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Two-dimensional numerical simulations with the particle tracking method were conducted
to analyse the dispersion behind the detonation front and its mean structure. The mixtures
were 2H2–O2–7Ar and 2H2–O2 of increased irregularity in ambient conditions. The
detonation could be described as a two-scale phenomenon, especially for the unstable
case. The first scale is related to the main heat release zone, and the second where
some classical laws of turbulence remain relevant. The dispersion of the particles was
promoted by the fluctuations of the leading shock and its curvature, the presence of the
reaction front, and to a lesser extent transverse waves, jets and vortex motion. Indeed,
the dispersion and the relative dispersion could be scaled using the reduced activation
energy and the χ parameter, respectively, suggesting that the main mechanism driving the
dispersion came from the one-dimensional leading shock fluctuations and heat release.
The dispersion within the induction time scale was closely related to the cellular structure,
particles accumulating along the trajectory of the triple points. Then, after a transient
where the fading transverse waves and the vortical motions coming from jets and slip
lines were present, the relative dispersion relaxed towards a Richardson–Obukhov regime,
especially for the unstable case. Two new Lagrangian Favre average procedures for the
gaseous detonation in the instantaneous shock frame were proposed and the mean profiles
were compared with those from Eulerian procedure. The characteristic lengths for the
detonation were similar, meaning that the Eulerian procedure gave the mean structure with
a reasonable accuracy.
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1. Introduction

Detonation is a supersonic premixed combustion wave, which consists of a leading shock
wave coupled with a reaction zone (Ficket & Davis 2000; Lee 2008; Zhang 2012), velocity
of which is around several millimetres per microsecond. Research on detonation is very
active in terms of propulsion applications (Wolanski 2013; Anand & Gutmark 2019)
and safety engineering (Oran, Chamberlain & Pekalski 2020). Indeed, pressure increase
downstream of the detonation waves is very high. As such, the use of this combustion
mode in a chamber may give many advantages over a conventional combustor based
on deflagration. The Fickett–Jacob cycle shows that higher thermal efficiency can be
theoretically achieved. The compressor and the combustion chamber may thus be more
compact. On the other hand, unintentional detonations imply severe damage to humans
and goods.

Chapman–Jouguet (CJ) theory can predict the experimental detonation velocity in the
ideal case with great accuracy. A control volume embeds the leading shock and the state
far from the front where a chemical equilibrium is achieved. The CJ velocity can be
determined from the fact that the propagation velocity is minimum. The fact that the CJ
velocity can be calculated from the initial conditions and the thermodynamic properties is
the so-called Khariton principle, meaning that any material capable of exothermic reaction
can detonate without losses from boundaries (Higgins 2012).

Later, Zel’dovich, von Neumann & Döring (ZND) proposed the steady one-dimensional
(1-D) model for the detonation structure. The induction reaction is triggered by the
adiabatic compression of the leading shock front, after which the exothermic reaction takes
place. The reactants are transformed into products, the deflagration zone travelling at the
same velocity as that of the shock. Characteristic lengths such as the induction and reaction
lengths can thus be estimated by the integration of the ZND model.

In contrast to the ZND model assumptions, detonation has an unsteady, multidimension
cellular structure (Gamezo, Desbordes & Oran 1999a; Austin 2003; Pintgen et al. 2003;
Austin, Pintgen & Shepherd 2005; Radulescu et al. 2005, 2007; Shepherd 2009; Kiyanda
& Higgins 2013). The cornerstone of the latter consists of an incident shock, a Mach stem
and a transverse wave, linked by a triple point, the trajectory of which draws a fish-cell-like
structure. The stronger Mach stem and the weaker incident shock wave alternate in the
propagation direction of the wavefront. The leading shock front velocity fluctuated around
0.9–1.25 and 0.7–1.7 times the CJ velocity in weakly unstable and unstable mixtures,
respectively (Gamezo et al. 1999a). Near the end of the cell, collision of transverse waves,
propagating perpendicularly to the leading shocks, may result in very high explosion
centres. As a result of all these events, a wide range of distribution of induction, reaction
lengths and composition were present, due to the exponential dependence of the chemical
reaction rates on temperature (Austin 2003; Pintgen et al. 2003; Austin et al. 2005).

From unsteady 1-D simulations, Ng et al. (2005a), Henrick, Aslam & Powers
(2006) and Romick, Aslam & Power (2012) showed that the shock pressure followed
a period-doubling Feigenbaum scenario, through the increase of the reduced activation,
with Abderrahmane, Paquet & Ng (2011) determining that the corresponding chaos was
deterministic. Shepherd (2009) argued that the detonation could be statistically tractable.
The hydrodynamic thickness xHT is the distance between the leading shock and the mean
location of the sonic locus, although the latter oscillated and did not strictly coincide any
more with the end of the chemical reaction (Kasimov & Stewart 2004; Stewart & Kasimov
2005). As such, this length can be meant as a measure of the detonation driving zone
(Short & Quirk 2018; Chiquete & Short 2019) that embeds in the multidimensional case
the leading shock and the sonic surfaces. Moreover, this length could be related to the
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dynamic parameters of detonation (Murray & Lee 1983, 1985, 1986; Reynaud, Taileb &
Chinnayya 2020).

The hydrodynamic thickness was estimated from both experimental and numerical
studies. In experimental studies, the bow shock technique (Vasil’ev et al. 1972; Weber
& Olivier 2003) or the decay of the pressure signal (Edwards, Jones & Phillips 1976;
Jarsalé, Virot & Chinnayya 2016) were used. Its estimation in numerical studies were
determined by averaging the flow field (Lee & Radulescu 2005; Radulescu et al. 2007)
or by shortening the computational domain until the effect of the rarefactions of the
Taylor wave were no more effective (Gamezo, Desbordes & Oran 1999b; Mi et al.
2018). Gamezo et al. (1999a) investigated the effects of the reduced activation energy on
detonation, by comparing the Reynolds averages from simulations with the ZND results.
Later, Lee & Radulescu (2005) and Radulescu et al. (2007) proposed a Favre averaging
procedure in the mean shock frame. They revealed two important characteristic lengths,
associated with chemical exothermicity and the slower dissipation of the hydrodynamic
fluctuations, which govern the location of the average sonic surface, thus demonstrating
the usefulness of the statistical analysis for detonation. Furthermore, Sow, Chinnayya &
Hadjadj (2014) proposed the Favre average procedure for the detonation in the non-inertial
instantaneous shock frame to take into account the unsteadiness of the shock front. So far,
the Favre average procedure to obtain 1-D profiles was applied to planar detonations (Lee
& Radulescu 2005; Radulescu et al. 2007; Maxwell et al. 2017; Taileb et al. 2018; Sow,
Lau-Chapdelaine & Radulescu 2021; Taileb, Meluguizo-Gavilances & Chinnayya 2021b),
in non-uniform mixtures (Mi, Timofeev & Higgins 2017a; Mi et al. 2017b), in mixtures
with concentration gradients (Han, Wang & Law 2019), in mixtures with fluctuations
in concentrations (Zhou et al. 2022), cylindrical detonation (Han et al. 2017), also in
non-ideal configurations such as detonations bounded by an inert layer (Reynaud, Virot
& Chinnayya 2017; Reynaud et al. 2020), with wall losses (Chinnayya, Hadjadj & Ngomo
2013; Sow et al. 2014; Sow, Chinnayya & Hadjadj 2015, 2019), in two-phase detonations
with water spray (Watanabe et al. 2019, 2020, 2021) and with fuel spray (Jourdaine, Tsuboi
& Hayashi 2022).

All these studies have extracted their 1-D profiles from straight lines parallel to the
direction of detonation propagation. However, Sow et al. (2021) showed that these straight
lines did not coincide with the material trajectories, due to convective mixing, which
increased with lower isentropic indexes, due to jet enhancement. Moreover, Borzou (2016)
and Radulescu (2018) tracked Lagrangian tracers, trajectories of which were affected by
the cellular structure of a single-headed detonation. These studies are the very few previous
investigations on dispersion behind a detonation front, to the best of our knowledge. In
addition, the comparison between Lagrangian and Eulerian averaging processes has not
been done yet.

In order to address this issue, unsteady two-dimensional (2-D) simulations with the
Lagrangian particle tracking method were conducted for detonation in a straight channel
for two mixtures of increased irregularity. Both the distance travelled by the Lagrangian
particle behind the front and the time from shock passage were recorded in the course of
the simulations. The degree of the dispersion and the relative dispersion (Babiano et al.
1990; Sawford 2001; Salazar & Collins 2009) were evaluated. Two new Favre average
procedures, based on the distance travelled by the Lagrangian particle or the time from
the shock passage were proposed to assess the accuracy of the previous Eulerian Favre
average procedure.

The plan of this paper is as follows. The governing equations and the numerical method
are presented in §§ 2.1 and 2.2, respectively. The procedure to record the values for each
Lagrangian particle is explained in § 2.3. Section 3 describes the problem statement.
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The results and discussions are given in § 4. The dispersion behind the detonation front and
the anisotropic motion are firstly examined in § 4.1. Then, the dispersion in the induction
time scale is analysed in § 4.2. Furthermore, the relative dispersion is discussed in § 4.3.
Moreover, the two new Lagrangian Favre average procedures are described and the 1-D
profiles from these procedures are compared with the Eulerian estimates in § 4.4. Finally,
the main conclusions are drawn in § 5.

2. Numerical set-up

2.1. Governing equations
The governing equations for the gaseous phase are the 2-D reactive compressible
Navier–Stokes equations, with the ideal equation of state. The chemical reaction
mechanism proposed by Hong, Davidson & Hanson (2011), which considers nine species
(H2, O2, H, O, OH, H2O, HO2, H2O2 and Ar) and 20 elemental reactions, is used.
In addition, the reliable performance of this detailed chemical reaction mechanism can
be achieved over a range of the reactant concentrations, stoichiometries, pressures and
temperatures from 950 K to greater than 3000 K according to the validation by Hong et al.
(2011). Here,

∂U
∂t

+ ∂E
∂x

+ ∂F
∂y

+ ∂Ed

∂x
+ ∂Fd

∂y
= S, (2.1)

U =

⎡⎢⎢⎢⎣
ρ

ρu
ρv

e
ρYk

⎤⎥⎥⎥⎦ , E =

⎡⎢⎢⎢⎣
ρu

ρu2 + p
ρuv

(e + p)u
ρYku

⎤⎥⎥⎥⎦ , F =

⎡⎢⎢⎢⎣
ρv

ρuv
ρv2 + p
(e + p)v
ρYkv

⎤⎥⎥⎥⎦ , (2.2a–c)

Ed =

⎡⎢⎢⎢⎣
0

−τxx
−τxy

−τxxu − τxyv + qx
jx,k

⎤⎥⎥⎥⎦ , Fd =

⎡⎢⎢⎢⎣
0

−τyx
−τyy

−τyxu − τyyv + qy
jy,k

⎤⎥⎥⎥⎦ , S =

⎡⎢⎢⎢⎣
0
0
0
0
ω̇k

⎤⎥⎥⎥⎦ , (2.3a–c)

p = ρRT, (2.4)

where, x, y, t, ρ, u, v, p, T , e, Yk and R = Ru(
∑Ns

k=1 Yk/Wk) are longitudinal coordinate,
transverse coordinate, time, density, velocity in x direction, velocity in y direction,
pressure, temperature, total energy, mass fraction of species k and gas constant,
respectively. Here Ns, Ru and Wk are the total number chemical species, universal gas
constant, and molecular weight of species k. τ , q, jk and ω̇k denote the shear stress, heat
flux, diffusion flux and reaction rate, respectively. The total energy can be written as the
following formula:

e =
Ns∑

k=1

ρYkhk − p + 1
2ρ(u

2 + v2). (2.5)
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Here, hk is enthalpy for species k. The Stokes’ hypothesis is utilized and the bulk viscosity
can be neglected. The shear stress is expressed as

