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Linear stability analysis of a boundary layer with
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Cylinder stubs of finite length, mounted in a wall-normal manner on a flat plate,
exert considerable control on their wake when rotating around their central axis. The
present paper investigates these effects with linear stability theory and a direct numerical
simulation. Three configurations are considered: evenly spaced corotating roughness
elements, as well as positive and negative counter-rotating roughness pairs. Here, ‘positive’
and ‘negative’ are defined in accordance with the induced high- and low-speed streaks,
respectively. A primary feature of the rotating-cylinder-induced wake is a ‘dominating
inner vortex’ (DIV), which intensifies the lift-up effect and creates high-amplitude streaks.
Linear stability analysis shows that the modified streaky flow is capable of effectively
stabilizing Tollmien–Schlichting (TS) modes. The mechanism of TS mode stabilization,
as found by a perturbation kinetic energy analysis, is attributed to the reduction of
the wall-normal perturbation production. On the other hand, an inviscid inflectional
instability mode related to the presence of the roughness appears which destabilizes the
boundary-layer flow, primarily due to an increase in wall-normal perturbation energy
production, but also due to increasing spanwise energy production, depending on the case.
The inflectional instability roughness mode is more amplified with thicker cylinders since
the induced DIV tends to support longer-living inflection points. Regarding an imaginable
laminar–turbulent transition delay, positive rotating thinner roughness pairs would be
preferable.
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1. Introduction

Surface roughness elements of boundary layer size and smaller are ubiquitous and have
a crucial influence on flow instability and laminar–turbulent transition. The velocity
streaks generated by the so-called lift-up effect (Landahl 1980) had long been believed
to trigger earlier transition, until the work of Cossu & Brandt (2004) and Fransson
et al. (2006) demonstrated that the streaky flow produced by roughness arrays is also
capable of delaying laminar–turbulent transition. This motivated additional investigations
of transition delay methods with roughness elements in both two-dimensional (2-D)
(Fransson et al. 2006) and three-dimensional (3-D) (Saric, Carpenter & Reed 2011)
boundary layers, due to the fact that a successful transition delay technology has a great
benefit in the reduction of operational costs for moving vehicles and engineering parts or
processes.

The laminar–turbulent transition process in a Blasius boundary layer can take several
paths depending on the level of external disturbances (Morkovin 1994), like free stream
turbulence, surface roughness or controlled excitation. At low levels of excitation, linear
stability theory (LST) reveals the contribution of Tollmien–Schlichting (TS) waves, which
are 2-D, viscous and grow exponentially. As the amplitude of the TS-wave grows to
1 % of the free stream velocity, secondary instability sets in and it quickly breaks
down into turbulence (Kachanov 1994). At higher external disturbance levels, very weak
streamwise vortices are able to push high-speed fluid towards the wall and the low-speed
fluid to the opposite direction, i.e. the lift-up mechanism (Landahl 1980), thus creating
elongated streamwise streaks. In such circumstances, a transient algebraic increase of
the perturbation, which is due to the non-normality of the controlling stability operator
(Trefethen et al. 1993), followed by viscous decay can be expected (Reshotko 2001). If
the external disturbance level is relatively low, the non-modal growth falls back to the
modal growth of the primary instability. With moderate levels of external disturbances, the
generated velocity streaks are able to support inviscid inflectional instability. A sinuous
type of instability sets in when the streak amplitude exceeds 26 % of the free stream
velocity u∞, while a varicose type is expected when the streak amplitude reaches 37 %
of u∞ (Andersson et al. 2001). The amplification of inviscid inflectional modes activates
generation of higher harmonics, leading to the breakdown of the streaks and the rise
of turbulent spots (Bakchinov et al. 1995; Brandt, Schlatter & Henningson 2004). If
the boundary layer flow is exposed to even higher levels of external disturbances, the
non-modal growth of disturbances can evolve directly into the turbulent state, bypassing
the primary instability mechanism (Morkovin 1985).

Regarding surface-roughness-induced laminar–turbulent transition, the investigations
date back to the 1950s, for example Tani & Sato (1956) for 2-D roughness elements
and Gregory & Walker (1956) for 3-D isolated roughness elements. Two-dimensional
roughness elements, such as gaps and steps, can be understood as an amplifier of 2-D
TS waves (Ergin & White 2006), where recirculation zones behind the 2-D roughness
elements provide a destabilization mechanism for the primary instability and thus
enhance the growth rate of TS waves (Klebanoff & Tidstrom 1972; Goldstein 1985).
Understanding of boundary layer instability with 3-D roughness elements is, however,
much more complicated. Gregory & Walker (1956) were among the first to investigate
a boundary layer with a 3-D isolated roughness element, where a horseshoe vortex
that wraps around the roughness element and two following elongated counter-rotating
streamwise vortex legs were visualized with smoke flow. Another distinct feature which
is well known today is a system of downstream velocity streaks of alternating high-
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Boundary layer stability with rotating cylindrical roughness

and low-speed fluid generated by the counter-rotating vortex legs. Because of the lift-up
effect (Landahl 1980), this streaky flow can give rise to transient growth which can be
strong enough to trigger laminar–turbulent transition (Joslin & Grosch 1995). In this
regard, it is believed that such spanwise periodic steady streamwise vortices are the
most dangerous disturbances according to optimal transient growth theory (Butler &
Farrell 1992; Luchini 2000). Furthermore, an optimal streak as predicted by Andersson,
Berggren & Henningson (1999) is one with a non-dimensioned spanwise wavenumber
β = 0.45. However, good agreement has only been found in experiments with free stream,
turbulence-generated streaks (Matsubara & Alfredsson 2001). The transient growth with
surface-roughness-elements-generated streaks is only suboptimal (Ergin & White 2006;
Rizzetta & Visbal 2007), i.e. it reaches its maximum far downstream of the optimal
prediction. At high streak amplitude, secondary instability arises either from wall-normal
or spanwise inflectional velocity profiles which finally leads to breakdown of the streaks
and ends up in rapid laminar–turbulent transition (Bakchinov et al. 1995; Andersson et al.
2001; Brandt et al. 2004).

