$$

be the cohomology class of the extension

$$
\left(A_{i+1}\right) \quad 1 \rightarrow Z_{1} J^{i} G \rightarrow J^{i} G \xrightarrow{\phi_{i+1}} J^{i+1} G \rightarrow 1
$$

and let β be in End $J^{n} G$. Suppose that there exist $\gamma \in \operatorname{End} G$ such that
$\left(E_{n}\right)$

is commutative. Let $\gamma^{(n)}=\beta$, and let $\gamma^{(i)}=\sigma_{i} \gamma \sigma_{i}{ }^{-1} \in \operatorname{End} J^{i} G$ be the map on $J^{i} G$ which is induced by γ via $\left(A^{\prime}{ }_{i}\right), 1 \leqslant i<n$. Then $\mathrm{t}_{i} \in \operatorname{ker}\left(\alpha_{1, i}{ }^{*}-\gamma^{(i+1) *}\right)$, $0 \leqslant i<n$.

Proof. Recall that $\sigma_{1}=\phi_{1}$ and that $\sigma_{j+1}=\phi_{j+1} \sigma_{j}, j=1,2, \ldots$ By the definition of $\gamma^{(i)}, \gamma^{(i)} \sigma_{i}=\sigma_{i} \gamma, i=1,2, \ldots, n$. Hence, for $1 \leqslant i<n$,

$$
\phi_{i+1} \gamma^{(i)} \sigma_{i}=\phi_{i+1} \sigma_{i} \gamma=\sigma_{i+1} \gamma=\gamma^{(i+1)} \sigma_{i+1}=\gamma^{(i+1)} \phi_{i+1} \sigma_{i} .
$$

But σ_{i} is an epimorphism with image $J^{i} G$, so that $\phi_{i+1} \gamma^{(i)}=\gamma^{(i+1)} \phi_{i+1}$, $i=1,2, \ldots, n-1$. That is, the right rectangle of
(F_{i})

is commutative for integers i such that $1 \leqslant i<n$. It is likewise commutative for $i=0$ if we take $\gamma^{(0)}=\gamma$ and recall the definitions of $\gamma^{(1)}, \phi_{1}$, and σ_{1}.

Since α is centrally compatible and since $\left(E_{n}\right)$ is commutative, $\gamma \mid Z_{1} G=$ $\alpha \mid Z_{1} G=\alpha_{1,0}$, making the left rectangle of (F_{0}) commutative. Suppose that $1 \leqslant t<n$. Then

$$
\gamma^{(1)} \phi_{t, 1}=\gamma^{(1)} \phi_{1}\left|Z_{t+1} G=\phi_{1} \gamma\right| Z_{t+1} G=\phi_{1} \alpha_{t+1,0}=\alpha_{t, 1} \phi_{t, 1},
$$

since $\left(B_{t, 1}\right)$ is commutative. The fact that $\operatorname{Im} \phi_{t, 1}=Z_{t} J G$ leads to

$$
\gamma^{(1)} \mid Z_{t} J G=\alpha_{t, 1}, 1 \leqslant t<\mathrm{n} .
$$

Let $\left(S_{k}\right)$ be the statement that if i is an integer such that $0 \leqslant i<k$, then (I) $i>n$, or (II) $\gamma^{(i)} \mid Z_{t} J^{i} G=\alpha_{t, i}$ whenever $1 \leqslant t \leqslant n-\mathrm{i}$. From the commutativity of (E_{n}), (S_{1}) holds. If $k=2$, then $\gamma^{(1)} \mid Z_{t} J G=\alpha_{t, 1}, 1 \leqslant t<n$, leads to (S_{2}). Now suppose, inductively, that $k \geqslant 2$ and that (S_{j}) holds for each integer j such that $1 \leqslant j \leqslant k$. Then, if $k \leqslant n$, we have for $0<t \leqslant n-k$ that

$$
\begin{aligned}
\gamma^{(k)} \phi_{t, k} \phi_{t+1, k-1} & =\gamma^{(k)} \phi_{k} \phi_{t+1, k-1}=\phi_{k} \gamma^{(k-1)} \phi_{t+1, k-1} \\
& =\phi_{k} \gamma^{(k-1)} \phi_{k-1}\left|Z_{t+2} J^{k-2} G=\phi_{k} \phi_{k-1} \gamma^{(k-2)}\right| Z_{t+2} J^{k-2} G \\
& =\phi_{k} \phi_{k-1} \alpha_{t+2, k-2}
\end{aligned}
$$