τxx = 2
3
μ

(
2
∂u
∂x

− ∂v

∂y

)
, (2.6)

τxy = τyx = μ

(
∂u
∂y

+ ∂v

∂x

)
, (2.7)

τyy = 2
3
μ

(
2
∂v

∂y
− ∂u
∂x

)
. (2.8)

Here, μ is viscosity. The heat flux is the sum of the heat flux by the temperature gradient
(i.e. Fourier’s law) and the heat flux by the enthalpy transport. The heat flux caused by
concentration gradients, i.e. Dufour effect, is neglected in this study because the Dufour
effect is negligibly small in the combustion process (Warnatz, Maas & Dibble 2006).

qx = −κ ∂T
∂x

− ρ

Ns∑
k=1

hkDk
∂Yk

∂x
, (2.9)

qy = −κ ∂T
∂y

− ρ

Ns∑
k=1

hkDk
∂Yk

∂y
. (2.10)

Here, κ and Dk are thermal conductivity and diffusion coefficient for species k. The
diffusive flux is evaluated using Fick’s law as the following equations:

jx,k = −ρDk
∂Yk

∂x
, (2.11)

jy,k = −ρDk
∂Yk

∂y
. (2.12)

The diffusive flux caused by temperature gradient, i.e. Soret effect, is neglected in this
study. The Soret effect is only important for light species and at low temperature (Warnatz
et al. 2006) so that its effect will be negligible for the propagation of detonation wave and
the flow field behind the front. Dk used in (2.11) and (2.12) is evaluated by the mixing
rule for the diffusive flux in terms of the mass fraction (Kee, Coltrin & Glarborg 2003)
(see (2.33)) so that the expression for the diffusive flux in mixture average evaluation is
consistent. The correction velocity to ensure that the summation of the diffusive fluxes is
zero was not taken into account in our computations. Indeed, the magnitude of correction
is significantly small (Reaction Design 2000). Moreover, in order to ensure that the
summation of the mass fractions to be one numerically, each mass fraction was normalized
by the summation of the mass fractions, after the numerical integration.

The thermodynamic properties such as enthalpy hk, specific heat at the constant pressure
cp,k and entropy s0

k for species k are assumed to be functions of temperature and are
determined from the Janaf thermochemical polynomials (McBride, Gordon & Reno 1993):

hk

(Ru/Wk)T
= a1,k + a2,k

2
T + a3,k

3
T2 + a4,k

4
T3 + a5,k

5
T4 + a6,k

T
, (2.13)
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cp,k

Ru/Wk
= a1,k + a2,kT + a3,kT2 + a4,kT3 + a5,kT4, (2.14)

s0
k

Ru/Wk
= a1,k ln T + a2,kT + a3,k

2
T2 + a4,k

3
T3 + a5,k

4
T4 + a7,k. (2.15)

Here, a1,k, a2,k, a3,k, a4,k, a5,k, a6,k and a7,k are the coefficients depending on the species
k and temperature range (T < 1000 K or T � 1000 K).

From a preliminary study, a method proposed by Gordon, McBride & Zeleznik (1984)
is shown to be accurate compared with the experimental data as for the viscosity and
thermal conductivity. However, the coefficients for HO2 in a method proposed by Gordon
et al. (1984) are not available. As for the transport properties of viscosity μk and thermal
conductivity κk for species k apart from HO2, a method proposed by Gordon et al. (1984)
is used to estimate the gas viscosity and thermal conductivity as the following equations:

lnμk = Cμ1,k ln T + Cμ2,k
T

+ Cμ3,k
T2 + Cμ4,k, (2.16)

ln κk = Cκ1,k ln T + Cκ2,k
T

+ Cκ3,k
T2 + Cκ4,k. (2.17)

Here, Cμ1,k, Cμ2,k, Cμ3,k, Cμ4,k, Cκ1,k, Cκ2,k, Cκ3,k and Cκ4,k are the coefficients depending on the
species k and temperature range (T < 1000 K or T � 1000 K).

The viscosity and thermal conductivity for HO2 are calculated from the
Chapman–Enskog method (Chapman & Cowling 1991) and the Eucken method (Poling,
Prausnitz & O’Connel 2001), respectively.

The viscosity for HO2 is evaluated by the Chapman–Enskog method (Chapman &
Cowling 1991) by

μHO2 = 2.6693 × 10−6

√
WHO2T

σ 2
HO2

Ω22
. (2.18)

Here, σHO2 and Ω22 are the Lennard–Jones collision diameter for HO2 and the collision
integral, respectively. The collision integrals Ω22 are calculated from the following
empirical formula suggested by Neufeld, Janzen & Aziz (1972):

Ω22 = C22
1 (T

∗)−C22
2 + C22

3 exp (−C22
4 T∗)+ C22

5 exp (−C22
6 T∗). (2.19)

Here, the constants in (2.19) are defined as follows: C22
1 = 1.16145; C22

2 = 0.14874;
C22

3 = 0.52487; C22
4 = 0.77320; C22

5 = 2.16178; C22
6 = 2.43787. Here, T∗ is the reduced

temperature given by

T∗ = kBT
εk
. (2.20)

Here, εk and kB are the Lennard–Jones potential well depth for species k and the Boltzmann
constant, respectively. The thermal conductivity for HO2 is evaluated by the Eucken
method (Poling et al. 2001) as

κHO2 = 7
2 RuμHO2 . (2.21)

The Wilke method (Wilke 1958) and the Wassiljewa method (Law 2006) are used to
estimate the multicomponent gas viscosity and thermal conductivity based on the pure
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species values:

μ =
Ns∑

k=1

μk

1 + 1
Xk

Ns∑
l /= k

XlΦkl

, (2.22)

κ =
Ns∑

k=1

κk

1 + 1.065
Xk

Ns∑
l /= k

XlΦkl

. (2.23)

Here, Xk is the molar fraction for species k and Φkl is calculated as

Φkl = [1 + (μk/μl)
1/2(Wl/Wk)

1/4]2

2
√

2(1 + Wk/Wl)1/2
. (2.24)

The diffusion coefficient of a compound k into the mixture of the other compounds is
evaluated based on the binary diffusion coefficient between the species k and l from the
Chapman–Enskog method (Chapman & Cowling 1991). The binary diffusion coefficient
between the species k and l is the function of temperature and pressure and expressed as
the following formula:

Dkl = 2.628 × 10−2

√
T3

pσ 2
klΩ11

√
(Wk + Wl)

2WkWl
. (2.25)

Here, σkl and Ω11 are the effective collision diameter for species k and l, and the collision
integral. The collision integral Ω11 is estimated by the following empirical formula
(Neufeld et al. 1972):

Ω11 = C11
1

(T∗
d )

C11
2

+ C11
3

exp (C11
4 T∗

d )
+ C11

5

exp (C11
6 T∗

d )
+ C11

7

exp (C11
8 T∗

d )
, (2.26)

T∗
d = kBT

εkl
. (2.27)

Here, the constants in (2.26) are defined as follows: C11
1 = 1.06036; C11

2 = 0.15610;
C11

3 = 0.19300; C11
4 = 0.47635; C11

5 = 1.03587; C11
6 = 1.52996; C11

7 = 1.76474; C11
8 =

3.89411. Here εkl is the effective Lennard–Jones potential well depth for species k and l.
Here σkl and εkl are estimated based on the Lennard–Jones collision diameter and
Lennard–Jones potential well depth for species k and l, and the formula is different
depending on whether the collision partners are polar or non-polar. For the case that the
partners are either both polar or both non-polar, the equations are

εkl = √
εkεl, (2.28)

σkl = σkσl

2
. (2.29)

Here, εk, εl are the Lennard–Jones collision potential well depth for species k and l,
respectively. Here σk and σl are the Lennard–Jones collision diameter for species k and
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l, respectively. For the case for a polar molecule interacting with a non-polar molecule, the
equations are

εkl = ξ2√εkεl, (2.30)

σkl = σkσl

2
ξ−(1/6), (2.31)

ξ = 1 + 1
4
α∗

npμ
∗
pol

√
εpol

εnp
. (2.32)

Here, α∗
np and μ∗

pol are the reduced polarizability for the non-polar molecule and the
reduced dipole moment for the polar molecule, respectively. The subscripts for np and pol
in (2.32) denote the non-polar and polar molecule, respectively. The diffusion coefficient
of a compound k into the mixture of the other compound Dk to estimate the diffusive flux
using the mass fraction gradient is calculated by the following mixing rule (Kee et al.
2003):

Dk = 1
Ns∑

l /= k

Xl

Dkl
+ Xk

1 − Yk

Ns∑
l /= k

Yk

Dkl

. (2.33)

The trajectories of the gas particles can be simply obtained by massless Lagrangian
particles with the following equations:

dxp,i

dt
= ui, (2.34)

dyp,i

dt
= vi. (2.35)

Here, xp,i and yp,i are the x position and y positions for the ith Lagrangian particle. Here ui
and vi are the x and y components of the velocity at the ith particle position, respectively.

2.2. Numerical methods
The detailed formulation of the numerical method can be found in Watanabe (2020).
A classical first-order operator-splitting method is employed to couple the hydrodynamics
with the detail chemistry. The spatial derivatives of the convective term are discretized by
a fifth-order advection upstream splitting method using pressure-based weight functions
(known as AUSMPW+) improved by Kim, Kim & Rho (2001) based on a modified
weighted essentially non-oscillatory scheme (known as MWENO-Z) (Hu, Wang & Chen
2016) and a second-order central differential scheme is applied to the discretization of
the diffusive term. The time integration method for the convective and diffusion terms is
the third-order total variation diminishing Runge–Kutta method (Gottlieb, Shu & Tadmor
2001), and the multi-time scale method (Gou et al. 2010) is used for the time integration
of the chemical source term.

The first-order Euler method is used for the integration of the Lagrangian particles. The
gas phase quantities around the ith Lagrangian particle ψi are estimated by interpolating
the surrounding three nearby Eulerian cell values by the barycentric interpolation
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(Shimura & Matsuo 2018) as follows (see (2.36)):

ψi = c1ψ1 + c2ψ2 + c3ψ3. (2.36)

Here, ψ1, ψ2 and ψ3 are the gas phase quantities at three Eulerian cells nearby the ith
Lagrangian particle, respectively. Here c1, c2 and c3 are the normalized coefficients which
are estimated based on the ratio of area of the triangles to the area of the cell (Shimura &
Matsuo 2018; Watanabe 2020).

2.3. Recording the variables for each Lagrangian particle
The variables of each Lagrangian particle were recorded during the course of their
trajectories, being updated every time step. The time when the Lagrangian particles
passed the leading shock front tshock was recorded by the first pressure jump experienced
by the Lagrangian particles to estimate the time from the shock passage τ = t − tshock.
The dispersion of the Lagrangian particles were evaluated by the distance travelled by
the Lagrangian particle after the shock passage from (2.37), (2.38) and (2.39). The
equations (2.37) and (2.38) refer to the longitudinal and transverse distances travelled by
the Lagrangian particle after the shock passage, respectively; equation (2.39) represents
the distance travelled by the Lagrangian particle after the shock passage:

xi =
∫

ui dt, (2.37)

yi =
∫

|vi| dt, (2.38)

xxy,i =
∫
(u2

i + v2
i )

1/2dt. (2.39)

Tracking of the Lagrangian particles enabled us to obtain the time when the induction
process was completed. The thermicity σ̇ , which denotes the influence of chemical
reaction on the flow velocity due to both chemical energy release and change in the number
of moles present, was used to define the induction time. The thermicity was defined by
the following equation and calculated based on the variables at each Lagrangian particle
position:

σ̇ =
Ns∑

k=1

(
W
Wk

− hk

cpT

)
ω̇k

ρ
. (2.40)

During the simulation, the time, the x- and y- Lagrangian particle positions and the
distance travelled by the Lagrangian particle when the thermicity was maximum were
recorded and updated every time step. The induction time was defined as the time from
the shock front to the time when the thermicity was maximum in this study. With the use of
the Lagrangian particle tracking method, the induction time for each Lagrangian particle
can be accurately evaluated from the difference between the time when the Lagrangian
particle passed the leading shock front and the time when the thermicity was maximum.