In contrast to the above-mentioned streak-induced non-modal instability, which is found
to trigger earlier transition, a stabilization effect with steady and unsteady streaks were
experimentally observed by Kachanov & Tararykin (1987) and Boiko et al. (1994),
respectively. The stabilization mechanism as revealed by numerical simulation and linear
stability analysis (Cossu & Brandt 2002, 2004) is that the extra perturbation production
energy from the spanwise shear brought in by the streaks turns to become negative,
which, together with the viscous dissipation, outweigh the wall-normal production
term, thus resulting in an overall stabilization effect. Inspired by this theoretical
prediction, cylindrical roughness-element-induced streaks are observed to delay transition
experimentally (Fransson et al. 2006). This approach needs a careful set-up to avoid the
fast growing inflectional secondary instability. It is also found that the stabilization effect
prefers higher amplitude streaks which produce stronger spanwise shear and accordingly
greater stabilization effects. However, the global instability arising from the wake behind
big cylinders prevents the use of large cylindrical roughness elements (Loiseau et al.
2014). Therefore, winglet-type miniature-vortex generators (MVG) were used to generate
high-amplitude streaks and smaller recirculation zones behind the MVG (Shahinfar
et al. 2012; Siconolfi, Camarri & Fransson 2015), so as to avoid the global instability.
Accordingly, the streak-amplitude threshold is pushed from 12 % of u∞ with cylindrical
roughness elements (Fransson et al. 2004) to 32 % with MVG (Fransson & Talamelli
2012).

The present paper considers a novel active method to control velocity streaks by
simply rotating the roughness elements along their axis, which is oriented normal to
the flat-plate surface. Existing investigations which can be found in literature deal with
infinite static and rotating circular cylinders in a uniform free stream flow, see Williamson
(1996) and Rao et al. (2015) for a comprehensive review. By rotating an infinite cylinder,
the 2-D Bénard-von Kármán vortex shedding can be efficiently suppressed (Mittal &
Kumar 2003). Despite the vast number of investigations of flow instability with rotary
infinite cylinders, there is no study of boundary layer stability with rotating finite-length
cylindrical elements apart from ours.

Before the relevant instability mechanisms were revealed, a correlation between the
observed transitional roughness Reynolds number Rekk = u(k)k/ν and the roughness
element aspect ratio η = D/k was developed (Klebanoff, Schubauer & Tidstrom 1955;
Tani 1969). Here, u(k) is the unperturbed velocity at roughness height k and D the
roughness diameter. The transition diagram published by Von Doenhoff & Braslow (1961)
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indicates that the critical transitional Reynolds number Rekk scales with the aspect ratio
proportional to η2/5. At supercritical Rekk, the laminar–turbulent transition is expected
shortly behind it. From this correlation diagram, the critical Reynolds number for a
roughness element with aspect ratio η = 1 is 484 < Rekk < 882, which increases to
610 < Rekk < 1017 for a roughness element with η = 0.5. This means that thin roughness
elements are, therefore, less likely to trigger an early transition. With the present method,
higher amplitude streaks can be obtained by rotating thinner roughness elements, rather
than employing thicker roughness elements. The benefits of this method are two-fold:
TS-wave attenuation with higher amplitude streaks and prevention of early transition with
thinner roughness elements.

In this work, the instability of the streaky flow induced by rotating roughness elements
is studied with LST. In § 2, the set-up of the roughness elements studied and the
relevant numerical methods are introduced. Next, the resulting baseflow and its linear
stability properties are discussed in § 3. The underlying mechanisms are identified with a
perturbation kinetic energy (PKE) analysis in § 3.3 which is followed by a direct numerical
simulation (DNS) study in § 3.4 which excludes the threat of a possible bypass transition
by the presence of the roughness elements. The results are summarized and concluded in
§ 4.

2. Numerical methods

2.1. Set-up
The numerical set-ups of the boundary layer study with embedded corotating and
counter-rotating cylindrical roughness elements are illustrated in figures 1(a) and 1(b),
respectively. The roughness elements with height k and diameter D are placed at the
location xk from the flat plate leading edge, under zero-pressure gradient in the streamwise
direction. At this station, the non-dimensional displacement thickness is δ∗/k = 0.6883.
A roughness pair consists of two rotating roughness elements with spacing λ, as shown in
figure 1. The spanwise spacing between roughness pairs is Λ. The origin of the local
x, y, z coordinate system is placed at the location of the roughness element xk for the
corotating case and is placed at the centre of the roughness pair for the counter-rotating
case. Hereafter, all length scales are non-dimensionalized by the dimensional roughness
height k̄. The incoming free stream velocity is u∞. Depending on the rotation sense of
the roughness pair, different types of downstream streaks are created. For the corotating
roughness case, the generated downstream vortices rotate in the same direction, which
will counteract the momentum exchange effect of neighbouring vortices. In contrast,
this momentum exchange effect is intensified in the case of counter-rotating roughness
elements. The strength of the generated downstream vortices depends on the rotation
velocity of the roughness elements. This can be expressed in non-dimensional form by
the ratio of the tangential velocity induced by the cylindrical roughness element to the
incoming local velocity at its top, i.e.

Ωu = ΩD
2u(k)

, (2.1)

where Ω is the angular velocity of the cylinder and u(k) is the unperturbed Blasius velocity
at the upper edge of the cylinder.

The configurations considered in the present study are summarized in table 1. The
counter-rotating cases C1, C2 and C4 differ by their aspect ratio η, the spacings (λ, Λ)
and the positive and negative rotation sense as indicated in the table. In the positive
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Figure 1. Numerical set-up of rotating roughness elements embedded into a flat-plate boundary layer.
High- and low-momentum flow induced by streamwise vortices are coloured in red and blue, respectively.
(a) Corotating roughness elements; (b) counter-rotating roughness elements.

No. Rotation type Rek Rekk xk η λ Λ δ∗/k Ωu

C1 Counter- 620 465.8 99.2 0.5 2 8 0.6883 +0.1/ + 0.2/ + 0.46a

C2 Counter- 620 465.8 99.2 1 4 12 0.6883 +0.2/ + 0.46
C3 Co 620 465.8 99.2 1 6 12 0.6883 0/0.2/0.46
C4 Counter- 620 465.8 99.2 1 4 12 0.6883 −0.2/ − 0.46b

Table 1. Parameters of simulation, non-dimensionalized with respect to roughness height k̄ = 0.01 m and
free stream velocity ū∞ = 0.937 m s−1.

a+: rotation direction with high-momentum creation in the centre.
b−: rotation direction with low-momentum creation in the centre.

counter-rotating case, a high-momentum fluid area is induced in the middle of the
roughness pair. In the negative rotation case, a low momentum fluid is induced in
the middle of the roughness pair. The roughness spacings (λ, Λ) in case C1 follow
the case C01 from Siconolfi et al. (2015), which demonstrated an effective delay
of laminar–turbulent transition induced by TS waves. The roughness elements in the
corotating case C3 are equally spaced, to simulate a regular roughness array. A small and a
moderate rotation rate are considered for the counter-rotating case, i.e. Ωu = 0.2 and 0.46,
respectively. The static roughness array case, i.e. Ωu = 0 in case C3, is taken as reference.