(by the induction assumption since $0 \leqslant k-2<n$)

$$
=\phi_{t, k} \phi_{t+1, k-1} \alpha_{t+2, k-2}=\alpha_{t, k} \phi_{t, k} \phi_{t+1, k-1}
$$

(since $\left(B_{t+1, k-1}\right)$ and ($B_{t, k}$) are commutative diagrams for the values of t and k allowed). Moreover, $\phi_{t, k} \phi_{t+1, k-1}$ is onto $Z_{t} J^{k} G$, and we now have $\gamma^{(k)} \mid Z_{t} J^{k} G$ $=\alpha_{t, k}$ for $0<t \leqslant n-k$ and $2 \leqslant k \leqslant n$. If $k>n$, then the induction assumption says that (S_{n}) holds, from which $\left(S_{k+1}\right)$ holds. In either case, the induction is complete. In particular, $\gamma^{(i)} \mid Z_{1} G=\alpha_{1, i}$ for each integer i such that $1 \leqslant i \leqslant n$, and the left rectangle of $\left(F_{i}\right)$ is commutative, $0 \leqslant i<n$. By Theorem 2, Corollary (a), $\mathrm{t}_{i} \in \operatorname{ker}\left(\alpha_{1, i}{ }^{*}-\gamma^{(i+1) \#}\right), 0 \leqslant i<n$, completing the proof.

Suppose that $\alpha^{(1)}$ and $\alpha^{(2)}$ are both centrally compatible endomorphisms on $Z_{n} G$. We say that $\alpha^{(1)}$ and $\alpha^{(2)}$ are equivalent centrally compatible endomorphisms on $Z_{n} G\left(\alpha^{(1)} \sim \alpha^{(2)}\right)$ if

$$
\operatorname{Im}\left(\alpha^{(1)}{ }_{i, 0}-\alpha^{(2)}{ }_{i, 0}\right) \leqslant Z_{i-1} G
$$

for each integer i such that $1 \leqslant i \leqslant n$. That is,

$$
\alpha^{(1)}{ }_{i, 0}(x)\left[\alpha^{(2)}{ }_{i, 0}(x)\right]^{-1} \in Z_{i-1} G
$$

whenever $x \in Z_{i} G, 1 \leqslant i \leqslant n$. If $\alpha^{(1)} \sim \alpha^{(2)}$, then $\alpha^{(1)}{ }_{1,0}=\alpha^{(2)}{ }_{1,0}$. The relation \sim is an equivalence, and all the automorphisms of G are equivalent. For $g \in G$ and for α centrally compatible on $Z_{n} G$,

$$
\alpha\left(\langle g\rangle \mid Z_{n} G\right) \sim \alpha \sim\left(\langle g\rangle \mid Z_{n} G\right) \alpha
$$

all centrally compatible endomorphisms on $Z_{n} G$.

Let ρ be any decreasing crossed endomorphism on $Z_{n} G$ related to a centrally compatible $\alpha \in$ End $Z_{n} G$. That is, if $x \in Z_{i} G, 0<i \leqslant n$, then $\rho(x) \in Z_{i-1} G$; $\rho\left(1_{G}\right)=1_{G}$; and if $x_{1}, x_{2} \in Z_{n} G$, then

$$
\rho\left(x_{1} x_{2}\right)=\left(\left\langle\alpha\left(x_{2}\right)^{-1}\right\rangle \rho\left(x_{1}\right)\right) \rho\left(x_{2}\right) .
$$

We have $\alpha+\rho \sim \alpha$ where, for every $x \in Z_{n} G,(\alpha+\rho)(x)=\alpha(x) \rho(x)$; and if $\alpha^{\prime} \sim \alpha$, then there exists some decreasing crossed endomorphism ρ on $Z_{n} G$ related to α such that $\alpha^{\prime}=\alpha+\rho$.