3. Problem statement

The schematics for the computational target is shown in figure 1(a). The fully
developed 2-D gaseous detonation propagates in a straight channel. Two types of reactive
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Figure 1. Simulation set-up. (a) Schematics of the computational target. (b) The ZND thermicity profile in
2H2–O2–7Ar and 2H2–O2 mixtures.

Parameters 2H2–O2–7Ar 2H2–O2

DCJ (m s−1) 1690.7 2834.3
MCJ 4.8 5.3
xind (μm) 76.6 48.6
xreac (μm) 409 72.5
τind (μs) 0.2 0.09
τreac (μs) 0.1 0.02
Ea/(RTvN) 4.1 6.9
χ 0.8 4.6
γvN 1.49 1.32

Table 1. Parameters of the reactive mixtures in the present conditions.

mixtures have been investigated: 70 % diluted stoichiometric hydrogen oxygen mixture
2H2–O2–7Ar and stoichiometric hydrogen oxygen mixture 2H2–O2 at ambient conditions
(0.1 MPa and 300 K). The effect of instabilities can thus be assessed on the dispersion
and the averaging processes. Figure 1(b) shows the thermicity profile for both mixtures.
Table 1 lists the various parameters for both mixtures characterizing detonation such as
the CJ velocity DCJ , the CJ Mach number MCJ , the induction length xind, the reaction
length xreac, the induction time τind, the reaction time τreac, the reduced activation energy
Ea/(RTvN), the χ= (Ea/(RTvN))(xind/xreac) parameter, and the specific heat ratio at von
Neumann (vN) state γvN . Following the definition by Radulescu (2003) and Ng et al.
(2005b), the induction length xind was defined as the distance from the leading shock
front to the position where the thermicity was maximum, and the reaction length xreac
was estimated by uCJ/σ̇max using the maximum thermicity σ̇max and the velocity at the
CJ plane in the shock frame uCJ . In addition, the induction time τind was estimated from
the time from the leading shock front to the time when thermicity was maximum, and the
reaction time τreac was defined as the half-pulse-width time of thermicity, respectively.
The induction time for the 2H2–O2 mixture is approximately two times shorter than that
for the 2H2–O2–7Ar mixture and the peak thermicity for 2H2–O2 is approximately one
order of magnitude higher compared with that for the 2H2–O2–7Ar mixture in the present
conditions (figure 1b and table 1). The mixtures can be classified as weakly and mildly
unstable mixtures, according to the stability analysis (Eckett, Quirk & Shepherd 2000;
Austin et al. 2005) based on the reduced activation energy and CJ Mach number. Based
on the χ parameter and CJ Mach number, the instability parameters lie slightly below and
above the neutral stability curve, for the diluted and non-diluted cases (Ng et al. 2005b).
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Lagrangian dispersion and average in a 2-D detonation

The channel widths for 2H2–O2–7Ar and 2H2–O2 mixtures are 2.6 and 2.0 mm,
respectively. The boundary condition for the walls is the adiabatic non-slip wall and
the transmissive boundary is applied to the left end. The grid is uniform and the
grid width is equal at 2.0 and 1.6 μm from the region from the shock front up to
20.6 and 11.5 mm behind the front for the 2H2–O2–7Ar mixture and 2H2–O2 mixture,
respectively. The computational domain with the minimum grid width encompassed the
mean leading shock front and the mean sonic plane, which were evaluated in § 4.4.
Then, the grid is stretched. The grid resolution is approximately 38 and 30 points per
CJ induction length for the 2H2–O2–7Ar mixture and the 2H2–O2 mixture, respectively.
This resolution has been shown to be largely sufficient to capture the mean structure
(Reynaud et al. 2017, 2020). In addition, this resolution is enough to reproduce the features
of the instantaneous flow fields for weakly unstable mixtures (Mazaheri, Mahmoudi &
Radulescu 2012). The grid resolution study was performed in Appendix A and the main
conclusions were not called into question by the present grid resolution. For more highly
unstable mixtures, this resolution may not be sufficient to capture the unsteady burning
mechanism of the unburnt pockets that are likely to form downstream of the leading
shocks. The Courant–Friedrichs–Lewy number was fixed at 0.2 and the typical time step
size was around 1.0 × 10−10 and 0.5 × 10−10 s for 2H2–O2–7Ar and 2H2–O2 mixtures,
respectively.

The recycling block technique (Sow et al. 2019) is applied to enable the detonation
to propagate a distance long enough to obtain statistical values. When the leading shock
front reached the right-hand boundary during the simulations, the new region with the
upstream condition for unburned state was appended to the right of the computational
domain and the region near the left-hand boundary which was far from the mean sonic
plane was discarded. The same procedure was also applied for the Lagrangian particles.
When the leading shock front reached the right-hand boundary during the simulations, the
new Lagrangian particles were located to the right of the computational domain and the
Lagrangian particles which were located in the discarded left-hand domain were excluded
from the simulations. The recycling block technique was successfully utilized to reduce
the computational cost by the use of smaller computational domain and to simulate the
detonation propagation in the previous studies (Reynaud et al. 2017, 2020; Sow et al. 2019;
Watanabe et al. 2020, 2021; Taileb, Meluguizo-Gavilances & Chinnayya 2021a; Taileb
et al. 2021b). The length of the propagation for the average procedure is approximately
1000 xind for 2H2–O2–7Ar and 1200 xind for 2H2–O2. This study has cost approximately
2.0 × 106 CPU hours with 64 processors.

The Lagrangian particles are initially located in the fresh mixture in every grid point.
The number of these particles inside the computational domain changes during the
simulation due to the recycling block method and are around 34 × 106 and 25 × 106

for the 2H2–O2–7Ar mixture and the 2H2–O2 mixture, respectively. In order to get the
averaged values, the instantaneous 2-D flow fields are saved each time the detonation
front propagates 0.5 xind. The total number of the particles in the region where the
detonation propagates is approximately 5 × 107 and 6 × 107 for the 2H2–O2–7Ar and
2H2–O2 mixtures, respectively.

4. Results and discussions

4.1. Dispersion and anisotropy
Firstly, the global features of the 2H2–O2–7Ar and 2H2–O2 mixtures are depicted using
the instantaneous 2-D flow fields in figures 2 and 3, respectively. In the 2H2–O2–7Ar

968 A28-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

53
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.535


H. Watanabe and others

Temperature (K)

Maximum pressure (MPa)

Thermicity (µs–1)

3800300 0 5.0

2

1

0

1

0

10 8 6 4

Position (mm)

2 0

2

2

1

0

2

0.1 10.0

1 0 2 1 0

(b)(a)

(c)

Figure 2. The 2-D instantaneous flow fields in 2H2–O2–7Ar mixture: (a) temperature; (b) thermicity;
(c) maximum pressure.

mixture, the cellular structure is regular with two cells in the channel (figure 2c). No
unburned gas pocket is formed behind the front and the classical key stone feature can be
observed (figure 2a,b). As for the 2H2–O2 mixture, the cellular structure and the frontal
shape were more irregular (figure 3), expected from the increased instability parameters.
The unburned gas pockets are torn apart from the front and continue to burn downstream
(figure 3a,b). In both cases, strong transverse wave structures occurred in the second
part of the cell (figures 2b and 3b), as also observed experimentally by Desbordes &
Presles (2012). The thermicity fields indicated that the heat release took place much more
rapidly and sometimes one order of magnitude quicker in the non-diluted case than in
the diluted case (figures 2b and 3b). The average propagation velocity for both mixtures
agreed with that of the CJ velocity. The average cell width in the simulations from the
manual measurement of 150 and 300 cells for the 2H2–O2–7Ar and 2H2–O2 mixtures is
1.3 and 0.7 mm, respectively. The experimental cell width for the 2H2–O2–7Ar mixture is
expected to be 2.7–4.0 mm from similar mixture conditions, and the cell width reported
from experiments for the 2H2–O2 mixture ranges from 1.4 to 2.1 mm (Kaneshige &
Shepherd 1997). Therefore, the cell sizes in the simulations were thus smaller that the
experimental ones by a factor of approximately 2–3. The numerical cell width is reported
to be smaller as in previous studies (Taylor et al. 2013; Taileb et al. 2021a). This is not
due to the present numerical resolution but may be due to vibrational non-equilibrium
effects (Taylor et al. 2013; Shi et al. 2017), uncertainties of the chemical reaction model in
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Figure 3. The 2-D instantaneous flow fields in 2H2–O2 mixture: (a) temperature; (b) thermicity,
(c) maximum pressure.

detonation conditions (Mével & Gallier 2018) and three-dimensional (3-D) effects (Taileb
et al. 2018; Monnier et al. 2022; Crane et al. 2023).

Figures 4 and 5 show the instantaneous 2-D flow fields in the Lagrangian perspective
for (a) time front shock passage; (b) longitudinal distance travelled by the particle xi;
(c) transverse distance travelled by the particle yi; (d) distance travelled by the particle xxy,i
from shock passage for the 2H2–O2–7Ar and 2H2–O2 mixtures, respectively. As we move
away from the leading shocks, the time from shock passage and the longitudinal distance
xi increased. However, their distributions were not uniform in each section, regardless
of the mixture instability. This non-uniform distribution of the Lagrangian particles is
consistent with the numerical findings of Sow et al. (2021). The scales of the legends for
figures 4(a) and 5(a) are different, due to the difference in detonation velocities for both
mixtures. It can also be seen that xi and xxy,i were almost the same, due to the fact that yi
remained one order of magnitude lower. In the rest of the paper, only the field of xi will
be discussed instead of that of xxy,i. More noticeable was that the transverse distance yi
was much spottier for the non-diluted case, as we moved away from the leading shocks,
indicative of more vortical structures. Large tongues of gas were also seen to penetrate the
different layers and to be entrained in the x-direction. The longitudinal distance xi for the
particles inside the boundary layer can also be seen to be shorter than that of the other
particles in the core of the flow.

In order to compare the distribution of the distances for both mixtures, the average
longitudinal distance x̄i is shown in figure 6. The slopes are different due to the difference
in the velocity induced by detonation of both mixtures. The standard deviation for xi (see
figure 7a) [

∑N
i (xi − x̄i)

2/N]1/2 were almost the same. The average transverse distance yi
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Figure 4. The 2-D instantaneous Lagrangian flow fields in 2H2–O2–7Ar mixture, superimposed with
Schlieren density: (a) time from shock passage; (b) longitudinal distance travelled by the Lagrangian particle xi;
(c) transverse distance travelled by the Lagrangian particle yi; (d) distance travelled by the Lagrangian particle
xxy,i.
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Figure 5. The 2-D instantaneous Lagrangian flow fields in 2H2–O2 mixture, superimposed with Schlieren
density: (a) time from shock passage; (b) longitudinal distance travelled by the Lagrangian particle xi;
(c) transverse distance travelled by the Lagrangian particle yi; (d) distance travelled by the Lagrangian particle
xxy,i.