2.2. Base flow computation
In LST, the flow quantities q(x, t) = {u, v, w, p}(x, t) are split into a steady baseflow q0(x)

and an unsteady perturbation q′(x, t) similar to the Reynolds decomposition. In this study,
the steady baseflows have been computed with the method of selective frequency damping
(SFD) (Åkervik et al. 2006). In the SFD approach, a filtered state ũ is introduced and its
evolutionary equation is solved together with the Navier–Stokes equations. The following
non-dimensional governing equations are obtained:

∇ · u = 0, (2.2)

∂u
∂t

+ (u · ∇)u = −∇p + 1
Rek

	u − χ(u − ũ), (2.3)

∂ũ
∂t

= ωc(u − ũ), (2.4)
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where Rek = ū∞k̄/ν̄ is the Reynolds number based on free stream velocity, ωc is the filter
cutoff circular frequency and χ is the feedback control coefficient. An overbar denotes
dimensional values, hence t = t̄ū∞/k̄ and p = p̄/(ρ̄ū2). The additional forcing term on
the right-hand side of the momentum equation works as a temporal low-pass filter. From
theoretical analysis it is known that the cutoff frequency ωc should be lower than the
frequency of the lowest instability, while the feedback control coefficient χ should be
higher than the growth rate of that instability (Åkervik et al. 2006).

The above governing equations are implemented and solved with the open source
OpenFOAM solver icoFoam, which solves the incompressible Navier–Stokes equations
using the pressure implicit with splitting of operators (known as PISO) algorithm. The
pressure equation is solved by the geometric algebraic multigrid (known as GAMG) solver
and the velocity equation by the preconditioned biconjugate gradient (known as PBiCG)
solver. The integration domain has a streamwise extent of Lx = 320 (−20 ∼ x ∼ 300) and
a wall-normal extent of Ly = 40. The spanwise extent Lz is determined by the roughness
pair spacing Λ, as given in table 1. For computational efficiency (Shrestha & Candler
2019), the Blasius boundary layer velocity profile is prescribed to the inlet according to
the distance from the leading edge of the flat plate. No-slip wall boundary conditions
are applied at the bottom wall. The cylinder can be rotated with constant Ω about its
vertical axis leading to a constant tangential velocity uw = ΩD/2 at the cylinder wall.
The following direction mixed boundary condition is imposed at the top of the integration
domain:

u
u∞

= 1, (2.5)

∂v

∂n
= ∂w

∂n
= 0. (2.6)

Here, n denotes surface norm. At the outlet, any possible reflection is eliminated by using
the following advective boundary condition together with a sponge zone with gradually
increasing damping strength towards the outlet:

Dq
Dt

= ∂q
∂t

+ u · ∇q = 0. (2.7)

A structured grid is used to discretize the above governing partial differential equations.
Following the grid convergence study in Wu & Rist (2020), 80 grid points are used
to resolve the boundary layer, which is sufficient for a laminar flow computation. An
expansion (with ratio r = 1.02–1.2) of the grid spacing toward the far field is applied to
reduce the total grid points, and 300 equidistant grid points in the circumferential direction
are used around the cylinder.

2.3. Biglobal linear stability analysis
In this paper, the instability of the boundary layer is studied with the so-called biglobal
LST (Theofilis 2011). With this method, the asymptotic behaviour of infinitesimally small
3-D perturbations superimposed on a 2-D base flow can be analysed. Transient growth is
not considered here. The analysed base flow is assumed to be parallel in x, i.e. ∂q0/∂x ≈ 0.
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The perturbations q′(x, t) are modelled by the normal mode ansatz,

q′(x, y, z, t) = q̂( y, z) exp(i(αx − ωt)) + c.c., (2.8)

where q̂ is a 2-D complex amplitude function, α the real streamwise wavenumber, ω =
ωr + iωi the complex frequency, and c.c. the complex conjugate. The real part of the
eigenvalue ωr corresponds to the angular frequency of the eigenmode/instability, while
the imaginary part ωi determines its exponential growth. The instability wave amplifies
in case of positive ωi and it decays with negative ωi. Inserting (2.8) into the linearized
Navier–Stokes equations and recasting the coefficients results in the following generalized
eigenvalue problem for temporal stability analysis:

Lq̂ = ωMq̂, (2.9)

where L and M are the coefficient matrices, given in Appendix A.
The generalized eigenvalue problem is discretized on a y–z plane at consecutive

streamwise stations x = constant, which are interpolated from the numerical simulation
with a cubic spline. Equation (2.9) is discretized by the Fourier spectral method in the
wall-normal direction and the summation-by-parts method (Mattsson & Nordström 2004)
in the spanwise direction. The grid is clustered toward the wall following the mapping
successfully used by Staudenmeyer, Schnoebel & Rist (2019) for streamwise corner-flow
instability with the same eigenvalue solver,

y =
− tanh

(
−(b1 − b2)

ȳ
ymax

− b2

)
− tanh b2

tanh b1 − tanh b2
ymax, (2.10)

with the coefficients b1 = 0.5, b2 = −1.2 and the cutoff wall-normal extent ymax ≈ 6–10.
A grid convergence study has been performed to identify the necessary discretization:
Ny = 65, and Nz = 110. At the wall surface, the boundary condition for (2.9) is q̂ = 0.
The von Neumann boundary condition ∂ q̂/∂y = 0 is specified at the top boundary, and for
the spanwise boundary a periodic boundary condition is used. The ARPACK (Lehoucq,
Sorensen & Yang 1998) routine which uses an implicitly restarted Arnoldi method is
employed to solve the generalized eigenvalue problem, (2.9). The solution procedure is
implemented in Python code, the validation of which has been performed by comparing
the TS-wave amplitude and its growth rate with numerical simulation (Wu & Rist 2020).
Another successful application of the code can be found in Puckert, Wu & Rist (2020).