Theorem 4. Let n, α, β, and t_{0} be as in the hypothesis of Theorem 3. Suppose that, for each integer i obeying $1 \leqslant i \leqslant n$, one can find $\Gamma^{(i)} \in$ End $J^{i} G$ with the properties
(i) $\Gamma^{(n)}=\beta$,
(ii) $\mathrm{t}_{0} \in \operatorname{ker}\left(\alpha_{1,0}{ }^{*}-\Gamma^{(1) *}\right)$, and
(iii) the diagrams
$\left(K_{i}\right)$

$2 \leqslant i \leqslant n$, are commutative with exact rows. Then there exist $\gamma \in \operatorname{End} G$ and a decreasing crossed endomorphism ρ on $Z_{n} G$ related to α such that the diagram
$\left(E_{n}^{\prime}\right)$

is commutative.
Proof. From (ii) and from Theorem 2, Corollary (a), there exists $\Gamma^{(0)}=$ $\gamma \in$ End G such that $\left(K_{1}\right)$ is commutative. From the commutativity of the left rectangle in (K_{1}),

$$
\gamma_{1}=\gamma \mid Z_{1} G=\alpha_{1,0}
$$

Suppose, inductively, that, for a positive integer j, we have (I) $j>n$, or (II) $\gamma_{j}=\gamma \mid Z_{j} G$ is a centrally compatible endomorphism on $Z_{j} G$ for which $\gamma_{j} \sim \alpha_{j, 0}$. If $j+1 \leqslant n$, consider the diagram with exact rows
$\left(E_{j}\right)$

the commutativity of the left rectangle of which is immediate from the induction hypothesis. Since the diagrams (K_{i}), $1 \leqslant i \leqslant n$, are commutative with exact rows, the right rectangle of $\left(E_{j}\right)$ is commutative.

Consider the diagram with exact rows
$\left(L_{j}\right)$

where

$$
\phi^{(j)}=\sigma_{j} \mid Z_{j+1} G=\prod_{k=1}^{j} \phi_{k, j-k+1},
$$

multiplication proceeding with increasing k from left to right. The commutativity of (E_{j}) implies that $\Gamma^{(j)} \sigma_{j}=\sigma_{j} \gamma$. Now $\Gamma^{(j)} \sigma_{j} \mid Z_{j+1} G=\Gamma^{(j)} \phi^{(j)}$. From the commutativity of the left rectangle of $\left(K_{j+1}\right), \Gamma^{(j)} \phi^{(j)}=\alpha_{1, j} \phi^{(j)}$ so that $\operatorname{Im}\left(\sigma_{j} \gamma \mid Z_{j+1} G\right) \leqslant Z_{1} J^{j} G$. From the fact that $\sigma_{j}{ }^{-1}\left(Z_{1} J^{j} G\right)=Z_{j+1} G$, one obtains $\operatorname{Im}\left(\gamma \mid Z_{j+1}\right) \leqslant Z_{j+1} G$, so that $\gamma_{j+1} \in \operatorname{End} Z_{j+1}$, and $\left(L_{j}\right)$ is commutative.

From the commutativity of the diagrams $\left(B_{k, j-k+1}\right), 1 \leqslant k \leqslant j$, the commutativity of the diagram
$\left(L^{\prime}{ }_{j}\right)$

follows. From the commutativity of the right rectangles of both $\left(L_{j}\right)$ and $\left(L_{j}^{\prime}\right)$,

$$
\phi^{(j)} \alpha_{j+1,0}=\alpha_{1, j} \phi^{(j)}=\phi^{(j)} \gamma_{j+1},
$$

so that $\operatorname{Im}\left(\alpha_{j+1,0}-\gamma_{j+1}\right) \leqslant \operatorname{ker} \phi^{(j)}=Z_{j} G$, completing the proof.

References

1. L. Fuchs, Abelian groups (Budapest, 1958).
2. Ph. Montgomery, unpublished doctoral thesis, Washington University, St. Louis, 1964.

Washington University, St. Louis, Missouri

[^0]: Received August 20, 1965. This research was supported jointly by the National Science Foundation and by Washington University under grants GP-89 and GP-3874.