(see figure 7b) can be as high as twice for the non-diluted as compared with the more
stable case.

Figures 8(a,b) and 9(a,b) depict the joint probability density function (p.d.f.) between
the times from shock passage and the longitudinal and transverse distances travelled by the
particles. The width of the distributions became wider as the time from the shock passage
increased. The fluctuations along the transverse distance yi also increased (see figures 8d
and 9d). From figures 8(c,d) and 9(c,d), the peak of the p.d.f. for the fluctuations along
the longitudinal direction was lower than that of the transverse direction, meaning that
the dispersion along the longitudinal direction was greater than that of the transverse one.
This finding that the dispersion along the longitudinal direction was greater than that of
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Figure 6. Average longitudinal distance x̄i for 2H2–O2–7Ar and 2H2–O2 mixtures.
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Figure 7. (a) Standard deviation for the longitudinal distance [
∑N

i (xi − x̄i)
2/N]1/2 and (b) average transverse

distance yi for 2H2–O2–7Ar and 2H2–O2 mixtures.

the transverse wave was not what could be expected from the presence of the transverse
waves, characteristics and cornerstones of the detonation cellular structure. Moreover, the
comparison of figures 8(c,d) and 9(c,d) showed that the diluted case needed approximately
five times more time to obtain the same level of dispersion than the non-diluted one.
Indeed, the average transverse distance yi became approximately one cell width after
17.8 μs for the argon diluted case as compared with 3.6 μs for the other case (figure 7b).

The 2-D instantaneous Lagrangian flow fields of the normalized fluctuations in the
longitudinal distance (δxi = (xi − x̄i)/xi) and the normalized transverse distance yi/xi have
been plotted in figures 10 and 11 for both cases. Near the front, they came mainly from
three factors. At first, the triple point collision resulted in forward jets with positive δxi
and in backward jets with negative values. Second, the decaying incident shock in the
second part of the cell induced negative values. Finally, the transverse waves and the
vortical motions played a major role in increasing yi, the more important contribution
coming from the latter, as time passed. Some differences were also present for δxi near the
boundary layer. The fluctuations appeared spottier in the more unstable non-diluted case,
with vortical motions also playing a stronger role in the unstable case.
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Figure 8. The 2H2–O2–7Ar mixture. Joint p.d.f. between (a) times from shock passage and longitudinal
distances xi, (b) times from shock passage and transverse distances yi. The p.d.f. at different instants for
(c) longitudinal distances xi and distances xxy,i, (d) transverse distances yi.

Figure 12 shows the time history of the variances of the x- and y- displacements x′2
i and

y′2
i , as well as their correlation x′

iy
′
i, which can be evaluated by

x′2
i = 1

N

N∑
i=1

[
(xp,i − xp,i,0)− (xp,i − xp,i,0)

]2 = 1
N

N∑
i=1

(xi − xi)
2 , (4.1)

y′2
i = 1

N

N∑
i=1

(yp,i − yp,i,0)
2, (4.2)

x′
iy

′
i = 1

N

N∑
i=1

[
(xp,i − xp,i,0)− (xp,i − xp,i,0)

]
(yp,i − yp,i,0). (4.3)

Here, xp,i,0 and yp,i,0 are x and y initial positions of the particle i, and N is the number of
particles.

The levels of fluctuations of the displacements x′2
i and y′2

i were much higher,
approximately twice in the more irregular case (see figure 12a). As shown previously,
the fluctuations in xi and yi increased as we move away from the shock (figures 10
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Figure 9. The 2H2–O2 mixture. Joint p.d.f. between (a) times from shock passage and longitudinal distances
xi, (b) times from shock passage and transverse distances yi. The p.d.f. at different instants for (c) longitudinal
distances xi and distances xxy,i, (d) transverse distances yi.
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Figure 10. Diluted 2H2–O2–7Ar mixture. The 2-D instantaneous Lagrangian flow fields, superimposed with
Schlieren density in diluted 2H2–O2–7Ar mixture. (a) Normalized fluctuations of the longitudinal distances
(xi − x̄i)/xi. (b) Normalized transverse distance yi/xi.

and 11). The cross-relation x′
iy

′
i oscillated around zero (see figure 12c). Indeed, the leading

shock is curved and thus, for some positive y-displacements at some locations, there
will be corresponding negative y-displacements at other locations. Moreover, in 2-D, for
each vortex rotating clockwise, there is another vortex rotating anticlockwise. Near the
leading shock, the fluctuations of transverse displacements were approximately that of the
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Figure 11. Non-diluted 2H2–O2 mixture. The 2-D instantaneous Lagrangian flow fields, superimposed with
Schlieren density in diluted 2H2–O2–7Ar mixture. (a) Normalized fluctuations of the longitudinal distances
(xi − x̄i)/xi. (b) Normalized transverse distance yi/xi.
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Figure 12. (a) Time history of the variance of the x- and y- displacements, x′2
i and y′2

i ; (b) non-dimensionalized

y- displacements, y′2
i /x

′2
i as a function of the non-dimensionalized time τ/τind; (c) x′

iy
′
i/(x

′2
i + y′2

i );

(d) non-dimensionalized x- displacements, x′2
i /(Ea/(RTvN)xind)

2 as a function of the non-dimensionalized
time τ/τind .

longitudinal ones (see figure 12b). Then the y-levels decreased comparatively. Thus, far
from the shock, the flow became anisotropic. The further evaluation of anisotropy can be
found in Appendix B. In the 2-D flows investigated, there lacks the vorticity stretching
mechanism that would help to return more rapidly to isotropy (see Taileb 2020). The good
collapse of the curves in figure 12(d) suggested that a characteristic time scale was the
induction time τind and that a characteristic length scale was the induction length times
the reduced activation energy (Ea/(RTvN))xind. This scaling used for the fluctuations
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Figure 13. Time sequence of instantaneous 2-D flow fields of distance travelled from shock passage xxy,i in
2H2–O2–7Ar mixture. Only the Lagrangian particles whose time from shock passage is less than the induction
time are displayed. The Lagrangian particles selected for the display were separated by an initial vertical
distance of 50 μm. The lines are the density Schlieren and the grey contour in the background is the maximum
pressure. The detonation propagated from the left to the right and the time passed from (a) to ( f ).

of x-displacement as a function of the time from the shock passage is consistent with
asymptotic studies (Buckmaster 1989; Lee 2008; Faria 2014) even if the same characteristic
length seemed to hold also for the transverse fluctuations in the present study.

4.2. Dispersion in induction time scale
The dispersion was studied in this subsection within the induction time scale and was
related to the cellular structure.

The time sequence of the dispersion in terms of the distance travelled by the Lagrangian
particle from shock passage for 2H2–O2–7Ar and 2H2–O2 mixtures are depicted in
figures 13 and 14, respectively. Only the Lagrangian particles whose time from shock
passage is less than the induction time are displayed. When the induction time was longer,
the distance travelled xxy,i which is only shown within the induction time scale was longer.

In the 2H2–O2–7Ar mixture, the first observation is that the induction process was
completed within first half of one cell cycle (figure 13). The induction length was shorter
behind the Mach stem in the first part of the cell and longer behind the decaying
incident shock front in the second part of the cell. After the collision of the transverse
waves, the Lagrangian particles, which passed the weaker incident shock completed the
induction process. The dispersion was slightly deviated from the straight line parallel to
the propagation direction due to the curved leading shock front (Mölder 2016).
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Figure 14. Time sequence of instantaneous 2-D flow fields of distance travelled from shock passage xxy,i in
2H2–O2 mixture. Only the Lagrangian particles whose time from shock passage is less than the induction time
are displayed. The Lagrangian particles selected for the display were separated by an initial vertical distance of
40 μm. The lines are the density Schlieren and the grey contour in the background is the maximum pressure.
The detonation propagated from the left to the right and the time passed from (a) to ( f ).

In the 2H2–O2 mixture, more variation in the induction time behind the leading shock
front was observed due to higher reduced activation energy (figure 14). The distance in
the unburned gas pocket torn from the front was also much longer (see figure 14c,e). The
leading shock curvatures were also higher, inducing more deviation.

In both cases, within the induction time scale, the transverse dispersion was mainly due
to the curvature of the leading shock. This effect was more pronounced near the edges of
the cell and during the first part of the cell, when the leading detonation front was a Mach
stem.

To relate the dispersion with the geometry of the cellular structure, the distance travelled
by the Lagrangian particle and the normalized number density of Lagrangian particles αL
were shown in the position where they recorded their maximum thermicity (see figures 15
and 16). Note that the number density was the projection of Lagrangian data over the
Eulerian grid, with a spacing five times greater than the minimum grid width. The number
density was then normalized by its initial value at its initial position to obtain αL,

αL = Ni

Ni,0
, (4.4)

where Ni and Ni,0 are the number of the Lagrangian particles, which are located on the
Eulerian grid used for the projection and the number of the Lagrangian particles in the
initial condition, respectively. The estimation of other variables on the Eulerian grid, such
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Figure 15. The 2-D flow fields of the projected Lagrangian values in the position where the Lagrangian
particles experienced the maximum thermicity in 2H2–O2–7Ar mixture. (a) Projected longitudinal distance
travelled xi at the induction time; (b) projected transverse distance travelled yx,i at the induction time; (c) ratio of
transverse distance to longitudinal distance yi/xi at induction time; (d) number density of Lagrangian particles
normalized by the initial number density. The displayed region is the same as in figure 2(c). The region where
no Lagrangian particle was located was displayed as white colour.

as the distance travelled by Lagrangian particles, was done by the same projection over a
box of width five times the grid cell size (see (4.5)),

ΦL =

Ni∑
k=1

ΦL,k

Ni
. (4.5)

Here, ΦL and ΦL,k are the projected Lagrangian value and the Lagrangian value for
the kth Lagrangian particle, which were located on the Eulerian grid, respectively. The
distributions of the distance travelled by Lagrangian particle and the number density at the
induction time can be seen to be closely related to the cellular structure (see figures 15, 16,
2c, 3c). There are regions in the cellular structure where the Lagrangian particles did not
complete the induction process (figures 15, 16). From the instantaneous flow fields, these
regions were seen to be thin non-reactive tails in the gas between the leading shock front
and the transverse waves due to the lower temperature, which were reported numerically
by Gamezo et al. (2000) and observed experimentally by Xiao & Radulescu (2020) in a
hydrogen–oxygen–argon mixture.

The longitudinal distance xi tended to be larger at the end of the cell (figures 15a,
16a), due to the decaying shock wave. Near the edge of the cells, the transverse distance
yi was comparable to the longitudinal distance travelled xi, due to the transverse waves
(figures 15b, 16b). The ratio yi/xi was also the highest near edges (figures 15c, 16c),
and increased as the mixture became more unstable. This ratio was also minimum at the
centreline of the cell.

968 A28-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

53
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.535


H. Watanabe and others

10 8 6 4

Position (mm) Position (mm)

2 0 10 8 6 4 2 0

10

2

1

0

2

1

0

2

1

0

2

1

0

0 0.1 log0.1

0 0.7 0 1.0

10

8 6 4 2 0 10 8 6 4 2 0

yi at induction time (mm) (d )(b)

xi at induction time (mm) yi /xi  at induction time

Number density of Lagrangian particle

normalized by initial number density

at induction time

(c)(a)

Figure 16. The 2-D flow fields of the projected Lagrangian values in the position where the Lagrangian
particles experienced the maximum thermicity in 2H2–O2 mixture. (a) Projected longitudinal distance travelled
xi at the induction time; (b) projected transverse distance travelled yi at the induction time; (c) ratio of
transverse distance to longitudinal distance yi/xi at induction time, (d) number density of Lagrangian particles
normalized by the initial number density. The displayed region is the same as in figure 3(c). The region where
no Lagrangian particle was located was displayed as white colour.