2.4. PKE analysis
For an analysis of the instability mechanisms, the PKE analysis following Cossu & Brandt
(2004) is used. The basic idea is to derive the evolution equation for the PKE e′ =
(u′2 + v′2 + w′2)/2 under the assumption of periodic waves in the streamwise direction.
By integrating the PKE in the y–z plane and over a wavelength in the x direction, the
following reduced Reynolds–Orr equation is obtained:

∂E
∂t

= Ty + Tz − D, (2.11)

where E is the total PKE and D the viscous dissipation energy. Here Ty and Tz are
the production energies from the interaction of Reynolds stresses u′v′ and u′w′ with
wall-normal shear ∂u0/∂y and spanwise shear ∂u0/∂z, respectively. The above identity
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means that the temporal growth rate of the instability mode is composed of three parts:
the wall-normal, the spanwise production and the viscous dissipation. Based on the
normal-mode ansatz of the perturbation q′, the perturbation energy balance terms can
be expressed in the form (E, D, Ty, Tz) = (Ê, D̂, T̂y, T̂z) e2ωit, where ωi is the temporal
growth rate from the normal mode ansatz in (2.8). Substituting this expression back into
(2.11), leads to

ωi = T̂y

2Ê
+ T̂z

2Ê
− D̂

2Ê
, (2.12)

where the terms on the right-hand side are as follows:

Ê = 1
Λ

∫ Λ/2

−Λ/2

∫ ymax

0
ê dy dz, (2.13)

T̂y = 1
Λ

∫ Λ/2

−Λ/2

∫ ymax

0
−τ̂xy

∂u0

∂y
dy dz, (2.14)

T̂z = 1
Λ

∫ Λ/2

−Λ/2

∫ ymax

0
−τ̂xz

∂u0

∂z
dy dz, (2.15)

D̂ = 1
ΛRek

∫ Λ/2

−Λ/2

∫ ymax

0
d̂ dy dz. (2.16)

Here τ̂xy, τ̂xz denote wall-normal and spanwise Reynolds stress components calculated
from the instability wave amplitude function, respectively, and d̂ is the viscous dissipation
calculated from the perturbation vorticity vector.

3. Results and discussion

3.1. Base flow
In figure 2, vortex structures induced by an isolated static and an isolated rotating
cylindrical roughness element are illustrated by means of λ2 isosurfaces (Jeong & Hussain
1995). This serves the purpose of illustrating the influence of rotation on the vortex
structure. While two pairs of equally strong counter-rotating vortices are excited by the
static roughness element, the rotating case shows differences with respect to the symmetry
and relative strength of its vortices. The naming convention for the induced vortices
follows that of Groskopf & Kloker (2016), due to the similarity of the generated vortex
structure between the rotating roughness element and their oblique roughness element.
For the typical static roughness element (cf. figure 2a), spanwise vorticity is created in
front of the roughness element as the boundary layer is blocked by it. The vorticity rolls
up and wraps around the cylindrical roughness element, and then develops into a pair
of HV legs in the streamwise direction. Another weaker pair of IV is generated directly
behind the roughness element, beginning from the downstream reverse flow region. For
the rotating case, the vortices are no longer symmetric, see figure 2(b). Instead, one IV
gets strengthened and becomes the DIV in the downstream area. On the other hand, the
other IV is weakened and rotates around the DIV, hence named SIV. The HV pair is
also weakened and vanishes in the near-wake region. The formation of the DIV is well
illustrated in figure 3, and can be summarized as follows.

915 A132-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

14
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.146


Boundary layer stability with rotating cylindrical roughness

(a) (b)

–2

1
1

0

5

10

10

0

5

20

30

DIV–0.2 0 0.2 0.4 0.6 0.8

HV

HV

IV
SIV

0

y
y

z

x x

2

–2

0z 2

Figure 2. Vortex visualization for isolated roughness element (Rekk = 465.8, η = 1, xk = 99.2) by means of
λ2 = −15, coloured by streamwise velocity u: (a) static case, Ωu = 0; (b) rotating case, Ωu = 0.46. The
abbreviations used are: horseshoe vortex (HV); inner vortex (IV); dominating inner vortex (DIV); secondary
inner vortex (SIV).
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Figure 3. Flow field visualized by line integral convolution (known as LIC) (Cabral & Leedom 1993; Loring,
Karimabadi & Rortershteyn 2014) for rotating case (Rekk = 465.8, η = 1, xk = 99.2, Ωu = 0.46), coloured by
streamwise velocity u. The yellow curve marks the reverse flow region. (a) y = 0.15; (b) y = 0.4; (c) y =
1.02.

(i) The rotating cylinder accelerates the flow on one side, reduces the reverse flow
region and pushes it towards the decelerated side such that a symmetric HV is no
longer possible.

(ii) Since the cylinder rotates at a constant angular velocity, the acceleration effect is
stronger close to the wall, thus forming a locally accelerated flow, see figure 3(a).
Depending on the strength of the accelerated flow, an additional reverse flow can be
induced behind it.

(iii) This accelerated flow meets with the high-speed flow on the decelerated side,
therefore creating the strong DIV.

The single leg of the streamwise DIV is stronger compared with those of the HV in
the static case, thus it is more effective in pulling high-speed fluid towards the wall and
pushing low-speed fluid to the outer region of the boundary layer. In other words, the
lift-up effect (Landahl 1990) is stronger in the rotating roughness case compared with its
static counterpart, therefore it is able to create stronger streamwise streaks. The locally
accelerated flow at the bottom also creates a slight cross-flow in the downstream wake of
the cylinder.

It turns out that the characteristics of the DIV created by the isolated roughness element
can be used to control velocity streaks. It is the purpose of this paper to investigate
the linear stability property of a boundary layer with different combinations of rotating
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Figure 4. Presentation of streamwise baseflow: (a) counter-rotating case C1; (b) counter-rotating case C2;
(c) corotating case C3; (d) corotating case C4. The thin solid lines are isolines of u = 0.1–0.95; thick black lines
visualize vortex cores by means of λ2 = −5; thick cyan lines visualize shear regions by means of I2 = −450.
In the first and second rows x = 5 and in the third and fourth rows x = 40. In the first and third rows ∂u/∂y
and in the second and fourth rows ∂u/∂z. (a) C1, Ωu = 0.46; (b) C2, Ωu = 0.2; (c) C3, Ωu = 0.46; (d) C4,

Ωu = 0.2.