The propagation of the cellular detonation dispersed the Lagrangian particles and their
distribution was non-uniform (figures 15d, 16d). The Lagrangian particles were locally
accumulated the trajectory of the triple points. Fewer Lagrangian particles were found
inside the cells.

In the weakly unstable 2H2–O2–7Ar mixture, the number density of Lagrangian
particles was the highest between the collision of the transverse waves and the triple point
collision. The accumulation of Lagrangian particles at the collision point of the transverse
waves gave birth to the local explosion, which induced blast waves driving the cellular
structure, as modelled by Vasilev & Nikolaev (1978) and Crane et al. (2021).

In addition, there were some differences in the simulation results. The transverse
waves accumulated the Lagrangian particles along the triple point trajectory and the
other particles completed the induction process inside the cell in the simulation. This
observation was in line with the previous analysis by Strehlow (1970) that the major
source of the energy that produced the blast wave came from the transverse shock
waves. As the mixture instability increased, the contribution of the transverse waves
in the accumulation of the Lagrangian particles experiencing the maximum thermicity
increased (figures 15d, 16d). In the 2H2–O2 mixture, some of the strong transverse waves
accumulated the particles along the triple point trajectories at the same level as near the
transverse wave collision. In addition, the normalized number density can become locally
higher as compared with the highest values of the diluted case.

The differences between the physical picture of the model (Vasilev & Nikolaev 1978;
Crane et al. 2021) and the simulation results were more apparent in the 2H2–O2 mixture
than in the 2H2–O2–7Ar mixture. These additional features on the accumulation and the
dispersion of the Lagrangian particles in the induction time scale revealed in this study
can provide guidelines for the development of a model for the prediction of the cellular
structure and their size.
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Figure 17. The p.d.f. for the values at the induction time. (a) Joint p.d.f. between normalized xi/x̂i and yi/xi
in 2H2–O2–7Ar mixture; (b) joint p.d.f. between normalized xi/x̂i and yi/xi in 2H2–O2 mixture; (c) p.d.f.
for yi/xi; (d) p.d.f. for normalized number density. x̂i is the average of xi at induction time over the whole
computational domain.

The p.d.f. for the values at the induction time were depicted in figure 17. The distribution
of normalized xi at the induction time became wider as the mixture instability increased
due to the variation of the induction time behind the cellular detonation front by the higher
reduced activation energy and the presence of unburned gas pockets (figure 17a,b). The
distribution of yi/xi was also wider and its average value was larger for the non-diluted
mixture, due to stronger transverse waves (figure 17a–c). High values of yi/xi with small
xi could be found around the triple point trajectories, due to stronger transverse motion by
stronger transverse waves (figures 15c, 16c, 17a,b). As xi increased, yi/xi decreased (see
figures 12b, 17a,b).

The peak for distribution of yi/xi at the induction time was located around 0.1
(figure 17c) and the deviation of the trajectories of particles from the straight line in
the induction time scale was not large, as seen in figures 13 and 14. The p.d.f. for the
normalized number density of Lagrangian particles is depicted in figure 17(d). It had three
and two peaks for diluted and non-diluted cases, respectively. For the diluted case, the first
peak corresponded to particles inside the cell, which were the most and which are in the
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dilute side (values lower than one). The second peak corresponded to the trajectories of
the triple points and the third one to the locations between the collisions of the transverse
waves and of the triple points. These two latter peaks are in the dense side (values greater
than one). For the non-diluted case, only two peaks can be highlighted. The first peak
corresponded to the particles inside the cell, as in the diluted case. The second peak
corresponded more or less to a merge between the second and third peaks of the diluted
case.

The results in §§ 4.1 and 4.2 highlighted that the dispersion of the Lagrangian particles
was promoted behind the detonation front. The fact that the scaling for the variance of
the x−displacement x′2

i worked well using (Ea/(RTvN))xind suggested that the dispersion
mainly came from a 1-D instability mechanism (figure 12d), mainly due to the pulsations
of the leading shock.

The curvature of the leading shock front was responsible for the transverse dispersion of
the particles (Mölder 2016), deviating the particles from horizontal detonation propagation
direction (figures 13 and 14). Moreover, another source of transverse dispersion came
from the presence of the reaction front. The value of y′2

i /x
′2
i was maximum around

2τind in the simulation results, which was indicative that the dispersion in the transverse
direction increased around the reaction front (figure 12b). Indeed, Buckmaster & Ludford
(1986) showed in a study on linear stability of steady, plane, overdriven detonation that
the transverse velocity arose from the transverse derivative of the horizontal distance
between the locations of the leading shock and the reaction front. Transverse waves clearly
contributed to increase these effects (Emmons 1958).

In addition, jets induced fluctuations in the longitudinal dispersion (figures 10 and 11).
The role of the jets on the fluctuations in the dispersion are expected to become more
important for mixtures with lower isentropic coefficient at vN state (Lau-Chapdelaine,
Xiao & Radulescu 2021; Sow et al. 2021; Taileb et al. 2021b).

4.3. Relative dispersion
The dispersion behind the front was further evaluated in terms of the relative dispersion
in this subsection. The initial distance between two Lagrangian particles in the same pair
was set to be the grid size upstream of the leading front, which is the minimum grid
width. To distinguish the relative dispersion in the longitudinal and transverse directions,
the following relative dispersions were evaluated:

rxy =
[
(xp,i1 − xp,i2)

2 + ( yp,i1 − yp,i2)
2
]1/2

, (4.6)

rx = ∣∣xp,i1 − xp,i2
∣∣ , (4.7)

ry = ∣∣yp,i1 − yp,i2
∣∣ . (4.8)

Here, xp,i1 and yp,i1 are x and y positions of the particle i1, and xp,i2 and yp,i2 are x and y
position of the particle i2 which forms the pair with particle i1.

The 2-D Lagrangian instantaneous flow fields for the relative dispersion for both
mixtures are shown in figures 18 and 19. The relative dispersion r2xy was the average
value at the time from shock passage. The displayed value of r2

xy for each particle was the
value averaged over its four pairs. Two main factors contributed to the highest values. First,
the particles with higher relative dispersion experienced the shear layers emanating from
the triple shock interaction and their curling to form the large-scale turbulent eddies. The
second factor came from the presence of the boundary layer due to the velocity gradient.
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Figure 18. Diluted 2H2–O2–7Ar mixture. The 2-D instantaneous Lagrangian flow fields, superimposed with
Schlieren density. (a) Square of the relative dispersion r2

xy; (b) normalized fluctuation of the square of the

relative dispersion (r2
xy − r2xy)/r2

xy.
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Figure 19. Non-diluted 2H2–O2 mixture. The 2-D instantaneous Lagrangian flow fields, superimposed with
Schlieren density. (a) Square of the relative dispersion r2

xy; (b) normalized fluctuation of the square of the

relative dispersion (r2
xy − r2xy)/r2

xy.

The normalized deviation from the average (r2
xy − rxy

2)/r2
xy highlighted these two main

contributions (figures 18b and 19b). The relative dispersion was higher for the irregular
mixture (figures 18a and 19a), with particles with higher relative dispersion being more
dispersed inside the channel.

Figure 20 shows the square of average relative dispersion for 2H2–O2–7Ar and 2H2–O2
mixtures. The Lagrangian Favre average used for figure 20(d) based on the time from
shock passage is described in § 4.4. In both mixtures, the average of rx is higher than of ry,
highlighting again the anisotropy downstream of the leading front (figure 20a).

After some time, corresponding to some μs and far from the leading shock, a self-similar
behaviour for both mixtures was found when the mean relative dispersion rxy was scaled
by the characteristic length scale χxind. The (Ea/(RTvN))xind length scale used in § 4.1 was
not found to give nice results. Indeed, the relative dispersion of nearby particles is related
to their difference of velocities that could be a result of the acceleration of reactive fronts,
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ũ′2. Here rxy,0 is the initial value for rxy.

which is reflected by the non-dimensionalized acceleration parameter χ (Sharpe 2002;
Radulescu, Sharpe & Bradley 2013; Tang & Radulescu 2013). Moreover, compensated
by (τ/τind)

3, the non-dimensionalized pair dispersion from figure 20(c) agreed with the
Richardson–Obukhov (R-O) law (Richardson 1926; Salazar & Collins 2009), meaning
that (rxy/(χxind))

2 scaled as ∼ (τ/τind)
3. Darragh et al. (2021) in another context of

high-speed premixed flames also found such scalings within some range but with different
scalings. The exponential time dependence for inert flow (Babiano et al. 1990) did not
hold (see figure 20b) for the lower times, the constant spanning over more than one order
of magnitude. Indeed, the latter zone was the zone of the main heat release (see § 4.4 and
Appendix C for further details on the estimation).

Figure 21 indicates the derivative of the relative dispersion with respect to time. The
local exponent value is 3.77 (50 < τ/τind < 80) and 3.38 (20 < τ/τind < 40) for the
diluted and non-diluted case, respectively. However, the non-dimensionalized time τ/τind
corresponding to the hydrodynamic thickness for both mixtures was around 50 (see
Appendix C). Therefore, only the unstable case approached the R-O prediction within
the detonation driving zone. The diluted case approached the R-O prediction only around
the mean sonic surface. The initial distance in the stable case was larger than that in the
unstable case, so the relaxation to the R-O scaling may also take longer (Bourgoin et al.
2006).
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Figure 21. The 2H2–O2–7Ar and 2H2–O2 mixtures. (a) Time evolution of (rxy/(χxind))
2; (b) local scaling

exponent of rxy
2 from d[log (rxy/(χxind))

2]/d[log (τ/τind)].

The R-O law reads r2
xy/τ

3 ∼ 〈ε〉, with 〈ε〉 being the turbulent energy dissipation
rate (Salazar & Collins 2009). One can thus estimate 〈ε〉 ∼ 〈δu〉2/τind as the ratio
between the square of the x-velocity fluctuations δu and an induction time τind. From
figure 20(d), the ratio of the velocity fluctuations between the diluted and non-diluted
cases after the induction and reaction zones is ∼2. Another estimation came from
the turbulent energy dissipation rates 〈δu〉non-diluted/〈δu〉diluted ∼ [〈ε〉non-diluted/〈ε〉diluted ×
τind,non-diluted/τind,diluted]1/2 ∼ 3. This very good correspondence from such rough
estimates seemed to indicate that after the main heat release zone, the more unstable the
mixture was, the more turbulent the flow can be considered to be.

To evaluate the distribution in the relative dispersion, the p.d.f. for the relative dispersion
rxy is depicted in figure 22 for the diluted and non-diluted mixtures, respectively. The
curves for the diffusive limit and the inertia regime were also included in figure 22(c–f )
for comparison. These equations are recalled in Appendix C. The distribution becomes
wider as the time from the shock passage increased (figure 22a,b). The same levels
of relative dispersion were obtained much more rapidly in the non-diluted case. The
relative dispersion is strongly non-Gaussian, with long tails developing, indicative of
rare events. In figure 22(c–f ), the relative dispersion has been rescaled by rxy and a
reasonably good collapse of the curves was obtained, showing that the process was
self-similar in time, except for the rare events. A good fit for the tails of the p.d.f.s reads
A exp (−α(rxy/rxy)

β) (Jullien et al. 1999) and their coefficients are given in table 2. The
exponent was approximately 0.35 and applied well for values of rxy/rxy between 5 and
15 for the diluted mixture, and was approximately 0.63 for values of rxy/rxy between 2
and 8 for the non-diluted one. The exponent for the unstable case agreed very well with
Richardson’s proposal of 2/3 (Richardson 1926) while that in the diluted case was below
the latter value. The normalized relative dispersion for the non-diluted was less steep and
higher for the most probable events in the intermediate range (see values of the fitted
function in table 2), consistent with the fact that the mixture was considered to be more
unstable near the leading shocks based on the reduced activation energy and χ parameters.
What was more surprising was the presence of very rare events with high levels of relative
dispersion for the diluted and regular case.

The probability of rare events was higher than that of Richardson’s prediction (Buaria,
Sawford & Yeung 2015) (see figure 22e, f ). In the derivation of the p.d.f. by Richardson,
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Figure 22. (a,c,e) The 2H2–O2–7Ar mixture; (b,d, f ) 2H2–O2 mixture. (a,b) The p.d.f. for relative dispersion
rxy; (c,d) p.d.f. for rxy/rxy; (e, f ) enlarged view of p.d.f. for rxy/rxy.

Mixture A α β

2H2–O2–7Ar 3.78 3.21 0.35
2H2–O2 1.63 1.76 0.63

Table 2. Coefficients of the function approaching the p.d.f. of the normalized relative dispersion rxy/rxy:
p.d.f. = A exp (−α(rxy/rxy)

β) (Jullien, Paret & Tabeling 1999). The Richardson’s prediction gives β = 2/3.
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the dispersion process was described by a diffusive equation. This modelling was based
on two assumptions (Boffetta & Sokolov 2002). The first one is that the dispersion process
was self-similar in time. In our case, this assumption that the dispersion process was
self-similar in time was valid (see figure 22c–f ). The second one was that the velocity field
was short correlated in time (Sokolov 1999). The relative velocity in quasi-Lagrangian
coordinates (Boffetta et al. 1999) was then evaluated to check this validity of the latter
assumption. The relative velocity in quasi-Lagrangian coordinates vQL(R, τ ) at time from
shock passage τ was defined by the following equation:

vQL(R, τ ) = v(r1(τ )+ R, τ )− v(r1(τ ), τ ). (4.9)

Here, v(r, τ ) is the Eulerian velocity field (u, v) at the position r and the time from the
shock passage τ . The position of the Lagrangian particles at the time from the shock
passage τ is r1(τ ). The separation distance is R. Note that only the particles that have
passed the shock were taken into account. The velocities were obtained by interpolation of
three nearby Eulerian cells (2.36).

The relative velocity in quasi-Lagrangian coordinates as a function of separation
distance for 2H2–O2–7Ar and 2H2–O2 mixtures is shown in figure 23. When the
separation distance was greater than the induction length, (vQL(R, τ ))2 was constant.
However, when the separation distance was less than the induction length, regardless of
the mixture regularity and time from shock passage, the square of relative velocity in
quasi-Lagrangian coordinates was proportional to square of the separation distance, i.e.
(vQL(R, τ ))2 ∝ (R/xind)

2. This exponent of 2 was much higher than the exponent of 2/3,
which is expected for the case of the Kolmogorov turbulence. Therefore, the velocity field
behind the detonation front was not short time correlated. Thus, the dispersion process
cannot be described by the diffusive equation proposed by Richardson. The probability of
the rare event in the relative dispersion was then different from Richardson’s prediction.
In addition, the present finding that the velocity field behind the detonation front was
different from that in the Kolmogorov turbulence can help us to develop a turbulent model
for detonation. Indeed, Maxwell et al. (2017) conducted a numerical simulation with a
compressible linear eddy model for large-eddy simulation for the highly unstable mixture
of methane–oxygen. They had to increase the Kolmogorov constant from the theoretical
prediction for incompressible 3-D Kolmogorov turbulence to match the experimental
results. In addition, in 2-D simulations of the transition of a turbulent shock-flame
complex to detonation, Maxwell, Pekalski & Radulescu (2018) decreased this constant.
These changes of the constant may come from the fact that the velocity field behind the
detonation was not that of a Kolmogorov turbulence.

The fact that the velocities were not short correlated below the induction length,
and that the relative dispersion scaled with the χ parameter suggested that within
the detonation driving zone, the heat release played a significant role. Indeed, χ =
(xind/xreac)(Ea/(RTvN)) ∝ (T/xreac)((∂xind/∂T)vN) is related to the rather rapid energy
deposition, which promotes the dispersion of the particles on the reaction length scale.

The other possible reason for the departure of the probability of the rare event in the
relative dispersion from Richardson’s theory was the extreme events of the pair separating
much faster and slower than the average. Scatamacchia, Biferale & Toschi (2012) reported
in 3-D incompressible homogeneous and isotropic turbulence that the extreme events
making much faster pair separation and much slower pair separation than the average
induced the deviation from the behaviour in Richardson’s theory. The relative dispersion
behind the detonation front was much higher than the average for the Lagrangian particles,
which experienced the shear layers emanating from the triple shock interaction and which
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Figure 23. Square of relative velocity in quasi-Lagrangian coordinate as a function of separation distance
normalized by induction length for various time from shock passage. (a) The 2H2–O2–7Ar mixture;
(b) 2H2–O2 mixture. The black solid line is the curve with slope of 2 and the black broken line is the curve
with slope of 2/3.

were located in the boundary layer. The other particles separated much slower (figures 18,
19). The possible effect of the presence of slip lines and boundary layers (figures 18, 19)
on the higher possibility of the rare event was estimated by making a p.d.f. from the data
with and without their presence. The criterion to distinguish the higher relative dispersion
due to the slip lines and boundary layers was that the normalized fluctuation of the square
of the relative dispersion (r2

xy − rxy
2)/r2

xy was higher than −0.95.
To evaluate the distribution in the relative dispersion for the data with and without the

presence of the slip lines and boundary layers, a new p.d.f. for the normalized relative
dispersion for the new set of data is depicted in figure 24. Regardless of the data based
on the value of (r2

xy − rxy
2)/r2

xy, the shapes of the p.d.f. were the same as in figure 22(e, f )
and probability of the rare event in the relative dispersion remained higher than that from
Richardson’s theory. The same conclusion was obtained if the threshold was changed from
−0.95 to 0.95 (not shown here). Thus, the presence of the slip lines and boundary layers
was not the main factor for the probability of rare events in the relative dispersion to be
higher than that from Richardson’s prediction in the flow field behind the detonation front.

Another possible reason for this difference in the p.d.f. of the relative dispersion is that
the turbulence has two cascades: an upward cascade coming from exothermic reactions
and the downward Kolmogorov-like cascade (Radulescu 2003; Radulescu et al. 2005).
In addition, the dispersion is slightly anisotropic in our 2-D case (see § 4.1), which can
explain the deviations from results of isotropic turbulence (Xia et al. 2019). Moreover, the
curves in the p.d.f. in the simulation are different from that in the diffusive regime.

4.4. Eulerian and Lagrangian averaging procedures
As a result of the dispersion, the same distance from the mean leading shock can be
reached by several Lagrangian particles at different times, travelling different distances.
Figures 25 and 26 depict the joint p.d.f. between the longitudinal distance from the shock
xs and (a) the time from shock passage τ and (b) the distance travelled by the particle xxy,i.
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xy: (a,b) 2H2–O2–7Ar mixture; (c,d) 2H2–O2 mixture. (a,c) The p.d.f. for rxy/rxy
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2)/r2
xy is higher than −0.95; (b,d) p.d.f. for rxy/rxy from the data whose (r2

xy −
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2)/r2
xy is lower than −0.95.

The width of the distribution for τ and xxy,i at fixed xs increased as we moved away from
the shock and as the mixture instability increased. A double peak can be observed in the
regular case, whereas the dispersion became more uniform in the irregular case.

This subsection presents the comparison of the Favre average 1-D profiles in terms of
Eulerian and Lagrangian points of view on the mean structure for the gaseous detonation.
The Reynolds average values in the Eulerian mean procedure ḠEUL for the variable G are
computed by (Watanabe et al. 2020)

ḠEUL(xs) = 1
H

∫ H

0
lim

Ts→∞

(
1
Ts

∫ Ts

0
G(x − xshock( y, t), y, t) dt

)
dy. (4.10)

Here, xshock( y, t) is the instantaneous x position of the leading shock front, which is not
straight due to cellular instabilities, H is the channel width and Ts is the period of sampling,
respectively. The longitudinal distance from the leading shock front xs = x − xshock
perpendicular to the propagation direction is used for the Eulerian averaging process. The
time from the shock passage τ and the distance xxy travelled by the Lagrangian particle
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Figure 25. Distribution of τ and xxy,i as a function of the longitudinal distance from shock front in
2H2–O2–7Ar mixture. (a) Joint p.d.f. between the longitudinal distance from shock front xs and time from
shock front passage τ , (b) joint p.d.f. between xs and the distance travelled by the particle along the trajectory
xxy,i; (c) p.d.f. of xs at several τ ; (d) p.d.f. of xs at several xxy,i.

from shock passage can thus be also candidates for the Lagrangian averaging procedures.
Two Lagrangian average procedures have been proposed. The first consisted in computing
the Reynolds average values in the Lagrangian mean procedure based on the time from
shock passage ḠLAG,time, as in (4.11); the second one consisted in computing the Reynolds
average values in the Lagrangian average procedure based on the distance travelled by
Lagrangian particle ḠLAG,dist, as in (4.12),

ḠLAG,time(τ ) = 1
N

N∑
i=1

Gi(τ ), (4.11)

ḠLAG,dist(xxy) = 1
N

N∑
i=1

Gi(xxy), (4.12)

where Gi is the value of the parameter at hand on particle i, τ = t − tshock is the time
elapsed from shock passage, xxy is the postshock distance travelled by the particle and N
is the number of particles sampled.
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Figure 26. Distribution of τ and xxy,i as a function of the longitudinal distance from shock front in 2H2–O2
mixture. (a) Joint p.d.f. between the longitudinal distance from shock front xs and time from shock front passage
τ . (b) Joint p.d.f. between xs and the distance xxy,i; (c) p.d.f. of xs at several τ , (d) p.d.f. of xs at several xxy,i.

Then, from the different Reynolds averaging procedures, the Favre average quantities
can be obtained from Reynolds averaged conservative variables η̃ = ρη/ρ̄, where η is the
conservative variable (Favre 1965).

In order to enable the comparison between ḠEUL and ḠLAG,time, we need to map the time
elapsed from shock passage up to the longitudinal distance from the shock location xs,time.
The following mapping will be used in (4.11):

xs,time =
∫ τ

0
(D̄ − ũ) dτ. (4.13)

Here, D̄ is the average propagation velocity of the detonation front and is equal to DCJ in
the present simulation conditions. In order to map the distance travelled by the Lagrangian
particle from the shock passage to the longitudinal distance from the shock location based
on the distance travelled by the Lagrangian particle xs,dist, the following mapping will be
used in (4.12) for ḠLAG,dist:

xs,dist =
∫ τ

0
(D̄ − ũ) dt such as dt = dxxy/

[
ũ2 + ṽ2

]1/2
. (4.14)

Here, ũ and ṽ are the Lagrangian Favre averages of the x and y components of the velocity
in the laboratory frame. Figure 27 depicts the relations (4.13) and (4.14) between the
distance from the shock front, the time from shock passage and the longitudinal distance
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Figure 27. Lagrangian Favre average 1-D profiles for both mixtures (a) xs / xind and τ , (b) xs / xind and τ / τind .

from shock location. The results of the two Lagrangian procedures and the ZND model
agreed well with each other, meaning that the procedures to convert the target values
used in the Lagrangian procedures into the longitudinal distance from the shock front
are appropriate.