roughness elements, i.e. corotating roughness arrays and counter-rotating roughness pairs.
Figure 4 presents slices of the steady base flow obtained from the SFD solver with the
identified vortices, high shear regions (by means of I2 = constant, see Meyer (2003)) and
the velocity gradients (∂u/∂y and ∂u/∂z). Two slices are shown for each case, one at x = 5
(in the two top rows) the other at x = 40 (in the two lower rows). In the near-wake region
(x = 5), the location of the HVs on the sides of the DIV is observable for all cases. Since
the DIV rotates in a clockwise sense (see figure 4c for instance), a stronger high velocity
streak is created on its right-hand side and a stronger low velocity streak is created on its
left-hand side compared with its static counterpart. This feature is more obvious at the
downstream slice, i.e. at x = 40. This alternating high–low–high velocity streak pattern
would attenuate the strength of the DIV, if the neighbouring corotating roughness elements
were too close to each other. Contrary to this attenuation effect, the counter-rotating
roughness pair intensifies either the high-speed or the low-speed velocity streak, depending
on the rotation direction. In figure 4(a), the counter-rotating roughness pair rotates in
the direction which intensifies the high-speed velocity streak and the low-speed velocity
streaks on the side are dissipated by viscosity. It is typical for streaky flow to have a
high-shear region above the low-speed velocity streak. At slice x = 5, it is obvious that
a high-shear region (I2 = −450) composed of wall-normal (∂u/∂y) and spanwise (∂u/∂z)
terms exists above the DIV. This structure belongs to an inflectional velocity profile, where
inviscid inflectional instability could be expected. At slice x = 40, this high-shear region
with inflection point still exists for corotating case C3 due to the long-living DIV, while
for the counter-rotating case C1 only the intensified high-speed streak persists. The latter
happens to be a preferable velocity profile with respect to the stabilization of TS-waves
(Siconolfi et al. 2015).

Figure 5 shows the streamwise evolution of the velocity gradient maxima in y–z planes
for all three types of streaky flows by corotation (case C3), positive counter-rotation
(case C2) and negative counter-rotation (case C4) of the roughness elements. It is clear
that the primary components of shear are the ∂u/∂y and ∂u/∂z terms in both static and
rotating cases. The other terms are several magnitudes lower. Comparing figure 5(b) with
figure 5(a), it is clear that the rotation effect not only promotes these two terms, but
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Figure 5. Evolution of baseflow gradient maxima in y–z planes: (a) C3, Ωu = 0; (b) C3, Ωu = 0.46; (c) C2,
Ωu = 0.46; (d) C4, Ωu = 0.46.

also slightly increases the ∂w/∂y and ∂v/∂z terms. However, the streamwise gradient
terms ∂/∂x remain negligibly low except for the very short near-wake region (x < 5), i.e.
the reverse-flow region. This observation validates use of the parallel flow assumption
as in Groskopf & Kloker (2016), for instance. Since the production of the PKE is
proportional to the shear magnitude, it can be inferred that the associated instability mode
is fundamentally determined by the wall-normal and spanwise productions which justifies
using the reduced Reynolds–Orr equation, i.e. (2.11) for perturbation energy analysis.

To quantify the amplitude of velocity streaks, the following definition of Groskopf &
Kloker (2016) is used:

ust(x) = 1
2

(
max

yz
[u(x, y, z) − 〈u〉(x, y)] − min

yz
[u(x, y, z) − 〈u〉(x, y)]

)
, (3.1)

where 〈u〉 is the spanwise mean value, which represents the 3-D baseflow deformation
caused by the low- and high-speed streaks. In figure 6, the streamwise evolution of the
streak amplitudes for the cases from table 1 are compared. A rapid growth of the streak
at the roughness element (x = 0) can be observed. A subsequent transient growth of
the streak amplitude begins from x ≈ 30 for case C1 with Ωu = 0.1. With increasing
rotation rate, this starting position moves forward until x ≈ 5. Such tendency is also
observed for other cases, especially case C3. For cases C1 and C3 with Ωu = 0.46, the
streaks reach a peak (ust = 0.32) at around x ≈ 55 and thereafter decay gradually. With
increasing rotation rate, the streak amplitudes of these two cases evolve similarly with an
almost constant offset. The streak evolution for cases C2 and C4 exhibit some differences.
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Figure 6. Streamwise evolution of velocity streak amplitudes.

Here, the velocity streak maxima occur closer to the roughness for lower rotation rates
(Ωu = 0.2). For higher rotation rate (Ωu = 0.46), an additional peak can be observed at
x ≈ 100 for case C4 and x ≈ 200 for case C2. Both postpone the decay of the streaks
leading to a higher streak amplitude.

3.2. Linear stability analysis
Linear stability analysis is performed at the same streamwise location x = 100, where
the base flow is quasi-parallel, for all cases presented in table 1. Two types of modes
are identified, the viscous TS-like mode and the inviscid inflectional mode, both clearly
shown in figure 7 for four cases. The TS-like mode contains a 3-D distortion relative to the
2-D TS mode of the Blasius boundary layer, due to the influence of the velocity streaks.
The TS-like mode’s amplitude maximum is located close to the wall and the mode travels
downstream with a phase speed cph = ωr/α ≈ 0.3–0.4. Due to the influence of the streaks,
the TS-like mode exhibits alternating signs in spanwise direction, as shown in figures 7(a)
and 7(b). This amplitude modulation is mainly induced by the low-speed streak, which is
clearest in figure 7(b) at z = ±2. The inviscid inflectional modes in figures 7(c) and 7(d)
are found to reside on the high-shear region which is identified by the I2 criterion. Since
the high-shear region is induced by the roughness element, the mode is hereafter called
the roughness mode. The roughness modes display a primary structure in the high-shear
region and secondary structures which are in antiphase to the primary at the sides of
the high-speed streaks. The shown roughness modal structures for cases C2 and C4 are
similar to each other. If the two low-speed regions in C2 move closer to each other, the
shown modal structures would coalesce to the shape of case C4. The amplitude of the v̂, ŵ
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Figure 7. Real part of mode component û (top), v̂ (middle), ŵ (bottom) of the typical TS-like mode (a,b) with
α = 0.35 and the roughness mode (c,d) with α = 1 extracted at x = 100. The thick red line marks phase speed
cph of the corresponding mode. The thin solid lines are isolines of u = 0.1–0.95. The thick cyan solid lines
visualize shear regions by means of I2 = −180. The Ωu for each case: (a) case C3, Ωu = 0.2; (b) case C1,
Ωu = 0.2; (c) case C2, Ωu = 0.46; (d) case C4, Ωu = 0.46.

components of the shown TS-like mode is quite small compared with the corresponding
û components, whereas the v̂ component of the shown roughness mode is similar to
the amplitude of the û component. What is more, the û, v̂ components always appear in
antiphase. It is also to be noted that the typical symmetric sense of the roughness modes
as found in the static roughness case is lost, the mode shown in this paper is always the
most amplified one.