The effects of the distance travelled by the particle and the time elapsed from the shock
passage are not taken into account in the Eulerian procedure. However, the time elapsed
from the shock passage is more relevant as far as chemical reactions are concerned. There
are also differences between the two Lagrangian procedures. Indeed, the difference is more
apparent especially in the boundary layer. Due to the lower velocity in the boundary layer,
the distance xxy does not increase as that in the core of the flow, for the same time elapsed
from shock passage.

The comparison of the Favre average 1-D profiles in the instantaneous shock frame for
2H2–O2–7Ar and 2H2–O2 mixtures are depicted in figures 28 and 29, respectively. The
frozen sound speed was used to estimate the Mach number in figures 28(d) and 29(d). The
trends for the profiles of pressure, temperature and Mach number were nevertheless similar
regardless of the Favre average procedure, either from the Eulerian or the Lagrangian point
of view. Slight oscillations in Lagrangian Favre averages are observed near the front for
the diluted case. In all cases, the profiles differed from that of the ZND solution. Indeed,
Radulescu et al. (2007) and Sow et al. (2014) showed that the fluctuations delayed the
energy deposition. Lalchandani (2022) developed a physical model that explained the
slower rate of the heat release by the decaying of the shock velocity inside the cell.

As for the regular case (figure 28), the distributions of the chemical species, the
thermicity and the other variables in Lagrangian and Eulerian results were almost
identical. On the other hand, as for the irregular case, the width of the thermicity was
wider (figures 28c,e, f,g and 29c,e, f,g). The increasing part of the curves was similar,
whereas differences were apparent in the decreasing part of the thermicity, after its
peak. All the other profiles then followed the same trend: Eulerian results matched the
Lagrangian results before the peak of thermicity, with Lagrangian results decreasing more
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Figure 28. Favre average 1-D profiles in 2H2–O2–7Ar mixture for (a) pressure, (b) temperature,
(c) thermicity, (d) Mach number, (e) H2 mass fraction, ( f ) OH mass fraction, and (g) H2O mass fraction.

smoothly afterwards. Fewer differences were observed in the pressure and Mach number
profiles. The maximum differences for the H2 mass fraction were located after the peak of
thermicity. They reached 12 % and 18 % between the Eulerian and Lagrangian time and
distance averages for the diluted mixture and increased up to 33 % and 36 % for the other
mixture.
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Figure 29. Favre average 1-D profiles in 2H2–O2 mixture for (a) pressure, (b) temperature, (c) thermicity,
(d) Mach number, (e) H2 mass fraction, ( f ) OH mass fraction, and (g) H2O mass fraction.

Based on the reduced activation energy and the related stability analysis for the
emergence of longitudinal disturbances in 1-D cases, the mixtures could be classified
as weakly and mildly unstable. Transverse disturbances then came into play in 2-D
configurations. As argued at first by Radulescu et al. (2007) and by many others (Maxwell
et al. 2017; Taileb et al. 2018; Reynaud et al. 2020; Sow et al. 2021), the fluctuations
and the induced dispersion explain the differences between the mean quantities from
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Figure 30. Joint p.d.f. between displacement fluctuations at t0 and that at t0 + τc in 2H2–O2–7Ar mixture.
(a) The x′

i displacement fluctuations with τc = 5 μs, (b) x′
i displacement fluctuations with τc = 20 μs, (c) y′

i
displacement fluctuations with τc = 5 μs, (d) y′

i displacement fluctuations with τc = 20 μs.

numerical simulations and the ZND results. All dispersion quantities (x′2
i , y′2

i ), when
non-dimensionalized by (Ea/(RTvN))xind were found to be self-similar in the time τ/τind.
This good agreement suggests that the dispersion could result from a 1-D instability
mechanism only. It may thus originate from the fluctuations of the leading shocks that
induce the induction and reaction length fluctuations, with transverse waves being a
necessary corollary.

On the other hand, the relative dispersion was also found to be self-similar in the time
τ/τind, after the main heat release zone, when the relative dispersion was normalized by
χxind, with χ considered as a dimensionless acceleration. Both mixtures lie on either side
on the neutral stability curve. Small values of χ imply that the pulses of heat release
of neighbouring particles will overlap (Radulescu 2003). On the other hand, if this χ
parameter is larger, gas-dynamic instabilities result from the lack of coherence of the power
pulses and discreteness, and led to the deviations observed in the Eulerian and Lagrangian
averaging processes after the peak thermicity for the irregular case.

The value of the specific heat ratio at vN state for the non-diluted case is 1.32 and
was very close to the boundary where Mach bifurcation occurs due to jetting after triple
point collision (Lau-Chapdelaine et al. 2021; Sow et al. 2021), which results in more
mixing behind the front. For the range of γvN investigated in this study, the impact of
compressibility (see figure 7 in Sow et al. (2021)) can be estimated to be low.
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Figure 31. Joint p.d.f. between displacement fluctuations at t0 and that at t0 + τc in 2H2–O2 mixture. (a) The x′
i

displacement fluctuations with τc = 2 μs, (b) x′
i displacement fluctuations with τc = 8 μs, (c) y′

i displacement
fluctuations with τc = 2 μs, (d) y′

i displacement fluctuations with τc = 8 μs.

Mixtures τc (μs) - Figures Correlation coefficients

2H2–O2–7Ar

5 – figure 30(a)
σx′

i(t0)x
′
i(t0+τc)

0.98
20 – figure 30(b) 0.89
5 – figure 30(c)

σy′
i(t0)y

′
i(t0+τc)

0.98
20 – figure 30(d) 0.90

2H2–O2

2 – figure 31(a)
σx′

i(t0)x
′
i(t0+τc)

0.84
8 – figure 31(b) 0.70
2 – figure 31(c)

σy′
i(t0)y

′
i(t0+τc)

0.88
8 – figure 31(d) 0.81

Table 3. Correlation coefficients between displacements at t0 and at t0 + τc.

Figures 30 and 31 show the joint p.d.f. of the fluctuations of the displacements x′
i =

(xp,i − xp,i,0)− (xp,i − xp,i,0) and y′
i = (yp,i − yp,i,0) at a certain instant t0 with that at

a later time t0 + τc, τc being equal to ∼ τHT/2 and ∼ 2τHT , where τHT is the time
corresponding to the hydrodynamic thickness. If the motion were to be Brownian, the
shape of the joint p.d.f. would correspond to a circle. Instead, in both cases, the joint p.d.f.
lay along positive lines, meaning that they are positively correlated to each other. One can
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Averaging procedure

Mixture Characteristic lengths Eulerian Lagrangian (distance) Lagrangian (time)

Induction length 1.1 1.1 1.0
2H2–O2–7Ar Reaction length 3.8 3.9 3.9

Hydrodynamic thickness 115.0 117.7 117.0
Average cell width 17.0 — —

Induction length 0.9 1.0 0.8
2H2–O2 Reaction length 0.8 0.8 0.8

Hydrodynamic thickness 129.6 149.6 134.6
Average cell width 14.4 — —

Table 4. Characteristic lengths normalized by induction length for 2H2–O2–7Ar and 2H2–O2 mixtures.
Non-dimensionalized cell widths are added for comparison. The Lagrangian (distance) stands for the averaging
process, described by (4.12), (4.14) and Lagrangian (time) refers to procedure based on (4.11), (4.13).

see that the shape of the joint p.d.f. got rounder as time passed, all the more so as we got
outside the mean detonation driving zone. Table 3 lists the correlation coefficients for the
joint p.d.f. of figures 30 and 31 that were very high.

Table 4 lists the characteristic lengths for both mixtures for the different Favre averaging
procedures. The induction and reaction lengths were almost the same. The position of
the peak thermicity can be captured regardless of the average method. Only a slight
variation was observed for the hydrodynamic thickness for the irregular case after the
peak thermicity. Therefore, the Eulerian Favre average procedure gave the mean structure
of the gaseous detonation with a reasonable accuracy.

5. Conclusions

Two-dimensional simulations with the Lagrangian particle tracking method were
conducted for weakly and mildly unstable hydrogen-based mixtures at ambient conditions.
Two new Lagrangian Favre average procedures, based on the distance travelled by the
particle or the time from the shock passage were proposed and 1-D profiles were compared
with those from the Eulerian procedure, based on the longitudinal distance from the shock
front. The integral length was the hydrodynamic thickness that encompasses the mean
detonation driving zone from the leading shock to the mean sonic line. The results from
the Eulerian and Lagrangian averaging processes gave similar induction length, reaction
length and hydrodynamic thickness. The Eulerian results gave the mean structure with
a reasonable accuracy. As the mixture instability increased, the Lagrangian results were
smoother after the thermicity peak than the Eulerian results.

Dispersion is inherent to the detonation driving zone, due to the fluctuations of the
leading shock and its curvature, the presence of the reaction front, transverse waves,
forward and backward jets, vortical structures and boundary layer. The latter was minor
as the detonation was ideal with no losses. The main findings were that dispersion could
be scaled with (Ea/(RTvN))xind and that the relative dispersion far from the shock, scaled
by χxind with χ as a dimensionless acceleration. The fact that these instability parameters
were successful for these scalings strongly suggests that the main mechanism driving
the dispersion was the 1-D leading shock fluctuations, i.e. its decaying and amplification
upon triple shock collision within the cell. For more highly unstable mixtures with larger
Ea/(RTvN) and χ , the presence of more frequent unburnt pockets of fresh gases along with
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their burning mechanisms can circumscribe these findings. Moreover, the displacement
fluctuations at a given time were positively correlated to the displacement fluctuations at a
later time, corresponding to approximately the hydrodynamic thickness time scale.

The dispersion in the induction time scale was closely related to the cellular structure.
Particles are not only accumulated between the locations of the transverse wave and triple
point collisions but were also along the triple point trajectories. Another finding was that as
the mixture instability increased, the contribution of the transverse waves along the triple
point trajectories in the accumulation of the particles increased. The differences with the
physical picture of cell size model relying on discrete blast dynamics were more apparent.

The induction process was completed within first half of the cell cycle in the diluted
case, whereas more variation in the induction time could be found in the non-diluted
case due to the higher activation energy and the presence of unburnt pockets. Within the
induction time scale, the transverse dispersion was mainly due to the curvature of the
leading shock. This effect was more pronounced near the edges of the cell and during the
first part of the cell, when the leading detonation front was a Mach stem.

The detonation could be described as a two-scale phenomenon, especially for the
unstable mixture. The first scale, of a few induction lengths approximately 5 ∼ 10xind,
could be related to the main heat release zone, from the shock up to the vicinity of the
peak thermicity. The influence of the transverse waves was still present. Indeed, the levels
of y′

i were approximately those of x′
i. Then after a transient, a new zone was present. The

transverse y′
i decreased, leading to small anisotropic dispersion ([y′2

i /x
′2
i ]1/2 ∼ 0.6). The

Richardson–Obukhov scaling law surprisingly still held, in the zone of small heat release
after the peak thermicity, suggesting that classical non-reacting laws of turbulence may
remain relevant. Only the unstable case approached the R-O scaling within the mean
detonation driving zone.

The dispersion of the Lagrangian particles was promoted behind the detonation front.
We could try to sort out the production of these fluctuations: x displacements due to
the decaying detonation front (1-D instability mechanism), then y displacements due to
the curvature of the leading inert shock front and the presence of the reaction front
(due to density ratio). The variation of the distance between the leading shock and the
reaction front in the transverse direction induced further transverse dispersion (maximum
of y′2

i /x
′2
i around 2τind). Even if the reactive transverse waves were present in the diluted

case, and some unburnt pockets in the non-diluted case, these differences do not manifest
themselves on the dispersion of the Lagrangian particles (collapse of the histories of scaled
x′2

i /(Ea/(RTvNxind))
2 and y′2

i /x
′2
i ). In our case, due to high isentropic coefficients, the jets

have not induced any cell bifurcation.
The study of the derivative of the relative dispersion with respect with time

showed that after the main heat release, the relative dispersion relaxed towards the
Richardson–Obukhov regime (exponent near 3), especially for the non-diluted case. The
influence of the vortical motions coming from the jets and the slip lines, the fading of the
transverse waves cannot be ignored in this transition.

Moreover, the exponent of the p.d.f. for the relative dispersion was also consistent
with Richardson’s prediction in the unstable case. Furthermore, the p.d.f. for the relative
dispersion was self-similar in time. Nevertheless, the velocity field was not short time
correlated with a separation distance below the induction length, meaning that the
dispersion process could not be described by the diffusive equation. The relative dispersion
scaled with the χ parameter, which suggested that the rapid energy deposition on the
reaction length scale also contributed to this phenomenon.
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In addition, the present finding on the velocity field behind the detonation front can help
to develop a turbulent model for detonation. Lagrangian averaging can have a merit over
that from Eulerian results despite its higher computational cost. Conditional p.d.f. as in
dispersed detonation flows (Watanabe et al. 2021) could improve our understanding of the
links between pressure, vortical, entropy modes and chemistry in detonation.
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Appendix A. Assessment of numerical convergence

In this appendix, the numerical convergence was assessed to check the effect of the
grid resolution on the simulation results. The high computational cost for the numerical
simulations with the Lagrangian particle tracking method prevented us using higher
grid resolution than that used in the present study. According to previous studies, the
present grid resolution satisfied the requirement for the grid resolution for the convergence
of the 1-D average profiles (Reynaud et al. 2017, 2020) for both mixtures and a
reasonable physical structure in the instantaneous 2-D flow field (Mazaheri et al. 2012)
in 2H2–O2–7Ar mixture.

The numerical convergence was assessed by comparing the simulation results using a
coarser grid, which was two times larger than the one used for the main results. The same
simulation conditions were used and the propagation velocity was the same regardless of
the grid resolution. In addition, the average cell width in the simulation from the manual
measurement of 150 and 300 cells for the 2H2–O2–7Ar and 2H2–O2 mixtures in the coarse
grid was 1.3 and 0.7 mm, respectively. The average cell width agreed well between the two
different grid resolutions.

The comparison of the average dispersion between the two different grid resolutions was
shown in figure 32. Although minor differences were observed, the profiles for average
dispersion with different grid resolutions were similar (figure 32).

The effect of the grid resolution on the relative dispersion was also evaluated. The
initial distance between two particles in the same pair was doubled, as compared with
the computations shown in § 4.3. Figure 33 depicts the average relative dispersion for
2H2–O2–7Ar and 2H2–O2 mixtures. The profiles were similar between the two grid
resolutions. In the 2H2–O2 mixture, the differences could be seen, as the time from shock
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resolutions. (a) Average relative dispersion rx

2, ry
2, rxy

2, as a function of time passage τ , (b) time history
of normalized (rxy/(χxind))

2 compensated by normalized (τ/τind)
3.

passage increased. Nevertheless, the average relative dispersion r̄xy normalized by the
characteristic length scale χxind as a function of the time from shock front passage τ/τind
showed similar trends for both grid resolutions, meaning that the scaling worked well and
that the R-O law still held.
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Figure 34. Favre average 1-D profiles in 2H2–O2–7Ar mixture with two different grid resolutions for
(a) pressure, (b) H2 mass fraction, (c) Mach number, (d) thermicity.

The comparisons of the Favre average 1-D profiles in the instantaneous shock frame
from Eulerian and Lagrangian points of view using the two different grid resolutions for
2H2–O2–7Ar and 2H2–O2 mixtures are depicted in figures 34 and 35. The characteristic
lengths estimated from the Favre average 1-D profiles in the coarse grid are listed in table 5.

In the 2H2–O2–7Ar mixture, the Favre average 1-D profiles for pressure, H2 mass
fraction, Mach number and thermicity were well converged between the two different grid
resolution regardless of the Favre average procedure (figure 34). The Favre average 1-D
profiles from Eulerian procedure for the 2H2–O2 mixture were also similar between the
two different grid resolutions (figure 35), except some minor differences.

Therefore, the characteristic lengths were similar between the two different grid
resolutions. Moreover, the mean structure was also well captured by the present grid
resolution (tables 4 and 5). This observation on the effect of grid resolution on the mean
structure was in line with the previous studies (Reynaud et al. 2017, 2020).

Thus, the profiles used for the analysis were well captured in the present grid resolution,
and the conclusions on the Lagrangian dispersion and the mean structure in this study
were not called into question by the numerical resolution.

Appendix B. Evaluation of anisotropy from the fluctuations in displacement

The dispersion was anisotropic (see figure 12b), where [y′2
i /x

′2
i ]1/2 decreased from 1

near the front to 2/3 at the end of the detonation driving zone. To quantify further
this dispersion, the joint p.d.f. between x′

i and y′
i is depicted in figures 36 and 37 for

different instants to show their evolution. The centres are determined where x′
i = y′

i = 0.
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Figure 35. Favre average 1-D profiles in 2H2–O2 mixture with two different grid resolutions for (a) pressure,
(b) H2 mass fraction, (c) Mach number, (d) thermicity.

Averaging procedure

Mixture Characteristic lengths Eulerian Lagrangian (distance) Lagrangian (time)

Induction length 1.1 1.1 1.0
2H2–O2–7Ar Reaction length 3.8 3.9 3.9

Hydrodynamic thickness 114.4 117.9 116.2
Average cell width 17.0 — —

Induction length 0.9 1.0 0.8
2H2–O2 Reaction length 0.8 0.8 0.8

Hydrodynamic thickness 129.2 154.8 154.4
Average cell width 14.2 — —

Table 5. Characteristic lengths normalized by induction length for 2H2–O2–7Ar and 2H2–O2 mixtures in the
coarse grid resolution. Non-dimensionalized cell widths are added for comparison. The Lagrangian (distance)
stands for the averaging process, described by (4.12), (4.14) and Lagrangian (time) refers to procedure based on
(4.11), (4.13).
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Figure 36. Joint p.d.f. for 2H2–O2–7Ar between the fluctuations of longitudinal displacements x′
i and that of

the transverse displacements y′
i for different times from shock passage: (a) 5 μs; (b) 10 μs; (c) 15 μs; (d) 20 μs.

The boundary of the joint p.d.f. shape was taken at 104. The roundness and relative
roundness were then evaluated as a measurement of the anisotropy:

Rn = max((ex,p + ex,n), (ey,p + ey,n))− min((ex,p + ex,n), (ey,p + ey,n)), (B1)

Rn,r = Rn/max((ex,p + ex,n), (ey,p + ey,n)). (B2)

Here, ex,p and ex,n are the distances from the centre to the edges of the boundary in the
x-axis, and in the same way for ey,p and ey,m in the y-axis. The roundness and relative
roundness denote the degree of the symmetry of the joint p.d.f. and its relative magnitude,
respectively. Their values are listed in table 6. The roundness was not zero and increased as
time passed for both mixtures, which means that dispersion became anisotropic. However,
the relative roundness rapidly saturated to 35 % and to 40 % for both mixtures, values of
which are consistent with the ratio of 1 − [y′2

i /x
′2
i ]1/2 ∼ 1/3 found previously.

Appendix C. The p.d.f. of the relative dispersion, correlation coefficients and
characteristic time scales

The curves for the diffusive limit and the inertia regime are recalled here as they were
included in figure 22(c–f ) for comparison. The p.d.f. for the relative dispersion in the
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Figure 37. Joint p.d.f. for 2H2–O2 between the fluctuations of longitudinal displacements x′
i and that of the

transverse displacements y′
i for different times from shock passage: (a) 2 μs; (b) 4 μs; (c) 6 μs; (d) 8 μs.

Mixture Value

Time from shock passage (μs) 5.0 10.0 15.0 20.0
Roundness (mm) 0.51 0.55 0.97 0.89

2H2–O2–7Ar Relative roundness (%) 36.0 28.0 35.0 30.0
Offset in x direction (mm) 0.14 0.31 0.49 0.61
Offset in y direction (mm) 0.07 0.13 0.28 0.30

Time from shock passage (μs) 2.0 4.0 6.0 8.0
Roundness [mm] 0.55 0.86 0.77 1.38

2H2–O2 Relative roundness (%) 39.0 45.0 34.0 46.0
Offset in x direction (mm) 0.11 0.11 0.23 0.38
Offset in y direction (mm) 0.12 0.14 0.22 0.29

Table 6. Roundness and offset from the centre in joint p.d.f. for the fluctuations of longitudinal
displacements and that of the transverse displacements.
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Averaging procedure

Mixture Characteristic times Eulerian Lagrangian (distance) Lagrangian (time)

Induction time 0.9 1.0 0.9
2H2–O2–7Ar Reaction time 1.7 1.7 1.7

Hydrodynamic thickness time 55.5 56.3 56.4
Characteristic time for cell 6.6 — —
(cell length/DCJ)

Induction time 0.6 0.7 0.6
2H2–O2 Reaction time 0.3 0.3 0.3

Hydrodynamic thickness time 48.4 54.7 50.0
Characteristic time for cell 4.3 — —
(cell length/DCJ)

Table 7. Characteristic times normalized by induction time for 2H2–O2–7Ar and 2H2–O2 mixtures. The
Lagrangian (distance) stands for the averaging process, described by (4.12), (4.14) and Lagrangian (time) refers
to procedure based on (4.11), (4.13).

diffusive limit fdiff is given by (Buaria et al. 2015)

p.d.f.diff = 3
√

6/π(rxy/rxy)
2 exp

[
−3

2 (rxy/rxy)
2
]
. (C1)

Richardson predicted the p.d.f. for the relative dispersion in the inertia regime p.d.f.inertia
as follows (Sawford, Pope & Yeung 2013):

p.d.f.inertia =
(

1144
81

)3/2 (
2187

560
√

π

)
(rxy/rxy)

2 exp
[
−9

4

(
1144
81

)1/3
(rxy/rxy)

2/3
]
. (C2)

The characteristic times normalized by the induction time for both mixtures for the
different Favre averaging procedure are listed in table 7.

The correlation coefficients between the displacements at t0 and at t0 + τc in
longitudinal and transverse directions in table 3 are estimated by the following (C3) and
(C4), respectively:

σx′
i(t0)x

′
i(t0+τc) =

1
Nc

Nc∑
i=1

(x′
i(t0)− x′

i(t0))(x
′
i(t0 + τc)− x′

i(t0 + τc)√√√√ 1
Nc

Nc∑
i=1

(
x′

i(t0)− x′
i(t0)

)2

√√√√ 1
Nc

Nc∑
i=1

(
x′

i(t0 + τc)− x′
i(t0 + τc)

)2

,

(C3)

σy′
i(t0)y

′
i(t0+τc) =

1
Nc

Nc∑
i=1

y′
i(t0)y

′
i(t0 + τc)√√√√ 1

Nc

Nc∑
i=1

y′
i(t0)y

′
i(t0)

√√√√ 1
Nc

Nc∑
i=1

y′
i(t0 + τc)y′

i(t0 + τc)

. (C4)

Here, Nc is the number of Lagrangian particles inside the computational domain at t0 + τc.
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