The effect of different streaks on the boundary layer stability is studied by computing the
eigenvalue problem (2.9) at streamwise location x = 100 for a set of wavenumbers α. The
temporal amplification rate ωi and corresponding phase velocity cph are shown in figure 8
for both TS-like mode and roughness mode. The TS mode of the undisturbed Blasius
boundary layer, which is slightly amplified around α = 0.35, is evaluated at the same
streamwise location for reference. The two types of modes differ by their phase velocity
cph, such that the TS-like mode travels at a lower speed (cph ≈ 0.3–0.4) than the roughness
mode (cph ≈ 0.6–0.8). The identified phase speed for the roughness mode is similar to the
results of Di Giovanni & Stemmer (2018), who found that a roughness-induced mode
travels at cph = 0.68u∞ in a hypersonic boundary layer. For the TS-like mode, all streaks
are capable of attenuating the TS-like mode except for the case C4 with high rotation
rate (Ωu = 0.46), where the roughness mode gets mostly amplified with a relatively high
amplification rate. Only the roughness modes for cases C1 and C3 with low rotation
rate (Ωu = 0.2) remain damped. While at lower rotation rate (Ωu = 0.2), the amplified
mode peaks at a wavenumber around α = 0.5, the roughness mode with higher rotation
rate (Ωu = 0.46) peaks at a larger wavenumber around α = 1.0. It is also found that the
amplification rate for roughness modes increases with rotation rate. At the same time,
the most amplified wavenumber moves to higher values. However, among all cases, the
TS-wave attenuation effect is only observed to increase with increasing rotation rate in
configuration C1, i.e. positive counter-rotating roughness elements. Such tendency is not
that obvious for other cases. This indicates that only thin roughness elements with low
rotation rate are suitable for boundary layer instability attenuation or possible transition
delay, otherwise the additional roughness mode is always a threat leading to a fast-growing
inflectional instability.
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Figure 8. Growth rate ωi and phase velocity cph at slice x = 100: (a,c) TS-like mode; (b,d) roughness mode.

In figure 9, temporal stability diagrams obtained by tracking eigenmodes in the
(α, x)-space are presented. The TS-like modes of case C1 with Ωu = 0.1 and 0.2 are
compared with the TS mode flat-plate boundary layer in the upper row. The x position
corresponding to the critical Reynolds number for the unperturbed TS-mode is at x =
85 with wavenumber α = 0.37. With a slight rotation (Ωu = 0.1), the critical position
moves forward to x = 38 and the wavenumber reduces to α = 0.34. However, the overall
amplification rate ωi is greatly reduced, as the maximum is decreased by 40 % from
2 × 10−3 to 1.2 × 10−3. With further increase of the rotation rate to Ωu = 0.2 the TS-like
mode is fully damped in the studied streamwise range. The shown contour levels are hence
all negative in figure 9(c). The TS-like mode for even higher rotation rate Ωu = 0.46,
which is not shown here for convenience, is also fully damped in the studied streamwise
range.

The stability diagram of the most amplified roughness mode for case C2 is compared
with the static roughness array case from C3 in the lower row of figure 9. The roughness
mode seems to be mainly amplified directly behind the roughness element. However, as
indicated in the velocity gradients (cf. figure 5), the parallel flow assumption most probably
fails in the direct vicinity of the roughness wake, this must be treated with caution. Hence,
the roughness mode is only tracked from x = 5 downstream where the initial transients
from figure 5 have decayed. Compared with the TS-like mode, the roughness mode is
amplified more strongly and within a broader range of wavenumbers. Since the roughness
elements impose an abrupt geometric discontinuity to the boundary layer flow, extreme
high shear can be found in the near-wake region, where multiple unstable modes can be
found in the LST analysis. While the amplified region of the static reference case only
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Figure 9. Temporal stability diagrams of TS mode (a), TS-like mode (b–c) and roughness mode (d–f ): (b) case
C1, Ωu = 0.1; (c) case C1, Ωu = 0.2; (d) case C3, Ωu = 0; (e) case C2, Ωu = 0.2; ( f ) case C2, Ωu = 0.46.
The thick solid lines mark the TS mode’s neutral curve for comparison.

extends to x = 25, the rotation effect extends the amplified region to the full streamwise
region for both cases. Besides, there are three notable features in the stability diagram
of the roughness mode. The first is that the most amplified instability moves to a higher
wavenumber. The second is that the highly amplified near-wake region moves closer to
the roughness elements. The third feature is that a second peak appears at x = 60 for
higher rotation rate in figure 9( f ). In fact, this peak already emerges at x = 100 for
the case with Ωu = 0.2 in figure 9(e). The rotation effect moves the second peak to
higher wavenumber and forward to the roughness elements as well. This observation
is consistent with the observation of a local velocity streak amplitude maximum
in figure 6(b).

3.3. Instability mechanisms
Perturbation kinetic energy analysis is performed to get a deeper understanding of the
linear instability mechanisms. Results are shown in figure 10. The integral energy terms
(T̂y, T̂z) are normalized with respect to their corresponding dissipation terms D̂. In case
C1, the amplified reference TS mode is also plotted together with the TS-like mode.
As the TS mode is 2-D, the spanwise production term T̂z is negligibly small. Since the
wall-normal production term T̂y exceeds the dissipation term D̂, the TS mode is amplified
as a result of extracting energy from the baseflow. At very low rotation rate (Ωu = 0.1),
the T̂y term is slightly lower than that of the TS mode and the T̂z term is found to be
negative. This negative spanwise production term is considered to be the responsible
mechanism for TS-wave attenuation and transition delay with static roughness elements
(Cossu & Brandt 2004; Fransson et al. 2006). The reference case with static roughness
(Ωu = 0) is plotted with C3 as well. With this set-up, the spanwise production energy is
also found to be negative, but it is not strong enough to surpass the wall-normal production
energy. With increasing Ωu, the negative spanwise production term T̂z becomes positive
in case C1. On the other hand, the wall-normal production term T̂y reduces dramatically.
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Figure 10. Normalized PKE production and dissipation components. Mode evaluated at slice x = 100 with
α = 0.35 for TS-like mode and α = 0.5 for roughness mode (α = 1 for roughness mode C1, C3, C4 with
Ωu = 0.46).

Therefore, the sum of production terms becomes smaller than the dissipation term,
resulting in an overall attenuation of the TS-like mode. Such mechanisms, i.e. reduction
of wall-normal production and amplification of spanwise production perturbation energy,
are also observed for the TS-like mode in cases C2, C3 and C4. In cases C2 and C4,
the wall-normal production term is even reduced to a negative value at high rotation rate
(Ωu = 0.46), although the negative side is the overshoot of the spanwise production term
over the dissipation, see case C4 with Ωu = 0.46 in figures 10 and 8.

Perturbation kinetic energy analysis results for the roughness mode are shown in
the right column of figure 10. In case C1, both production terms are relatively low
when the rotation rate is small (Ωu = 0.1, 0.2). However, the wall-normal term T̂y rises
significantly at high rotation rate (Ωu = 0.46). Such notable increase of the wall-normal
production term is also evident for all other cases, especially in cases C2 and C4 where the
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Figure 11. Perturbation production of wall-normal T̂y (top), spanwise T̂z (middle) and dissipation D̂ (bottom)
terms of typical TS-like mode for case C1 with (a) Ωu = 0.1; (b) Ωu = 0.2; (c) Ωu = 0.46. Spatial
distributions are normalized by local maxima. The thin solid lines are isolines of u = 0.1–0.95.

wall-normal productions rise up to four and six times the dissipation term, respectively.
Although the increase of T̂y in case C3 is relatively small, it still reaches 1.5 times the
dissipation term. In addition, the spanwise production term T̂z is also increased to 1.8 times
the dissipation term. This unique feature of the roughness mode is due to the fact that case
C3 is the only corotation set-up in which both wall-normal shear ∂u/∂y and spanwise shear
∂u/∂z are significantly increased. To conclude, the roughness mode can be destabilized
by the streaks induced by rotating roughness elements and the according destabilization
effect is much more significant than the stabilization effect of the TS-like mode, in
agreement with the amplification rates in figure 8. In § 3.4 we shall investigate whether this
destabilization leads to immediate laminar–turbulent transition at the roughness elements
or not.

The above mechanisms can be further explained by examining the spatial distribution
of the PKE terms for each type of mode. Contour plots of the PKE terms for the TS-like
mode from case C1 are shown in figure 11. Both T̂y and T̂z are the product of Reynolds
shear stresses (τ̂xy, τ̂xz) and baseflow velocity gradients (∂u/∂y, ∂u/∂z), both of which
can be positive or negative. The corresponding signs of the involved Reynolds shear
stresses and the baseflow velocity gradients determine the sign of the PKE production.
As mentioned above, the spanwise production term for the TS mode is zero, since there
is no spanwise velocity gradient. However, neither the spanwise velocity gradient nor the
spanwise Reynolds shear stress is zero in streaky flows, the multiplication of the two terms
results in unavoidable non-negative spanwise production. Figure 11(a) shows the spatial
distribution of the PKE terms for case C1 with low rotation rate (Ωu = 0.1), which is a
case closest to the result of the TS mode. As already explained, the spanwise production
term for the TS mode is zero and the wall-normal production is positive throughout the
boundary layer. Due to the effect of the velocity streaks, the otherwise constant sign of
the wall-normal production is broken, see the top subpanels of figure 11. The positive
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Figure 12. Perturbation production of wall-normal T̂y (top), spanwise T̂z (middle) and dissipation D̂ (bottom)
terms of roughness mode for case C2 (a,b) and case C3 (c,d) with (a) case C2, Ωu = 0.2; (b) case C2, Ωu =
0.46; (c) case C3, Ωu = 0.2; (d) case C3, Ωu = 0.46. Spatial distributions are normalized by local maxima.
The thin solid lines are isolines of u = 0.1–0.95.

and negative production terms cancel each other in the spanwise mean, leading to the
reduction of the wall-normal production T̂y for the TS-like mode as shown in figure 10.
The spanwise production is also composed of parts with opposite signs, which inhibit the
growth of the integral value as rotation rate increases. This explains why the spanwise
production T̂z of the TS-like mode for case C1 remains almost unchanged for Ωu = 0.1
and Ωu = 0.2 in figure 10. With higher rotation rate (Ωu = 0.46), the negative parts of the
spanwise production become negligibly low, making the positive parts dominant, which
explains the rapid rise of the integral value. The rise of the spanwise production can be so
strong that it again destabilizes the TS-mode, see the TS-like mode of case C4 in figures 10
and 8.

The spatial distributions of the PKE terms for the roughness mode of cases C2
and C3 are shown in figure 12. For the inflectional instability, the productions are
mostly concentrated above the low-speed streak where inflection points can be found.
The negative part of the wall-normal production is lower compared with the spanwise
production for the case shown. As rotation rate increases, the wall-normal production
intensifies and results in a higher integral value. However, the robust negative part in the
spanwise production restricts the rise of the integral value. This explains the behaviour
of spanwise production T̂z for the roughness mode in figure 10. Nevertheless, the high
wall-normal production has already destabilized the roughness mode. The rise of T̂z in case
C3 is due to the unique feature of the velocity streak induced by the corotating roughness
elements, that both wall-normal and spanwise production are intensified, see figures 12(c)
and 12(d).

3.4. Exclusion of a possible bypass transition
The results presented so far have identified two opposing effects: stabilization of TS-modes
and destabilization of roughness modes. Especially, the latter appears to be strongest
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Figure 13. Snapshot (y = 1) of disturbance field u′ at t/T0 = 4.1 for case C2 with Ωu = 0.46 and disturbance
strip amplitude Â = 0.5u0. The disturbance strip is marked by vertical lines ahead of the roughness pairs. Its
spatial distribution and temporal modulation are shown above. Two spanwise periods Λ are shown. Note that
the visualization is presented with a logarithmic scale so as to exaggerate the otherwise imperceptible instability
in the near-wake.

towards the roughness elements where the local stability analysis is no longer valid.
Therefore, in order to exclude both, a possible bypass transition and a possible global
instability, a DNS is conducted for case C2 with pairs of counter-rotating roughness
elements and Ωu = 0.46, for which the previous LST predicts that the amplification rate
of the roughness mode is 100 times larger than that of the T–S mode. The steady-state base
flow is used as the initial field, and the nonlinear Navier–Stokes equations are marched in
time. A blowing–suction disturbance strip is placed ahead of the roughness elements from
x = −11 to −10 to trigger disturbances with a broad spectrum. The wall-normal velocity
component mapped to the wall within the disturbance strip is specified as (cf. Kurz &
Kloker 2016)

v(x∗, y∗ = 0, z∗, t) = Â sin(πx∗) exp(−(πx∗)2/
√

2)
1

50

50∑
n=1

cos(2π f0nt), x∗ ∈ [−1; 1],

(3.2)
where Â is the amplitude and f0 = 0.25 Hz is the fundamental frequency. Frequencies
with n = 1–50 are superimposed to produce a periodic pulse disturbance which will
excite a broad spectrum of instability waves. The frequencies of this spectrum are chosen
such that its lower part covers the dominant TS-modes and its higher part covers the
dominant roughness modes. Their different frequencies can be inferred from their different
wavenumbers in figure 9. In addition, the spatial distribution and temporal modulation
of the disturbance strip is switched on and switched off after four fundamental periods
T0 = 1/ f0, as shown by the dashed envelope curve together with a snapshot of the
disturbance field u′ = u − u0 at wall distance (y = 1) in figure 13.

In the latter, two spanwise periods are presented such that the impact of both sides of
the roughness-element pairs can be seen, the acceleration in-between two cylinders and
the deceleration between two pairs. Note the different distances between the four cylinders
shown. Initially, a wave package observable at x = 2–20 is triggered when the pulse passes
the roughness elements. Its wavefront is not only interrupted by the individual wakes
of each cylinder but it oscillates in antiphase, depending on its position relative to the
cylinder pairs. Oscillating structures start to occur at x ≈ 25 as a result of the dispersive
and convective nature of the wave package. Farther down they lead to braid-like structures
due to amplification of the roughness mode. A disturbance maximum occurs between
x ≈ 100 and x ≈ 170. Here, we notice that the near-wake of the roughness elements is
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Figure 14. Space-time x − t diagram of perturbations sampled along the x-axis at ( y, z) = (1, 0). The black
line in panel (b) marks the switch-off of the disturbance strip.

dominated by instability waves instead of a bypass transition, despite the large disturbance
amplitude Â = 0.5u0 and the broad band of forcing.

On the other hand, the near-wake region is reported to be the ‘wavemaker’ for
self-sustained global instability (Loiseau et al. 2014). This means that the near-wake can be
the starting region of a global instability, although immediate laminar–turbulent transition
may not occur. However, this hypothesis can be excluded as well for the present case, as is
shown in figure 14 which presents x–t diagrams of disturbances sampled at ( y, z) = (1, 0)

over time. Two disturbance strip amplitudes Â = 0.05u∞ and Â = 0.5u∞ are shown to
present their influence on the transition front. In both cases, the disturbances are observed
to grow gradually while they are convected downstream. Bypass transition does not occur
in the near-wake. Increasing the disturbance amplitude 10 times does not change the
convective nature of the instabilities either, but the transition front moves to approximately
x ≈ 200. The decisive test is to switch the forcing off at t/T0 = 4. Figure 14(b) shows that
all perturbations are then convected away by the flow. This is the final proof that no global
instability exists.

4. Conclusions

The present investigations have shown that rotation has a decisive influence on the wake
behind wall-mounted, finite-length cylindrical roughness elements in a laminar boundary
layer. Local acceleration by the circumferential velocity shifts the separation zone at the
wall to one side of the cylinder. This process prevents the otherwise typical formation of
a HV at the bottom of the cylinder. Instead, a single vortex (a DIV) is formed, similar to
the case of roughness elements in a boundary layer with cross-flow or oblique roughness
elements in a 2-D boundary layer, see Groskopf & Kloker (2016). Compared with the HV
in the non-rotating case, the DIV is stronger and extends farther downstream. In addition to
arrays with corotating roughness elements, cases with roughness element pairs have also
been investigated. For these, the distances and the sense of rotation with respect to each
other have been varied as well. All these investigations show that the deformation of the
boundary layer by flow-induced streaks can be controlled considerably by the rotational
speed of the roughness elements.
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More than 10 cases are presented which have been studied in numerical simulations
of the steady laminar base flow and a subsequent biglobal linear stability analysis. The
latter has been performed at constant downstream distances from the roughness elements
but in a wide range that begins at five roughness heights behind their centre. Use of
the parallel-flow approximation for LST can be justified by comparing the much smaller
gradients in streamwise direction with respect to other directions (see figure 5). Two
unstable or least stable modes are observed: the classical TS-mode of boundary layer
instability and a roughness mode due to the presence of inflection points and dominating
wall-normal as well as spanwise shear in the streamwise velocity component of the laminar
base flow. The first is deformed three-dimensionally by the roughness or its wake. The
latter occurs initially only in the immediate vicinity of the roughness. The amplification
maxima for both modes occur at different wavenumbers and hence different frequencies,
with the roughness mode being 5 to 10 times higher.

As the cylinders are rotated, the TS mode is attenuated and finally damped, while the
amplification rate of the roughness mode continues to increase. An analysis of the PKE
has revealed the specific contributions of the wall-normal and spanwise shear components
to the overall amplification or attenuation of the different modes under the influence
of rotation. The investigations also show that the control of the roughness mode is
less dangerous for slim roughness elements compared with thicker ones. The risk of a
possible bypass transition due to a strong amplification of the roughness mode in the
immediate vicinity of the roughness elements, where the local stability analysis could
not be performed, was excluded by a DNS study.

Overall, the present method complements earlier investigations by Fransson et al. on
TS-mode attenuation with a series of cylindrical roughness elements and shows the
possibility of increasing their effect by rotation. Based on the observation that some
modes can be further destabilized by the control, one may propose that the current control
method could also be used to trigger laminar–turbulent transition instead of delaying it.
Construction of a device with rotating roughness elements appears feasible, at least to the
present authors. In addition to what has been shown here, we have already observed in
another DNS study that rotating cylindrical roughness elements could also be considered
in a turbulent flow for the purpose of delaying boundary layer separation.
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Appendix A. Biglobal LST coefficient matrices

L =

⎛
⎜⎜⎜⎜⎝

LT ∂u0/∂y ∂u0/∂z iα

0 LT + ∂v0/∂y ∂v0/∂z ∂/∂y

0 ∂w0/∂y LT + ∂w0/∂z ∂/∂z

iα ∂/∂y ∂/∂z 0

⎞
⎟⎟⎟⎟⎠ (A1)
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M =

⎛
⎜⎝

i 0 0 0
0 i 0 0
0 0 i 0
0 0 0 0

⎞
⎟⎠ (A2)

where LT = iαu0 + v0(∂/∂y) + w0(∂/∂z) − 1/Re(∂2/∂y2 + ∂2/∂z2 − α2).
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